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Abstract: This paper presents a new approach to generate datasets for cyber threat research in a
multi-node system. For this purpose, the proof-of-concept of such a system is implemented. The
system will be used to collect unique datasets with examples of information hiding techniques. These
techniques are not present in publicly available cyber threat detection datasets, while the cyber threats
that use them represent an emerging cyber defense challenge worldwide. The network data were
collected thanks to the development of a dedicated application that automatically generates random
network configurations and runs scenarios of information hiding techniques. The generated datasets
were used in the data-driven research workflow for cyber threat detection, including the generation
of data representations (network flows), feature selection based on correlations, data augmentation
of training datasets, and preparation of machine learning classifiers based on Random Forest and
Multilayer Perceptron architectures. The presented results show the usefulness and correctness of
the design process to detect information hiding techniques. The challenges and research directions to
detect cyber deception methods are discussed in general in the paper.

Keywords: cybersecurity; data science; machine learning; datasets; cyber threats modeling; multi-agent
systems; cyber deception

1. Introduction

In recent years, threats in cyberspace have evolved into well-organized, long-term,
and resource-intensive intrusion campaigns known as Advanced Persistent Threats. As a
result, there is a need to increase research into and the implementation of new cyber defense
solutions, methods, operations, and procedures. Cybersecurity research activity is very
broad, but it could be summarized by offering new developments and solutions for new
use cases for each function of the NIST Cybersecurity Framework (CSF) [1]. Examples
of a tailored solution that has been developed based on a new use case for cybersecurity
would be physical unclonable functions [2]. The need for a new secure identification and
authentication method was driven by the restricted requirements of cyber-physical systems.
The resulting concept offers low computational cost and resource requirements, whereas
Identify and Protect functions are easily provided for such systems. The same strategy
for research in cyber threat detection is followed in this paper. One of the most important
scientific and technological areas that are increasingly being used for cyber defense is data
science and data-driven methods. The following list summarizes the five areas of work
around data science in cybersecurity:

1. Modeling cyber threats to leverage across the data pipeline, from observation to flaw
detection to actionable cyber threat data—for example modeling techniques: NIST
Incident Response [3], Cyber Kill Chain [4], and MITRE ATT&CK [5].

2. Applying new models of cyber threats and setting up platforms to simulate them in
near-production environments.

3. Elaboration of detection algorithms that are technically feasible in modern networks
and systems.
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4. Sharing the collected information on cyber threats and applying this information in
technical solutions.

5. Accelerating the decision-making process within cybersecurity teams and depart-
ments together with the company’s decision-makers.

For a more detailed overview of the challenges of data-driven cyber threats and in-
trusion detection, see [6]. This paper presents efforts to create an end-to-end process that
combines aspects 1, 2, and 3. This is possible by extending the established approach for cy-
ber threat detection systems [7], mainly realized by Network and Host Intrusion Detection
Systems (NIDS, HIDS), to Multi-Node Cyber Threat Detection (MNCTD) systems. The cy-
ber defense action matrix [4] shows that classical NIDS or HIDS can be used individually in
four out of seven phases of the Cyber Kill Chain—weaponization, exploitation, installation,
and C2 (Command and Control). MNCTD goes further and proposes the combination of
the detection capabilities of all steps into a cyber threat detection system that focuses on
network communications.

Any research project on such models, algorithms, and systems suffers from the avail-
ability of the right data. The recognized problem of availability of specific datasets for the
particular research hypothesis and preparation of appropriate datasets for cyber threat
detection is a critical challenge [8]. In the first part, this paper summarizes the current
state of datasets for cyber security research available in academia and industry. It then
proposes an approach to create specific datasets for hybrid cyber threat detection sys-
tems research, as such datasets are scarcely available in the public domain. Most of these
available datasets focus on network attacks, such as Distributed Denial of Service (DDoS),
SSH Brute Force, or botnet communication over open text protocols such as HTTP or IRC.
Modern cyber threat modeling shifts thinking to identify threat phases (Cyber Kill Chain)
or tactics realized through various techniques (MITRE ATT&CK) to block a threat as early
as possible. Developing new solutions for cyber defense is about defining the aspects of
the threat using the chosen modeling method and creating certain observable indicators
that can be analyzed by detection algorithms. Such an approach could provide the desired
ability to block and counter cyber threat campaigns as soon as indicators of threat are
detected. Another novelty of this paper is the emphasis on the increasing importance of
detecting information concealment techniques used in cyber attacks, especially in APT
campaigns. One of the most important reports on the rise of stegomalware was the June
2017 McAfee report [9]. In it, steganography was identified as the emerging element used
in new malware campaigns. Information hiding techniques can be used at any stage of
a cyber threat campaign, but the focus is on methods that work with communication
activities over networks:

• Delivery and C2 Phase designated by Cyber Kill Chain methodology.
• Defense Evasion, Exfiltration, and C2 Tactics classified by MITRE ATT&CK methodology.

This paper presents the possibility of preparing datasets with information hiding
techniques to develop the concept of a Multi-Node Cyber Threat Detection platform.
The created multi-agent system for collecting network packet traces was applied in the
automatically generated environment of network nodes and with the random setup of
malicious pairs of hosts (sender-receiver) per experimental run. Then, the collected sample
datasets were used in the data science workflow for cyber threat detection. The classical
pipeline of a data science experiment includes data cleaning, feature selection, under-
or over-selection of rare class examples, and development of the default solution for
classification problems.

The structure of the paper is as follows:

• Section 2 briefly presents the available datasets and the systematic approach to eval-
uating self-generated datasets. It builds the context for the need for the research in
this paper:
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– Generating datasets for cyber threat detection research in the domain of infor-
mation hiding techniques applied by modern malware and malicious cyber
operations like APTs.

– Establish the possibility to generate these datasets in different and randomized
networking environments with a varying set of sources and destinations for the
simulated cyber attacks.

• Section 3 presents the methodology used to establish the framework for end-to-end
dataset generation for cyber threat detection research. It follows the context of the
research established in Section 2. This section covers the concept of the system for
capturing network traffic in a multi-node setup, simulation of benign and malicious
network flows and scenarios for generating the final datasets, and a simple methodol-
ogy for generating datasets.

• Section 4 shows examples of data science experiments enabled by the generated data.
This part presents the empirical evaluation of the datasets generated by the methods
introduced in Section 3.

• Section 5 concludes the paper with a summary of the results and further research
directions that could be based on this paper.

Contributions of the Paper

The main contributions of the paper are:

• An approach to collect datasets for cyber threat detection research in a multi-node
setup using the developed agent system. This contribution goes far beyond the state-
of-the-art presented in Section 2.3. The majority of the available datasets are focused
on providing indicators for simulated cyber attacks from single endpoints like central
collectors, whereas this research tackles multi-node cyber data collection to follow the
cyber attack path of execution.

• Application of the information hiding techniques in communication networks [10]
to research cyber threats as an emerging problem in cyberspace. The paper shows
how to generate network data streams using information hiding techniques. This
is a key effect, as most of the state-of-the-art datasets presented in Section 2.3 in-
clude the classic types of cyber attacks only with no covert communication samples.
The introduction of this paper and Section 2.4 show the increase in malware applying
information hiding techniques for Command and Control channels, to exfiltrate data
or to persistently maintain the presence in the compromised environments. It means
that any research into cyber threat detection methods in the area of steganography
used in malicious operations has never been as important.

• Development of an automated and randomized tool for setting up network configu-
rations (nodes and links) when performing simulations of network communication
scenarios. According to the state-of-the-art cyber data collection environments of the
datasets presented in Section 2.3 they were mostly configured once with the chosen
sources and destinations of cyber attacks. The contribution of this paper offers a
solution to mitigate the biases in datasets related to the shape and topology of the
environment in which they were collected.

• The execution of reference cyber threat detection experiments on the collected datasets.
Most of the state-of-the-art research papers related to datasets included in Section 2.3
present the datasets and collection process. This paper contributes to the approach
applied by the authors where the collected datasets were evaluated to be feasible in
data-driven cyber threat detection workflows.

2. Related Work
2.1. Multi-Node Cyber Defense Solutions

The systems that could be built upon the results of this paper combine the idea
of network intrusion detection systems with the concept of multi-agent systems into a
multi-node cyber threat detection system. In the last 30 years, it has been investigated in
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different aspects related to architectures, computational aspects (for example, involving
AI), effective collaboration within multi-agent platforms, and applications. One of the
milestones is the paper [11], where the idea of intrusion detection using autonomous agents
was proposed. Publications such as [12–14] combined are drawing a comprehensive review
of the state-of-the-art in multi-agent cyber defense solutions.

Nowadays, a cyber defense based on multi-agent systems is recognized as a modern
and very efficient approach with continuous emerging. Interest in such systems has
been extensively revisited recently within academia, industry, law enforcement agencies,
and even the military. In [15], the author developed the idea that intelligent autonomous
agents will be the standard on the battlefield of the future. It means that intelligent
autonomous cyber defense agents are going to become the main element of any entity
involved with the battlefield, where cyberspace will become the crucial area of conflict.
The paper introduced several novel ideas with summarization of the other ones into the
reference architecture of any multi-agent system for cyber defense.

A current industrial application of such systems could be any Internet of Things
networks or, in general, cyber-physical systems and networks. The justification behind this
is that these systems are by default distributed and multi-node. Furthermore, the require-
ments on the lightness of the computation on the nodes implicates that only multi-agent
cyber threat detection solutions would fit such environments. For example, the state-of-
the-art in this field from two papers [16,17] introduce the intrusion detection system in
connected vehicles (Vehicle-to-Vehicle, V2V). The system presented in [16] consists of the
part that is analyzing the node of the environment—a vehicle—with the option of central-
ized data analytics in the cloud. The main contribution of the authors was to consider
each single element of the vehicle as the valuable source of data to detect cyber threats.
Next, it was proposed to combine the real time data from such different and distributed
elements together for the classification algorithm based on Bayesian networks. The pa-
per [17] investigates such multi-agent cyber threat detection within a single vehicle more
deeply in terms of how to combine data from different sensors to detect intrusions. Such
an approach complies with the general idea of multi-agent intrusion detection systems and
it is an important example of how to apply it to solve the modern problems of security in
cyberspace. As the use case of a connected vehicle will be rapidly adopted, cyber defense
solutions involving multi-agent concepts crucially need to be developed.

2.2. Generation of Datasets for Cyber Threat Detection Research

The general prerequisite for any discovery problem to be addressed by data science
methods is to have the right data. There are three main approaches to obtaining data for
cyber threat detection:

• Collecting data from actual production networks and cyber intrusions,
• Building models of production networks and simulating network communications

(malicious and benign),
• The use of mathematical, statistical, machine learning, and other algorithms to gener-

ate the data.

The first approach is highly desirable, as working on actual data should guarantee
low-fault detection algorithms that are ready for actual cyber attacks. The main problem
with the reliability of this approach is that few organizations could use such data for cyber
threat detection research. Cyber attacks are very rare if we consider the total observation
time. This means that it would take a very long time to collect enough examples to train a
detection algorithm on these indicators. Another challenge with such data is the privacy
concern. It is impossible to share such information, so the cybersecurity community cannot
benefit from it for cyber threat detection.

The simulation approach is usually used in modern research into intrusion detection
systems in industry and academia. One of the most well-known research institutes in
this field is the Canadian Institute of Cybersecurity (CIC) at the University of Brunswick.
The institute has published nearly 30 datasets over the past decade, while researchers have
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developed reference methods for generating such data. A 2018 paper [18] summarizes the
current approach to generating the simulated networks and data for cyber threat detection
research over them. The main outcome was the development of a parametric configuration
of the network communication patterns to be simulated, called profiles. This improved the
quality of the resulting datasets. Another systematic approach was presented in [19]. This
paper adds the new idea of simulated datasets for cyber threat detection systems based on
a novel architecture:

• Collecting sensors distributed on network nodes,
• Allowing for continuous communication and coordination between sensors,
• The use of a central processing unit to improve detection decisions,
• The automation of the network scenarios in which the data was collected,
• The use of data science methods to oversample the least representative samples of

malicious data.

The details are presented in Section 3. The latter approach exploits the mathemati-
cal foundations of modeling and data analysis, in particular, to apply machine learning
methods for data generation. It could help to increase the similarity of generated data with
actual production or to address shortcomings of simulations (complementary between
approaches). An example of applying machine learning to improve detection rates and
complement the small number of malicious samples is presented in [20]. It uses adversarial
machine learning methods for cyber threat detection research. Generative Adversarial Net-
works (GAN) are implemented to generate synthetic samples. Then, the module IDS was
trained on them along with the original samples. It also fixes the problems of unbalanced
or missing data on input. This approach greatly improves the performance of the IDS
detection algorithm. The major challenge in applying machine learning for cyber threat
detection is the explainability and transparency of such algorithms.

2.3. Availability of Datasets for Cyber Threat Detection Research

Historically, the first milestones in the public availability of datasets for cyber threat
detection research were in 1998–1999, when the DARPA’98 and KDD’99 datasets were released.
Since then, many other and different datasets have been created, but there are still not enough
publicly available datasets for cybersecurity research. This section presents some examples of
publicly available datasets that are generally recognized as comprehensive, well-prepared,
and appropriate for cybersecurity research on cyber threat detection systems.

Canadian Institute of Cybersecurity datasets: ISCX 2012 Dataset [21] was the first
participation of the Canadian Institute of Cybersecurity that provided a systematic ap-
proach for creating datasets for cyber threat detection systems research. They introduced
the concept of profiles, which contain detailed descriptions of intrusions and abstract distri-
bution models for lower-level applications, protocols, or network entities. Previously, they
analyzed real-world traces to create these profiles. The dataset created included benign
and malicious network traffic traces of HTTP, SMTP, SSH, IMAP, POP3, and FTP. The NSL-
KDD ISCX Dataset [22] was created as a solution to the inherent problems of the original
KDD’99 dataset. It still suffers from some of the problems and may not perfectly represent
real-world networks. Nevertheless, it can be used as a useful benchmark dataset to help
researchers compare different cyber threat detection methods. The CIC 2017 dataset [23]
contains benign and the most recent widespread attacks stored as network traffic traces
from actual real-world executions. Implemented attacks include Brute Force FTP, Brute
Force SSH, DoS, Heartbleed, web attack, infiltration, botnet, and DDoS. Due to the nature
of the prepared profiles, they can be directly applied to a variety of network protocols
with different topologies to create a dataset for specific requirements. The CSE-CIC 2018
dataset [24] follows the pattern in the scaled infrastructure of 500 devices. The dataset
provides the network traffic traces and system logs from each of these devices.

UNSW-NB15 Dataset [25]: The raw network packets of the UNSW-NB 15 dataset
were created in the Cyber Range Lab of the Australian Center for Cyber Security (ACCS).
It contains a mixture of actual normal activities and synthetic current attack behaviors
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from fuzzers, backdoors, DoS, exploits, generic cyber attacks, reconnaissance, shellcode,
and worms. Argus, Zeek (formerly BroIDS), and the authors’ tools were used for data
collection. Class tagging was also provided. The number of records in the training set
was 175,341, and the testing set was 82,332 from different types of network traffic (benign
and malicious).

UGR’16 Dataset [26]: The dataset was created with real traffic and actual attacks.
The network traffic was recorded by Netflow v9 collectors strategically placed in the
network of one of the Internet Service Providers from Spain. It consists of two datasets
split into weeks:

• CALIBRATION set was collected from March to June 2016 (four months) with accurate
background traffic data.

• itemize TEST was collected from July to August 2016 with factual background and
synthetically generated traffic data of various known attack types.

The main advantage of this dataset is its usefulness for evaluating cyber threat de-
tection algorithms with a long-term perspective. The models can also take into account
differentiation by day/night or working days/off days.

CAIDA Datasets: The Center for Applied Internet Data Analysis (CAIDA) collects
various types of data from geographically and topologically diverse locations and makes
these data available to the research community. Information was collected from active and
passive measurement infrastructures that provide insights into global Internet behavior.
CAIDA collects, curates, archives, and shares the datasets resulting from these measure-
ments. It also processes and shares several derived datasets. Datasets through April 2016
are available at [27]. One of the most well-known CAIDA datasets is the DDoS 2007 dataset,
which contains network traffic traces from large-scale distributed denial-of-service attacks.
More recent datasets are made available on the Impact Cyber Trust Project [28] system.
The Information Marketplace for Policy and Analysis of Cyber-risk Furthermore, Trust
(IMPACT) project was created by the U.S. Department of Homeland Security to support
the global cyber-risk research community through the coordination and development of
real-world data and information sharing capabilities. The IMPACT project enables the
sharing of empirical data and information among the global cybersecurity research and
development (R&D) community in academia, industry, and government to accelerate
solutions to cyber risk and infrastructure security. Datasets are available exclusively to
researchers from the U.S. and collaborating countries.

2.4. Malware with Information Hiding Techniques Applied

Network steganography, as a branch of information hiding techniques, is rapidly
evolving and has attracted tremendous interest from cybersecurity researchers since the
paper [29]. Any network steganography technique must meet three conditions [10]:

• Modified properties of the protocol;
• Modified properties of the protocol may refer to mechanisms related to inadequacies

of the communication channel, the nature of the messages exchanged, or their form;
• Communication parties trying to prevent the observer from detecting the transmission

of data using information hiding techniques.

The Morto worm [30], a malware with network steganography capabilities, used
records stored on Domain Name System (DNS) servers to communicate with C2 servers.
This was the first actual implementation of network steganography in malware ever
discovered. Over the years, DNS has proven to be one of the most popular network
protocols abused for information concealment techniques. Any system from IT that has
access to the Internet must use it, so port 53 is wide open and allowed by firewalls and
cyber threat detection systems. The DNS protocol is characterized by open text messages
that provide many opportunities to hide data in them using text steganography methods.
Another protocol that has been used for network steganography in malware in recent years
is the Secure Shell (SSH) protocol. It was discovered in 2013 in the Fokitor Trojan [31].
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The motivation to use SSH for such operations is the same as DNS: widely used in IT
systems, port 22 open and allowed. In this method, the SSH protocol connections merely
carried the hidden information as a payload. The Regin malware [32], discovered in 2014,
was equipped with three mechanisms to prevent network communication:

• Stealth data tunneling in ICMP protocol traffic (ping).
• Insertion of steering commands in cookies in the HTTP protocol header.
• Insertion of steering commands into specially prepared TCP protocol segments or

UDP datagrams.

This is the ongoing trend of implementing different steganographic C2 channels and
using them depending on the deployment conditions. Steganography, a cyber deception
method, provides the ability to bypass the detection and measures of standard network
security applications, such as blocking by firewalls or triggering alerts by cyber threat
detection systems.

Another trend is the combination of different methods to hide information, e.g., com-
bining multimedia steganography with hidden communication via TCP/IP protocols.
The typical approach for combining multimedia steganography and network communica-
tion to form hybrid steganography is as follows:

• Use of multimedia steganography to hide the data.
• Use of standard protocols of the TCP/IP stack, especially application network traf-

fic, to smuggle multimedia files between victims and attackers either directly or via
C2 servers.

The first practical application of such an approach was a 2011 malware campaign.
Duqu [33] used multimedia steganography to hide data in JPEG images and then sent
them to the C2 server. This communication looks like an ordinary image file transfer, but in
reality it is used to establish a covert C2 channel. A similar technique was used for the
2014 Zeus Trojan morph, Lurk [34], where images were the carriers of the hidden control
commands. In the following years, the C2 channels used in modern cyber threat campaigns
were considered for information hiding techniques. More recently, the techniques have
evolved, spreading multimedia steganography over open social networks (OSN) and
adding methods of text steganography. This introduced a new level of complexity to any
forensic analysis, making it a problem similar to finding a needle in a haystack. An example
of a practical application is Hammertoss APT, applied by the group APT29 [35]. They used
Twitter to exchange URLs to image files that contained hidden data. Each Twitter message
also contained a specially prepared hashtag needed to decode the hidden part of the
image. The project attracted interest from cybersecurity researchers who were looking for
models to define detection techniques, as the classical signature approach was insufficient.
Interesting proofs-of-concept of steganography systems include:

• Stegobot [36]—one of the pioneering systems using OSNs as an overlay network for
the technical operations.

• Instegogram [37]—a technique that uses the image feed of a given Instagram account
to decode C2 messages from images. The main achievement here was using a popular
internet service to smuggle malware communications.

• StegHash with SocialStegDisc [38]—The StegHash technique was used to distribute
multimedia files with hidden data portions across many Internet services and accounts.
The mechanism of hashtags creates an invisible chain through which the original
message can be recovered. SocialStegDisc implemented the StegHash technique to
address the scheme in a novel steganographic file system.

Therefore, the use of hybrid and network steganography to breach the security of
computer systems, in particular, is an important area of research to identify vulnerabilities
and methods to combat them. This is the critical goal of this work, to improve the security
of cyberspace.
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3. Generating Datasets for Cyber Threat Detection Research
3.1. Application of Multi-Node Cyber Threat Detection System

A multi-node cyber threat detection system operates in the environment of distributed
network devices running open operating systems (e.g., Linux), mainly programmable
routers. Each router contains the execution environment of mobile agents that are inter-
connected to form a platform that controls the Central Unit. For the purpose of this study,
the monitoring mode of such a system is considered.

On the execution platform, it is possible to run agents with different purpose settings:

• Agents collect network traffic logs in a specific format and send this data to the Central
Unit for analysis.

• Agents equipped with motion logic that follows the developed algorithm for comput-
ing anomaly metrics and cooperates in selecting additional areas of the observation
network. The goal is to discover the sources of the attack.

To build a multi-agent peer-to-peer communication, the concept of the actor sys-
tem [39] has been used. The main purpose of the actor system is to develop a high-level
and non-blocking parallel execution model for computation. The atomic execution units,
called actors, execute their assigned tasks and then share the results via the message box
communication abstraction. The actor system is responsible for creating and managing
the lives of the actors (agents) in various distributed environments. The scheme of the
prepared platform is shown in Figure 1. It shows the main nodes of the architecture:

• The Central Unit node, which manages the actor system of the whole platform and
coordinates the life cycle of the distributed agents and of itself. More details are
presented in Table 1.

• A router with the actor system instance in which the single node managing agent
is instanced and connected with the whole platform managed by the Central Unit.
Furthermore, this agent could spawn other node agents to operate different functions.
Figure 1 shows such an agent called the Interface Sniffer Agent.

Central Unit (CU)

Actor System

Platform Manager Agent

Router

Actor System

Router Manager Agent

Interface Sniffer
Agent

Interface Sniffer
Agent

Figure 1. Scheme of monitoring platform based on actor system approach.

As the prototype of the platform is utilized in the monitor mode (sniffing and collecting
network data), the main functionalities to be included within the main nodes of the
system are:

• Sniffing network traffic on all interfaces of a router;
• Storing PCAP files at the nodes;
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• Collecting PCAP files across nodes in the Central Unit.

The interface Sniffer Agent would provide the first and second functionality. The third
is implemented by the communication scheme between the Platform Manager Agent,
Router Manager Agents, and Interface Sniffer Agents. The whole platform (node agents
and Central Unit) provides the other functions, such as life cycle management, PCAP
file management, or controlling the operation mode of the system. Table 1 summarizes
the operational aspects for each main component of the platform: Central Unit, a router,
Router Controlling Agent, and Internal Sniffing Agent. It includes the functional role
(Objectives column) realized by each of them and the communication patterns with the
other components that are utilized to fulfill the role (Communication patterns column).

Table 1. Summary of operational aspects of multi-node Network Traffic Monitoring Platform.

Module Objective Communication Patterns

Central Unit

1. Hosting main control agent of entire
platform

2. Managing entire platform
3. Managing joining process of routers

hosting platforms
4. Managing joining process of router control

agents
5. Maintaining status of remote router

hosting platforms and control agents on
each of them

6. Receiving message about new PCAP file
available on router

7. Downloading PCAP file from selected
remote router

8. Managing collection of PCAP files
downloaded from remote routers

1. Initializing the connection between
Central Unit and any router hosting
platform

2. Requesting creation of new controlling
agent on remote router platform

3. Submitting configuration settings to
newly created controlling agent on
remote router platform

4. Receiving notification about availability
of new PCAP file

5. Retrieving PCAP file over HTTP protocol

A router Computing and networking platform that hosts
remote portion of entire agent system Receiving requests to create new control agent

Router Controlling Agent

1. Router management
2. Joining platform agent system
3. Managing network interfaces and setting

up sniffing on them
4. Providing HTTP server through which

PCAP files can be downloaded from
Central Unit

5. Managing status of availability of new
PCAP files

1. Receiving configuration settings from
Central Unit

2. Requesting creation of internal agents to
sniff network interfaces

3. Controlling start and stop of network
sniffing per selected interface

4. Notifying Central Unit about availability
of new PCAP file

Internal Sniffing Agent

1. Creating sniffing process on bound
network interface

2. Managing sniffing strategy
3. Managing end of sniffing action by passing

callback to router control agent

1. Receiving request to start sniffing
2. Receiving request to stop sniffing
3. Collecting information when new PCAP

file is available
4. Notifying router control agent of

availability of new PCAP file

The concept of architecture realized by the presented proof-of-concept is easily ex-
pandable by embedding processing and detection algorithms together with any distributed
computing strategies to be imposed within the system. Any complexity in terms of logical
distribution of the processing and decision-making could be considered. However, the con-
straints and limitations of such an expansion for any logical workflow of the cyber threat
detections and mitigations are driven by:

• The performance related to the type of the networks and its protocols.
• The data flow rates and processing performance.
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• The physical bandwidth of interfaces within network nodes (routers and the other
network appliances).

• The computational resources within a single network node where the cyber threat
detection agent would operate.

• The multi-node cyber threat detection system management links to the performance.

Network packets need to be processed in the time imposed by the bandwidth of
the interfaces within a network node. If there is an objective to detect and react to cyber
threats inline, then the detection and computation architecture is required to be able to
draw decisions within the time frame of the network packet processing. For 10 Gb/s
networks, one packet of 300 bytes (average size in the Internet) needs to be processed in
240 nanoseconds. Otherwise, the system would process the copy of the data, so the main
constraints will be limited to copy operation, transferring data to the other agents, and the
size of the generated data in time (directly based on the network flow data rates).

In fact, the proof-of-concept was implemented in Python as the most efficient for fast
prototyping. It was used in the monitor mode only to collect PCAPs as datasets. However,
the real production multi-node cyber threat detection system should be implemented in
more suitable hardware and software for technological stacking. Software programming
languages for data processing within constrained environments in terms of computational
resources are C, C++, or Rust. If the software processing cannot fulfill the processing re-
quirements, then hardware solutions to accelerate the computations needs to be considered,
such as ASICs or FPGAs. The Central Unit node or any other node considered in general as
the “computational center” could be built upon Big Data technological stacks characterized
by high scalability, efficiency, and possibility to parallelize computations. The main limita-
tion would be related to the available hardware resources and if it is possible to implement
several computational servers as the component of a production multi-node cyber threat
detection system.

3.2. Network Traffic Streams Simulations
3.2.1. Malicious Network Data Streams

The network data streams within the scope of this paper must contain steganographic
techniques of the various types. For this work, the implementation could be simple so that
the required data can be generated for further research. The choices of such methods are:

• Method based on intentionally lost packets that can carry hidden payloads. It could
be implemented in various network protocols such as SIP or RTP, with one important
characteristic rule—a packet is detected as lost even if it eventually reaches the desti-
nation, it is simply discarded. No verification is performed. This fact can be directly
applied to network steganography in the following way:

– Some packets must be intentionally delayed to be detected as lost.
– The payload of such packets could be overwritten to carry steganograms.
– When such a packet finally arrives at its destination, it is simply discarded. If a

steganographic receiver is installed, it could intercept these packets to extract the
hidden payload.

• Method based on modulating the transmission time between packets to encode bits ‘0’
and ‘1’. Delay-based network steganography is a type of time-based steganography.
It uses modulation of the transmission times of successive packets in network traffic
to encode ‘1’ and ‘0’ bits of hidden data. Probably any network protocol can be used
for such a method. The secret between sender and receiver is to encode and decode
the hidden data in the temporal relationships between the packets. The sender side
must be parameterized with the type of distribution used to generate the network
stream. The receiver side must also be parameterized with this distribution and with
decision thresholds in the decoding module.

The dedicated applications were prepared as the element of the whole end-to-end
framework for cyber threat detection research. The signalization over lost packets in
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the multimedia stream of packets utilizes the RTP protocol. The hidden communication
over packets with the modulated time of sending uses the ICMP protocol. The prepared
applications could also be executed in benign mode to generate the expected network flows
of the selected protocols (RTP or ICMP).

3.2.2. Benign Network Data Streams

The approach to generating benign network traffic was developed by analyzing
the typical patterns of network communications in consumer and enterprise networks
LAN/WAN. Several specific applications and protocols were identified:

• Surfing the Internet and using the HTTP protocol.
• VoIP communication using SIP, RTP, UDP, HTTP, and TCP protocols.
• Video streaming using RTP and HTTP protocols.
• Data transfer using HTTP, FTP, SSH/SFTP, TCP, UDP, or email protocols.
• Using network-related protocols such as ICMP.

For this study, some publicly available applications and scripts were used to simulate
such traffic. The complementary method uses publicly available network traces to replay
them within a network. The applications mentioned in Section 2.4 are also used in benign
mode to generate legitimate traffic without using information hiding techniques.

3.2.3. Engine of Generation of Network Topologies for Experimentation

A network emulation engine should be used for functions such as:

• Enabling rapid prototyping of new use cases.
• Enabling automatic generation of new network topologies, i.e., setting up a new

dataset.

When generating a new topology, the basic features must be specified, such as:

• The number of routers and hosts,
• IP address ranges and routing,
• Whether to provide access to the Internet,
• Whether a firewall should be included,
• Placement of the Central Unit of the entire Cyber Threat Detection Agent system.

Based on these parameters, a random graph should be generated and then fed into a
network emulation engine via an API or configuration file. Preparing such an automation
promises to minimize any bias in the network topologies on the measured effectiveness of
the newly developed cyber threat detection algorithms. This means that well-generalized
cyber threat detection models should be created that can work equally efficiently in any
network topology.

For this research, we developed such a tool for the automatic generation of test
application scenarios, which consist of the following elements:

• The backend network engine and simulation tool—GNS3 [40];
• The text file to hold the network configuration—nodes and their types;
• the main script in Python, which

– Interprets and validates the entered network configuration,
– Randomly generated connections between nodes,
– Automatically sets up the network using the GNS3 API;

• The set of scripts in Python to configure the senders and receivers of the network
traffic depending on the purpose—to run benign, malicious, or mixed scenarios using
the agent system presented in Section 3.1.

It should be noted that the crucial aspect of the prepared solution is the automated
and randomized mechanism for:

• Generation of links between the configured set of nodes.
• Selection of senders and receivers for each network data stream profile (benign or

malicious).



Electronics 2021, 10, 2711 12 of 22

Such an approach allows the generation of datasets from many network scenarios and
data generation configurations. It could also provide the ability to mitigate any factors
associated with configuration bias across the broad spectrum of research in data-driven
cyber threat detection. Data sets were collected in specific network scenarios with a small
degree of variation in the sender-receiver network data configuration (benign or malicious).

3.2.4. Generation of Example Datasets

As presented in Section 3.2.3, the application to automatically generate the network
configurations and network communication scenarios was implemented in this article.
Figure 2 shows an example output topology of the fully working network of nodes (routers,
PC hosts, firewall, Internet connection) prepared by this tool for the purpose of this article.

Among the setup presented in Figure 2, the seven different network scenarios of
hidden communication between transmitters and receivers were run. The configuration
for each scenario is shown in Table 2. A given scenario (Table 2, first column) consists of
the setup of the sender and receiver for a hidden communication over lost packets (second
column in Table 2) and the setup of the sender and receiver for a hidden communication
over lost packets (third column in Table 2). The order of operations to collect the datasets is
as follows:

1. Select nodes (computer hosts) that represent the pairs of a sender and a receiver of a
hidden communication for both techniques in this study.

2. Run benign network communication patterns along with hidden network communication.
3. Collect PCAPs for each network node used.
4. Drag all PCAPs to the Central Unit of the platform.
5. Finish generating and collecting data.

Table 2. Setup of pairs of sender-receiver for generation of hidden communication simulations.

Scenario Hidden Communication over
Lost Packets

Hidden Communication over
Time Modulation

Scenario 1 Sender: Host H1 Sender: Host H6
Receiver: Host H2 Receiver: Host H7

Scenario 2 Sender: Host H2 Sender: Host H1
Receiver: Host H3 Receiver: Host H6

Scenario 3 Sender: Host H3 Sender: Host H1
Receiver: Host H4 Receiver: Host H2

Scenario 4 Sender: Host H4 Sender: Host H2
Receiver: Host H5 Receiver: Host H3

Scenario 5 Sender: Host H1 Sender: Host H3
Receiver: Host H5 Receiver: Host H7

Scenario 6 Sender: Host H6 Sender: Host H4
Receiver: Host H7 Receiver: Host H5

Scenario 7 Sender: Host H4 Sender: Host H5
Receiver: Host H7 Receiver: Host H6
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R12
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R7

R2

R11

R5

R6

R9
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R14

R4

Internet Access

H1
IP: 192.168.42.100

H7
IP: 192.168.49.100

H2
IP: 192.168.43.100

H6
IP: 192.168.47.100

R3

H5
IP: 192.168.46.100

H4
IP: 192.168.45.100

H3
IP: 192.168.44.100

Central Unit
IP: 192.168.15.100

Figure 2. Network setup for simulations of hidden communication techniques.

4. Cyber Threat Detection Research Enabled
4.1. Cyber Threat Detection as Standard ML Classification Problem

In terms of machine learning, cyber threat detection is defined by the principles of the
classification problem adapted to the chosen goal of detection. The two classical objectives
for cyber threat detection algorithms are:

• Anomaly detection to anomalously detect observations defined as a deviation from the
specified base model. The detected anomaly is examined in more detail to determine
if it is a cyber threat.

• Detection of cyber threats by finding patterns of the known nature of a cyber attack.
Tagged records are required.

Since the datasets generated for this work contain the detailed labels of the cyber
threats, the set of experiments follows the second option to be presented. Table 3 shows
the general workflow used in this work for cyber threat detection experiments on the
hidden communication techniques. It presents the objectives to be achieved for each step
of the workflow.
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Table 3. Generic procedure to research cyber threat detection methods.

Workflow Step Objective

Step 1 Benign and malicious network communication simulation scenarios

Step 2 Collect raw source data

Step 3 Generate network data representation from raw source data

Step 4 Data labeling

Step 5 Feature selection

Step 6 Prepare train and test datasets

Step 7 Train data augmentation to balance samples per each label

Step 8 Train, test, and evaluate a machine learning classifier

4.1.1. Network Flows Generation

The records were collected by the system presented in Section 3.1 as network data
traces in PCAP format. These PCAPs were then processed into network datasets using
CICFlowMeter [41].

Each network flow dataset was bidirectional and consisted of 84 metrics. Network
flows were identified by the classic 5-tuple key (source IP, destination IP, source port,
destination port, Layer 4 protocol code). When a flow exceeded the configured flow timeout
(in seconds) or the flow was inactive (activity timeout), the status was saved and exported.
In the exported flow table, the timestamp adds the 5-tuple key to distinguish the flows.
In the case of this experiment, the parameters were set to:

• flow timeout—120 s
• activity timeout—30 s

The output of the application is a CSV file. Another step was the labeling. It was done
manually through the script based on the coding scheme shown in Table 2. The last step
in the data preparation was to combine all CSV files into a final dataset with all collected
observations from the simulated scenarios. This dataset was then preprocessed in the data
experimentation phase according to the state of the art in data science.

4.1.2. Training Classifiers for Cyber Threat Detection

This part shows how to use the prepared datasets to find the classifier to be used as a
cyber threat detector. The first step was to analyze the metrics in the dataset. The aim was to
check which metrics were more important for predicting the target class (feature selection).
The process involved pairwise correlation between the metrics and the explained variable
(class or label). Figure 3 shows the filtered matrix of the metrics for which the absolute
value of the correlation coefficient of any metric with a label greater than 0.05. The most
positively or negatively correlated metrics were related to time (inter-arrival time (IAT),
time of activity) and volume of the network data (number of packets, number of bytes).
The practical aspect of this step was to reduce the dimension of the problem. The number
of metric outputs was 28 since 52 metrics were filtered and three metrics were skipped
since they were not relevant to the problem (flow ID, timestamp, IP addresses).
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Figure 3. Pairwise correlation matrix of prepared dataset. Filtered according to level of correlation
between label column and other parameters for feature selection purposes.

Subsequently, the filtered data were divided into training (80% of the datasets) and
testing (20% of the datasets) datasets. The number of collected data streams distributed
among the training and testing datasets after the split is shown in Table 4.

Table 4. Distribution of flows among training and test datasets split from collected dataset as
described in Section 3.2.4.

Types of Flows Flows in Training Dataset Flows in Testing Dataset

Benign traffic (Label: 0) 92,737 23,163

Hidden communication over
lost packets (Label: 1) 742 195

Hidden communication over
time modulation (Label: 2) 457 127

The first problem that arises is the imbalance of the class examples in the training
dataset. The imbalanced classifications poses a challenge to any predictive algorithm.
In the case of imbalance in the training examples, the trained models might have poor
predictive performance, especially for the minor classes. On the other hand, the minor
classes are important because the context of the experiment is cyber threat detection
research, where cyber attacks are sporadic compared to harmless attacks. The Synthetic
Minority Oversampling Technique (SMOTE) [42] and Edited nearest neighbor (ENN) [43]
were applied as data extensions to overcome the problem. SMOTE is used to increase
the number of samples in the minority class by linear interpolation, and ENN is used to
remove the noise from the majority samples. Table 5 contains the number of data streams
before and after applying SMOTE-ENN techniques to the training dataset.
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Table 5. Data augmentation results—number of flows in training dataset before and after SMOTE-
ENN.

Types of Flows Flows in Training Dataset
before SMOTE-ENN

Flows in Training Dataset
after SMOTE-ENN

Benign traffic (Label: 0) 92,737 92,737

Hidden communication over
lost packets (Label: 1) 742 92,706

Hidden communication over
time modulation (Label: 2) 457 92,643

The experimental phase was conducted to measure the possibility of predicting cy-
ber threats by applying selected ML classifiers. Two classifiers were chosen to test the
preparation of the example solution for this paper:

• Random Forest (RF) [44] was implemented based on RandomForestClassifier from the
Scikit-learn [45]. The initial setup was based on the default parameters as described
in [46].

• Multilayer Perceptron (MLP) classifier was implemented as the custom architecture in
TensorFlow [47] using the Keras subpackage. The setup of this classifier in terms of
architecture, optimizer, loss function, and evaluation metrics is presented in Table 6.

Table 6. Custom MLP classifier architecture setup per each layer (6) with selected optimizer, loss
function, evaluation metric, and training procedure.

Parameter The Custom MLP Classifier

Layer 1 (Input) Input, size: 28 × 20, activation: relu

Layer 2 Dense, size: 20 × 20, activation: relu

Layer 3 BatchNormalization, size: 20 × 20, activation: relu

Layer 4 Dense, size: 20 × 150, activation: relu

Layer 5 Dense, size: 150 × 20, activation: relu

Layer 6 (Predictions) Dense, size: 20 × 20, activation: softmax

Optimizer Adam with the learning rate: 0.001

Loss Categorical Cross Entropy

Evaluation metrics accuracy

Training setup batch size: 128, epochs: 20, validation split: 0.15

Both classifiers were trained with the SMOTE-ENN training datasets and evaluated
with non-SMOTE-ENN test datasets. The metrics of accuracy, precision, recognition,
and F1 score were used to evaluate the performance. The result metrics for the RF and
MLP classifier are shown in Tables 7 and 8, respectively. The last rows of both tables
show the overall accuracy of the respective classifier. Figures 4 and 5 show the confusion
matrices of the two selected classifier models. The classification was conducted within
three classes (0, 1, or 2), so the size of each confusion matrix was 3 × 3. Each cell presented
the number of instances of a given true class (rows) classified into a given predicted class
(columns). The diagonal of each matrix included true positives. The other cells could be
classically interpreted as false positives, false negatives, and true negatives in relation to a
selected class.
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Table 7. Performance of RF classifier in terms of precision, recall, F1 score, and overall accuracy
metrics.

Types of Flows Precision Recall F1 Score

Benign traffic (Label: 0) 1.00 0.99 1.00
Lost packets attack (Label: 1) 0.49 0.92 0.64

Packet timing attack (Label: 2) 0.93 1.00 0.97

Overall accuracy 0.99

Table 8. Performance of custom MLP classifier in terms of precision, recall, F1 score, and overall
accuracy metrics.

Types of Flows Precision Recall F1 Score

Benign traffic (Label: 0) 1.00 0.99 1.00
Lost packets attack (Label: 1) 0.42 0.99 0.59

Packet timing attack (Label: 2) 0.84 1.00 0.91

Overall accuracy 0.99
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Figure 4. Confusion matrix of RF classifier.
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Figure 5. Confusion matrix of custom MLP classifier.

4.2. Conclusions and Future Directions

The prepared models show almost perfect results for the Label 2—Time Modulation
Information Hiding Attack. The results for Label 1—Flows with Lost Packets Information
Hiding Technique—were noticeably worse. The presented results should be considered as
an example for the research work with the generated datasets. Table 9 supplements Table 3
with a summary of the actions performed for each step in this work.

Each step of the workflow shown in Table 9 could be considered to be different
research directions, such as:

• Generating more data using the prepared application for simulations, especially for
more examples of hidden communication techniques.

• Selection of a different predictive model or design of a more complex architecture
combining some classifiers.

• To find a data representation that is better suited to the context of detecting information
hiding techniques. The output data representation of CICFlowMeter contains several
different metrics related to temporal aspects of network communication. Thus, this
is the most likely answer as to why the detection of temporally modulated hidden
communication had better performance.

• With other feature selection or data augmentation methods.
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Table 9. Summary of realized actions per each step of generic procedure to research cyber threat
detection methods.

Workflow Step Objective Realization in This Paper

Step 1 Benign and malicious network
communication simulations

Implementation of the dedicated tool to
set up networks and simulations;
proof-of-concept implementation of
Multi-node Cyber Threat Detection
System to use in monitor and collect
mode

Step 2 Collecting raw source data Network traffic traces collected as PCAP
files

Step 3
Generating network data
representation from raw
source data

Generation of network flows including 80
metrics from [41]

Step 4 Data labeling
Labeling based on Table 2 by adding the
column Label with the respected coding
to the corresponding network flows

Step 5 Feature selection
Selecting features using correlation
coefficient between Label and the other
features

Step 6 Preparing train and test
datasets Train/test split method from [45]

Step 7 Train data augmentation to
balance samples per each label

Augmentation of the training dataset
with SMOTE-ENN method

Step 8 Train, test, and evaluate a
machine learning classifier

Preparing Random Forest and the custom
MLP classifiers.

5. Summary

This paper presents an approach for the availability of datasets for cyber threat
detection research and the application to Data Science. As a first step, the multi-agent
platform for collecting network flows was implemented for this purpose. Such a platform
enabled the collection of network flow data in a multi-node setup. One of the achievements
was the implementation of an automated solution for generating network configurations
and running application scenarios for cyber threat activities. This is a promising aspect
to scale research experiments for cyber threat detection. Another future aspect to be
explored is the ease of practical implementation of such solutions. The input problem
of any practical cyber threat detection solution is the working environment in which the
method is implemented. The standard approach is the learning phase, which assumes
that the cyber detection engine must be adapted to the network environment through
monitoring and learning. After reaching readiness, the cyber threat detection engine is
partially trained with new examples of malicious activity or feedback data from human
operators. The ability to scale the data generated in different network configurations would
improve cyber threat detection engines for the sake of greater generality. Other practical
implications could include easier implementation in working environments and reduced
relearning and manual tuning efforts.

The unique value of this research was to emphasize the recognition of information con-
cealment techniques, which are generally considered concepts within the broad domain of
cyber deception. The most important prerequisite for working on cyber threat detection is
the availability of the right data. All known data sets that are available focus on the publicly
known types of cyber attacks. The examples of the use of cyber deception techniques are
very rare or non-existent. One of the main contributions of this work was the development
of a network environment integrated with the tools to collect such examples. This was
achieved by proposing the implementation of a multi-agent system as a Multi-Node Cyber
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Threat Detection platform utilizing the monitor mode. Based on the collected data, the ref-
erence data science workflow was evaluated by applying methods for data representation
and classification of malicious network flows. The final result confirms the usefulness of
the presented end-to-end approach for researching the discovery of information hiding
techniques. The authors will apply it in further research and development projects. Cyber
attackers are increasingly using cyber deception techniques. Moreover, advanced cyber
attacks, for example, APT (Advanced Persistent Threat) campaigns, could combine more
than one deception technique in two dimensions:

• Within different abstraction layers within the ISO-OSI 7-layer model, with the applica-
tion layer in particular considered a significant threat.

• Per each step of a cyber attack modeled as Cyber Kill Chain. [4]

This poses a massive threat to the security of cyberspace, so more efforts need to
be made in the coming years to improve cyber defense capabilities in the area of cyber
deception.
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