
electronics

Review

A Survey of Swarm Intelligence Based Load Balancing
Techniques in Cloud Computing Environment

M. A. Elmagzoub 1, Darakhshan Syed 2 , Asadullah Shaikh 1,* , Noman Islam 2 , Abdullah Alghamdi 1

and Syed Rizwan 2

����������
�������

Citation: Elmagzoub, M.A.; Syed, D.;

Shaikh, A.; Islam, N.; Alghamdi, A.;

Rizwan, S. A Survey of Swarm

Intelligence Based Load Balancing

Techniques in Cloud Computing

Environment. Electronics 2021, 10,

2718. https://doi.org/10.3390/

electronics10212718

Academic Editor: Filipe Araujo

Received: 15 September 2021

Accepted: 2 November 2021

Published: 8 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia;
meabdullah@nu.edu.sa (M.A.E.); aaalghamdi@nu.edu.sa (A.A.)

2 Computer Science Department, Iqra University, Karachi 75500, Pakistan; darakhshan@iqra.edu.pk (D.S.);
noman.islam@iuk.edu.pk (N.I.); syed.rizwan@iqra.edu.pk (S.R.)

* Correspondence: asshaikh@nu.edu.sa

Abstract: Cloud computing offers flexible, interactive, and observable access to shared resources
on the Internet. It frees users from the requirements of managing computing on their hardware.
It enables users to not only store their data and computing over the internet but also can access it
whenever and wherever it is required. The frequent use of smart devices has helped cloud computing
to realize the need for its rapid growth. As more users are adapting to the cloud environment, the
focus has been placed on load balancing. Load balancing allocates tasks or resources to different
devices. In cloud computing, and load balancing has played a major role in the efficient usage of
resources for the highest performance. This requirement results in the development of algorithms
that can optimally assign resources while managing load and improving quality of service (QoS).
This paper provides a survey of load balancing algorithms inspired by swarm intelligence (SI). The
algorithms considered in the discussion are Genetic Algorithm, BAT Algorithm, Ant Colony, Grey
Wolf, Artificial Bee Colony, Particle Swarm, Whale, Social Spider, Dragonfly, and Raven roosting
Optimization. An analysis of the main objectives, area of applications, and targeted issues of each
algorithm (with advancements) is presented. In addition, performance analysis has been performed
based on average response time, data center processing time, and other quality parameters.

Keywords: cloud computing; load balancing; swarm intelligence algorithms; comparative study

1. Introduction

Cloud computing is a metaphor for the internet that provides computing as a utility to
end-users. It is referred to as the systematic storage, computing, and access of data through
the internet rather than one’s hardware or office network. It is a computational paradigm
providing various resources, software platforms, etc., hosted at vast data centers to users
in order to enhance their productivity [1]. Providers of cloud computing deliver their
“services” according to various models. Infrastructure-as-a-service (IaaS), platform-as-a-
service (PaaS), and software-as-a-service (SaaS) are the three common models [2]. These
models provide growing abstraction; thus, they are mostly depicted as layers in a pyra-
mid i.e., infrastructure, framework, and software-as-a-service. Several cloud commercial
services providers have achieved users’ trust despite the growing concern about relying
on a third-party need for the computational purpose by end-users. The obvious reason is
their user-friendliness, accessibility, and secure environment [3]. This includes Microsoft
Azure, Google Cloud, and Amazon Web services, etc. In the past few years, some other
academic and commercial service providers, viz., Jetstream, Helix Nebula, Open Science
Data Cloud, etc., have achieved fame by introducing their services at lower rates with
higher rates of proficiency [4]. As the creation and usage of big data continually increase,
cloud computing has emerged in a significant role, grasping users’ attention and promoting

Electronics 2021, 10, 2718. https://doi.org/10.3390/electronics10212718 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7422-8188
https://orcid.org/0000-0003-4806-6159
https://orcid.org/0000-0002-2092-0379
https://orcid.org/0000-0002-5006-8527
https://doi.org/10.3390/electronics10212718
https://doi.org/10.3390/electronics10212718
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10212718
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10212718?type=check_update&version=1

Electronics 2021, 10, 2718 2 of 46

several financial activities over it. It has been engaging many users who use its resources
who pay a respective amount as per the required period [5].

Load balancing allows the facility to assign the workload such as the resources acces-
sible. Its goal is to provide continuous service by providing and divesting the application
instances along with proper use of resources in the event of failure of any service portion [6].
The goal of load balancing is to reduce the response time for operations and to maximize
the usage of resources, which increases device efficiency at lower costs [7]. At the same
time, it also targets providing scalability and versatility for applications in which its size
will increase in the future and require more resources, as well as to prioritize tasks that
need immediate implementation compared to others. Another main requirement in order
to adapt load balancing [8] is that it decreases energy consumption, avoids bottlenecks,
provides support, and meets QoS criteria with respect to improving load balancing.

Even though several algorithms are available for load balancing in cloud computing
such as conventional algorithms, machine learning algorithms, and heuristics algorithms.
This paper specifically targets swarm intelligence-based approaches to load balancing. As
compared to heuristics algorithms, the benefits of swarm intelligence-based algorithms are
discussed in the next paragraph.

Normally, when historical or traditional procedures are too expensive or fail to uncover
accurate solutions, a heuristic is used to solve issues more rapidly. As a result, it is often
referred to as approximation algorithms. The goal of heuristic techniques is to find a
solution to a specific problem in an acceptable amount of time [9]. The results may
not be the best, but they can come close to being the best. With a strategic estimate, this
algorithm discovers the potential results. It can provide results on its own or in combination
with other optimization strategies to improve efficiency. Heuristic approaches could not
produce a near-optimal result; instead, they could only produce a small number of distinct
alternatives. The major drawback of heuristic approaches is that they tend to halt at low-
quality local optima when looking for a solution, which resulted in the invention of SI,
an iterative optimization technique [10]. SI aims to combine relatively high approximate
techniques to guide local optimization strategies in order to explore a solution space
successfully and efficiently.

1.1. Objectives of the Research

The main objective of this research is to offer an organized and complete review of
cloud computing research on load balancing by using swarm intelligence algorithms. This
study examines state-of-the-art load balancing algorithms and various hybrid strategies
from 2015 through 2021. Existing techniques for load balancing are reasonably grouped.
The aim is to provide a clear and precise perspective of the underlying algorithms used by
each strategy with this classification, i.e., to examine the work conducted on load balancing
in a cloud computing environment. The objectives of this research can be summarized
as follows:

(a) To present the systematic literature review of SI based load balancing algorithms;
(b) To present the algorithms along with the targeted issues and the areas of applications;
(c) To present a comparative as well as quantitative analysis of some swarm intelligence

algorithms used for balancing the load in cloud computing.

1.2. Implications of the Research

This survey, in the long run, will be very advantageous for developing SI based
load balancing algorithms, other amalgamative strategies, and the latest state-of-the-art
techniques in order to facilitate the cloud with as much optimization as possible. The
overview presented of algorithms in this paper furnishes a complete comparison that
facilitates researchers in further improving quality parameters.

The benefits simply meet the requirements of cloud customers for efficiently optimized
cloud services. Makespan, task rescheduling, scalability, efficiency, fast convergence,

Electronics 2021, 10, 2718 3 of 46

performance, and high reliability, etc., are all issues for which their solutions can be taken
into account.

1.3. Motivation

The motivation of this survey is to provide a comprehensive overview of existing and
latest state-of-the-art load balancing algorithms inspired by swarm intelligence. By utilizing
this survey, the targeted motivation is to inspire inexperienced researchers in this field to
support the development of more optimal load balancing algorithms. This will enable
interested scholars to perform future research in this area. For seamless operation, most
firms and every organization in the future are expected to adopt efficient load balancing
algorithms. As a result, focusing on this specific study topic in order to build better dynamic
algorithms is very essential.

The method of fairly managing the workload on virtual machines for the proper
allocation of resources is load balancing in the cloud [11]. In this research survey, different
variations of load-balancing algorithms based on swarm intelligence are highlighted along
with different performance parameters involved. SI based load balancing algorithms help
to allocate resources to tasks equally at minimal expense for resource optimization and user
comfort. It ultimately encourages us to identify and work on solving complex problems.

We end this section with a note on the comparison of virtualization and container
technology. Virtualization emerged in the past as a crucial technique for cloud comput-
ing [12] in which virtual machines assist users in completing activities. All of the units are
self-contained, and the user retains complete ownership and control over the software that
is installed and used. By optimizing the resources, VM solves several difficulties. The devel-
opers are concerned that the code works great in the development environment but fails to
work in the testing or production environments due to any variations in the environments.
As a result, containerization was introduced to overcome these issues. Container-based
virtualization, in particular, is a lightweight method for creating a virtual environment that
runs at the software level on the host computer [13]. Due to minimal resource utilization
and excellent portability, it has been rapidly increasing with rotating virtual machines
(VMs) [14]. Furthermore, container-based micro-services are redefining application design
methodologies [15]. In many non-container contexts, load balancing is a simple process,
but when it comes to containers, it necessitates certain particular considerations. However,
the fundamental issues remain the same, as the container is also a lightweight virtualization
technique. Containers can be classified into two types: application container that has all
the related things in one package for software application (e.g., docker, kubernetes, etc.)
and a system container that is based on design goals and implementation (e.g., LXC). They
provide diverse functions for container orchestration, such as load balancing, monitoring,
scaling, and also file storage, deployment, pushing, and many more [16].

The rest of the paper is structured as follows. Section 2 describes the background
study and design of a survey. Section 3 describes the literature review. Section 4 explores
load balancing in cloud computing using SI. Section 5 presents the summarized view of the
discussed SI algorithms along with their area of application and target issue(s). Section 6
comprises the comparative analysis among certain discussed SI algorithms based on perfor-
mance and some quality parameters. Finally, Sections 7 and 8 discuss the future directions
and conclusion of SI algorithms used for load balancing in cloud computing, respectively.

2. Background and Design of Survey

The next few paragraphs define the study design and address the collection of research
papers, data sources, and exploration parameters discussed in the research.

2.1. Research Questions

The key exploration questions that are investigated and ultimately help to support
our survey are mentioned below:

(a) What is the need for and the importance of load balancing in cloud computing?

Electronics 2021, 10, 2718 4 of 46

(b) What is the main idea of SI?
(c) How the occurring issues in Cloud Computing can be reformulated by SI?
(d) How SI support load balancing in cloud computing?
(e) What are the current and future challenges associated with load balancing in

cloud computing?

By providing efficient and precise Cloud Storage and load balancing data based on
the review paper under the study direction, the above questions can be answered. The
findings are portrayed below.

2.1.1. What Is the Need and Importance of Load Balancing in Cloud Computing?

Cloud computing’s effective and beneficial features can be realized by properly manag-
ing cloud services. The virtual nature of these cloud services is one of the most fundamental
properties of the cloud environment. The cloud service provider (CSP) is a company that
rents out services to users. With the available virtualized computing resources, the job of
the CSP in providing services to users is a very complicated one. As a result, academics
have begun paying more attention to load balancing [17]. The response of the system is
improved as a result of this load balancing. By load balancing, the CSP creates a trade-off
between economic advantages and user satisfaction.

The idea of load balancing in a Cloud environment [18] can be described as the
procedure of dividing workloads and various computing parameters associated with
certain properties in order to manage the work or applications among computers, networks,
or servers demanded by the enterprises [19]. Figure 1 shows the basic mechanism of
load balancing.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 46

2. Background and Design of Survey
The next few paragraphs define the study design and address the collection of re-

search papers, data sources, and exploration parameters discussed in the research.

2.1. Research Questions
The key exploration questions that are investigated and ultimately help to support

our survey are mentioned below:
(a) What is the need for and the importance of load balancing in cloud computing?
(b) What is the main idea of SI?
(c) How the occurring issues in Cloud Computing can be reformulated by SI?
(d) How SI support load balancing in cloud computing?
(e) What are the current and future challenges associated with load balancing in cloud

computing?
By providing efficient and precise Cloud Storage and load balancing data based on

the review paper under the study direction, the above questions can be answered. The
findings are portrayed below.

2.1.1. What Is the Need and Importance of Load Balancing in Cloud Computing?
Cloud computing’s effective and beneficial features can be realized by properly man-

aging cloud services. The virtual nature of these cloud services is one of the most funda-
mental properties of the cloud environment. The cloud service provider (CSP) is a com-
pany that rents out services to users. With the available virtualized computing resources,
the job of the CSP in providing services to users is a very complicated one. As a result,
academics have begun paying more attention to load balancing [17]. The response of the
system is improved as a result of this load balancing. By load balancing, the CSP creates
a trade-off between economic advantages and user satisfaction.

The idea of load balancing in a Cloud environment [18] can be described as the pro-
cedure of dividing workloads and various computing parameters associated with certain
properties in order to manage the work or applications among computers, networks, or
servers demanded by the enterprises [19]. Figure 1 shows the basic mechanism of load
balancing.

Figure 1. Mechanism of load balancing.

In other words, the cloud’s load balancing includes possessing the circulation of traf-
fic and demands that exists over the internet [20]. However, apart from managing the
demand of the enterprises, the fact that the growth of traffic has been exponentially in-
creasing cannot be ignored. Therefore, the workload on the servers is also increasing rap-
idly, which has been overloading the web servers unavoidably. Load balancing [19] is
important for maximizing the use of cloud resources, such as processors, memory, and
disks, and for achieving the purpose of good machine performance with proper resource
utilization.

Figure 1. Mechanism of load balancing.

In other words, the cloud’s load balancing includes possessing the circulation of traffic
and demands that exists over the internet [20]. However, apart from managing the demand
of the enterprises, the fact that the growth of traffic has been exponentially increasing
cannot be ignored. Therefore, the workload on the servers is also increasing rapidly, which
has been overloading the web servers unavoidably. Load balancing [19] is important for
maximizing the use of cloud resources, such as processors, memory, and disks, and for
achieving the purpose of good machine performance with proper resource utilization.

For those applications for which its size can increase in the future, load balancing
often helps to provide scalability and versatility [6]. It also refers applications that need
more time, and relative to other jobs, it gives preference to tasks that need immediate
execution [21]. Other load balancing goals include reducing energy consumption, avoiding
bottlenecks, providing resources, and meeting QoS criteria for improving load balanc-
ing [22]. Proper workload mapping and load balancing strategies that consider various
metrics require consideration.

Electronics 2021, 10, 2718 5 of 46

2.1.2. What Is the Main Idea of SI?

The metaphor of a swarm implies heterogeneity, probabilistic reasoning, irregularity,
and unpredictability, but intelligence implies that the real concerned process is successful
in some manner [23]. SI is the area that deals with mutual behavior and performance of
decentralized and self-organized systems, whether natural or artificial. Specifically, SI
systems center on the combined behaviors that result from the local interactions of the
individuals with each other and with their respective environments [24]. Examples of
such systems are colonies of ants and termites, schools of fish, flocks of birds, and herds of
land animals [25].

Inspired from nature, especially the above-mentioned biological systems, simple
agents have been designed. These agents follow simple rules without any centralized
control [26]. Some computer programs that are designed to resolve issues of optimization
and data processing have also been adapted by SI.

2.1.3. How Can the Occurring Issues in Cloud Computing Be Reformulated by SI?

The utilization of the concept of SI in cloud computing is an indispensable subject
for researchers [20]. It is involved in the delivery of efficiently performed, optimized
solutions to cloud-based services for reliable implementation, infrastructural stability, and
security issues.

The vast knowledge of swarm intelligence starting from the bird’s eye view to the
state-of-the-art techniques that can be optimized for addressing various challenges of cloud
computing. The occurring problems in the cloud environment that can be reformulated
by SI advanced techniques include virtual machine allocation [27], Denial of Service
assault, load balancing and optimization, deadline management, data leakage, power-
aware profiling, fault tolerance, cost-effective architecture, and energy efficiency.

The use of evolutionary algorithms in the internet of things (IoT) information pro-
cessing can make it considerably smoother and more efficient. Connected vehicles, IoT
network architecture for forwarding large volumes of IoT data, and an Edge Computing
system that optimizes IoT data analysis are all possible uses of the techniques. This would
stimulate the growth of IoT networks while also improving the customer’s experience of
IoT solutions [28].

2.1.4. How Does SI Support Load Balancing in Cloud Computing?

As a consequence of inadequate scheduling, the challenges of services being un-
derutilized and overutilized may develop, resulting in either cloud resource waste or
service performance loss. As a result, the idea of introducing meta-heuristic techniques
into job scheduling arose in order to optimally distribute complex and dynamic incoming
workloads (cloudlets) across constrained resources in an acceptable amount of time [29].

SI finds its space in applications for routing and specialist task scheduling-related
algorithms. These two applications of SI ultimately lead towards the most highlighted issue
in cloud computing, which is “load balancing.” SI renders load balancing conveniently
possible by taking motivation from insects. SI follows the concept that social insects solve
complicated issues together [30]. It proposed a very smart and decentralized solution in
an appropriate manner, which is what is exactly required by Cloud computing in order
to manage the load efficiently. Therefore, as a result, these collective, knowledgeable, and
decentralized insect activities have become a model for solving the complex problem of
load balancing in Cloud-based environments.

2.1.5. What Are the Current and Future Challenges Associated with Load Balancing in
Cloud Computing?

Research suffers from various challenges with load balancing [31]. A list of a few
problems with load balancing is addressed as shown in Figure 2.

Electronics 2021, 10, 2718 6 of 46

Electronics 2021, 10, x FOR PEER REVIEW 6 of 46

order to manage the load efficiently. Therefore, as a result, these collective, knowledgea-
ble, and decentralized insect activities have become a model for solving the complex prob-
lem of load balancing in Cloud-based environments.

2.1.5. What Are the Current and Future Challenges Associated with Load Balancing in
Cloud Computing?

Research suffers from various challenges with load balancing [31]. A list of a few
problems with load balancing is addressed as shown in Figure 2.

Figure 2. Challenges in cloud computing.

Decentralized Geographical Nodes: Some load balancing strategies are designed for
a narrower area in which variables such as network delay, communication delay, the dis-
tance between distributed computing nodes, the distance between users and resources,
etc., are not considered. As these algorithms are not sufficient for this setting, nodes lo-
cated at very distant locations are a challenge [6].

Bottleneck: If the network server fails, then the overall computing system will be af-
fected. Thus, it is a challenge to build certain distributed algorithms in which a single node
does not dominate the entire platform [6].

VMs’ Migration: Virtualization is another challenge associated with load balancing.
The virtual machines’ have various configurations and are independent in design. Some
VMs need to migrate to a distant location by using a VM migration load-balancing method
if a physical machine becomes overloaded [6]. It is the responsibility of the load balancer
to appropriately balance load through migration so that none of the servers are over-
loaded.

Heterogeneity: As the software or platform changes, ultimately, the user may change
their requirements. Due to the dynamically changing nature of the client, cloud compu-
ting includes executing them on heterogeneous nodes for efficient use of resources and
reduced response time. It is, therefore, a challenge for researchers to devise successful
load-balancing strategies for the heterogeneous world.

Shared storage: Partial replication can be adequate, but the availability of datasets
can be a problem. At the same time, the sophistication of load-balancing approaches can
be increased. Therefore, it is important to establish an effective load balancing strategy
that considers the distribution of application and related data based on a partial replica-
tion method.

Scalability: Facilitating modifications effectively is another challenge of Cloud com-
puting. A good load balancer should consider rapid changes in requirements. These
changes can be in terms of computing capacity, storage, system topology, and so on. Deal-
ing with all of them is an obvious challenge.

The future challenges incorporated in cloud computing include the following [32]:
attacks targeting (shared-tenancy environment), the threat of VM-based malware, botnet
hosting issues, service provider reliability, vendor lock-in, multilevel data privacy, etc.

To render this optimization target a reality, the cloud community must overcome
various technological difficulties. Specific concerns revolve around the deployment of fu-

Figure 2. Challenges in cloud computing.

Decentralized Geographical Nodes: Some load balancing strategies are designed for a
narrower area in which variables such as network delay, communication delay, the distance
between distributed computing nodes, the distance between users and resources, etc., are
not considered. As these algorithms are not sufficient for this setting, nodes located at very
distant locations are a challenge [6].

Bottleneck: If the network server fails, then the overall computing system will be
affected. Thus, it is a challenge to build certain distributed algorithms in which a single
node does not dominate the entire platform [6].

VMs’ Migration: Virtualization is another challenge associated with load balancing.
The virtual machines’ have various configurations and are independent in design. Some
VMs need to migrate to a distant location by using a VM migration load-balancing method
if a physical machine becomes overloaded [6]. It is the responsibility of the load balancer to
appropriately balance load through migration so that none of the servers are overloaded.

Heterogeneity: As the software or platform changes, ultimately, the user may change
their requirements. Due to the dynamically changing nature of the client, cloud comput-
ing includes executing them on heterogeneous nodes for efficient use of resources and
reduced response time. It is, therefore, a challenge for researchers to devise successful
load-balancing strategies for the heterogeneous world.

Shared storage: Partial replication can be adequate, but the availability of datasets
can be a problem. At the same time, the sophistication of load-balancing approaches
can be increased. Therefore, it is important to establish an effective load balancing strat-
egy that considers the distribution of application and related data based on a partial
replication method.

Scalability: Facilitating modifications effectively is another challenge of Cloud comput-
ing. A good load balancer should consider rapid changes in requirements. These changes
can be in terms of computing capacity, storage, system topology, and so on. Dealing with
all of them is an obvious challenge.

The future challenges incorporated in cloud computing include the following [32]:
attacks targeting (shared-tenancy environment), the threat of VM-based malware, botnet
hosting issues, service provider reliability, vendor lock-in, multilevel data privacy, etc.

To render this optimization target a reality, the cloud community must overcome
various technological difficulties. Specific concerns revolve around the deployment of
future infrastructure-as-a-service clouds, including the question of how to manage them
reliably. It must incorporate clouds to supply flexible and dynamic provision of the
services upon request, build cloud accumulation designs and technologies that allow cloud
providers to interact and coexist, and improve the security, dependability, and renewable
energy of cloud infrastructures.

The future of Cloud Computing is ultimately the Internet of things (IoT), and the
obvious challenge is to stop it from becoming the Internet of Overwhelming things (IoOT).
Dealing with complexity is another main challenge for load balancing in cloud computing
as the network is tremendously increasing day by day. As the future money market is
shifting towards digital currency, dealing with cryptocurrency is another highlighted future
challenge associated with the Cloud environment. The findings of a real-world demand
showed that by evenly splitting requests into VMs, SI techniques may boost resource utiliza-

Electronics 2021, 10, 2718 7 of 46

tion and minimize response time and makespan by optimizing requests, their fluctuations,
and the presence of different VMs. Future research will be conducted by generalizing SI
approaches in geographical clouds with distributed datacenters. As a result, another issue
that is of interest is to provide SI approaches such as autonomic multi-objective scheduling
in order to optimize more competing objectives as soon as possible [33].

2.2. Benchmark of Search

In this work, a comprehensive review of balancing the load in a cloud environment
focusing on SI based algorithms was carried out. Scan string terms were used as follows:
cloud computing, load balancing, and swarm intelligence, SI algorithms, performance
parameters, quality parameters, and challenges of load balancing in the cloud. Table 1
provides the detail of the search engines.

Table 1. Choice of search engine.

Finding Engine Address of Mentioned Search Engine

IEEE Xplore https://ieeexplore.ieee.org/ (accessed on 5 June 2021)
ACM https://acm.org/ (accessed on 28 April 2021)

Academia https://academia.edu/ (accessed on 15 April 2021)
Science Direct https://sciencedirect.com (accessed on 10 May 2021)

Taylor and Francis https://www.taylorandfrancis.com (accessed on 18 July 2021)
Springer https://springer.com (accessed on 18 July 2021)

2.3. Origin of Data

A variety of different sources of data were considered for this survey. As data collection
for the retrieval of associated research papers for conferences and journal research papers
in websites, Google Scholar, journals, and books were primarily considered.

Figure 3 shows the percentage of different research papers studies from several sources
from 2015 to 2021. These sources are IEEE Xplore, ACM digital library, Academia, Science
Direct, Taylor and Francis, Springer, and different websites.

Electronics 2021, 10, x FOR PEER REVIEW 8 of 46

Figure 3. The percentage of a research paper read from multiple sources from 2015 to 2021.

2.4. Exploration Criteria
The study was conducted from 2015 to January 2021. The research papers that com-

ply with quality assessment are scanned, and relevant materials are filtered accordingly.
This included research papers from Journals, Google Scholar, websites providing appro-
priate discussions, and books reviewed by peers. In Figure 3, the percentage of papers
read between 2015 and 2021 is shown.

2.5. Quality Evaluation
The research background is one of the possible ways in which different types of basic

quantitative research are conducted. A quality evaluation criteria for inclusion and exclu-
sion of research papers are applied to the research papers searched. Any of the research
papers were omitted after the initial abstract review. The main rules followed for inclusion
and exclusion are shown in Table 2.

Table 2. Rules of the search inclusion and exclusion.

Followed Rules of Research

Inclusion

• A research paper that is designed by professionals.
• A complete research analysis was performed in the sense of cloud com-

puting.
• A complete research analysis was performed in the sense of load bal-

ancing.
• A research study was conducted in the context of swarm intelligence

algorithms that target load balancing issues.
• A research paper is presented in the English language.

Exclusion
• A research study that did not focus on the load balancing issue in cloud

computing.
• A research paper that contains static algorithms.

3. Literature Review
In the field of cloud computing, a variety of studies have been conducted. This in-

cludes surveys on load balancing, resource scheduling, service broker regulations, re-
source allocation, and other general problems of cloud computing. The following section
highlights the surveys conducted on load balancing in cloud computing.

Sughpal Singh and Inderveer Chana [34] surveyed several papers for studying re-
source allocation challenges in cloud computing. The main goal was to choose the best

Figure 3. The percentage of a research paper read from multiple sources from 2015 to 2021.

2.4. Exploration Criteria

The study was conducted from 2015 to January 2021. The research papers that comply
with quality assessment are scanned, and relevant materials are filtered accordingly. This

https://ieeexplore.ieee.org/
https://acm.org/
https://academia.edu/
https://sciencedirect.com
https://www.taylorandfrancis.com
https://springer.com

Electronics 2021, 10, 2718 8 of 46

included research papers from Journals, Google Scholar, websites providing appropriate
discussions, and books reviewed by peers. In Figure 3, the percentage of papers read
between 2015 and 2021 is shown.

2.5. Quality Evaluation

The research background is one of the possible ways in which different types of
basic quantitative research are conducted. A quality evaluation criteria for inclusion and
exclusion of research papers are applied to the research papers searched. Any of the
research papers were omitted after the initial abstract review. The main rules followed for
inclusion and exclusion are shown in Table 2.

Table 2. Rules of the search inclusion and exclusion.

Followed Rules of Research

Inclusion

• A research paper that is designed by professionals.
• A complete research analysis was performed in the sense of cloud computing.
• A complete research analysis was performed in the sense of load balancing.
• A research study was conducted in the context of swarm intelligence algorithms
that target load balancing issues.
• A research paper is presented in the English language.

Exclusion • A research study that did not focus on the load balancing issue in cloud computing.
• A research paper that contains static algorithms.

3. Literature Review

In the field of cloud computing, a variety of studies have been conducted. This
includes surveys on load balancing, resource scheduling, service broker regulations, re-
source allocation, and other general problems of cloud computing. The following section
highlights the surveys conducted on load balancing in cloud computing.

Sughpal Singh and Inderveer Chana [34] surveyed several papers for studying re-
source allocation challenges in cloud computing. The main goal was to choose the best
proficient and right algorithm from among the current resource scheduling techniques for
a given workload. Their study centered on developing a wide methodological examination
of the management and planning of cloud resources. They analyzed resource classification,
resource planning evolution, percentages of different scheduling algorithms and related
QoS parameters, an in-depth classification of resource scheduling algorithms, the distinc-
tion of resource scheduling algorithms as per distribution policies, and aspects of scalability.
They suggested that before conducting rigorous resource planning studies, it is necessary
to make progress in the same cloud search. They analyzed that by allocating resources
based on the type of workload; the utilization of resources can be improved. Furthermore,
they also suggested future directions.

MinxianXu et al. [27] provided a comprehensive and comparative overview of the
available literature on load balancing techniques for virtual machines in cloud computing.
The classifications throughout this research were expanded upon in previous studies by
examining the various characteristics of VM load balancing elements in-depth, such as
scheduling scenarios, management methodologies, resource type, VM type uniformity, and
allocation dynamics. Then, the virtual machine LBA planning metrics were summarized,
which may be utilized to assess load balancing effects and other scheduling goals.

AsrinVakili and NimaJafariNavimipour [35] proposed a concept for developing a new
cloud service in cloud computing that incorporates existing services to save cost and time
while increasing performance. Their contributions to the survey were as follows: (1) in-
clude a review of related issues in several problem domains related to the cloud service’s
composition; (2) outline the anatomy of certain key strategies in cloud service composi-
tion technologies, and (3) identifying significant topics for future research to improve the
methods of service composition. Time, cost, scalability, optimization, and efficiency were

Electronics 2021, 10, 2718 9 of 46

the five main factors that were addressed as well as for developing more effective service
composition strategies; the challenges of current methods were highlighted.

ArunimaHota et al. [36] conducted a review of 29 research publications on various load
balancing techniques. Based on the sort of method utilized, they divided load balancing
algorithms into three categories: heuristic, metaheuristic, and hybrid. In their survey,
they compared all three and discovered the following: (1) iIn comparison to metaheuristic
algorithms, heuristic algorithms are simple to develop and find a satisfactory solution in a
short period; (2) performance measurements for metaheuristic algorithms are determined
by the nature of the issue, underlying configuration, and the method used for finding
a solution; and (3) hybrid algorithms minimize both the calculation time and the cost.
Furthermore, it outperforms other algorithms in terms of effectiveness.

Amrita Jyoti et al. [37] reviewed different papers related to cloud computing from 2015
to 2018. They compared and contrasted the various load balancing algorithms used in load
balancers, as well as the brokering policies utilized for each service and its scheduling types.
They classified and analyzed techniques based on key parameters. They discovered that
LB algorithms are frequently employed in the development of resource utilization, energy
conservation, and service quality. Furthermore, future directions have also been highlighted
through a thorough examination of load balancing strategies and service brokers.

Based on the existing literature, it was found that very few of the studies analyzed
load balancing solutions based on swarm intelligence techniques. The next section now
analyzes swarm intelligence-based solutions.

4. Load Balancing in Cloud Computing Using SI

In this survey, SI techniques for load balancing are divided into two basic categories
(as shown in Figure 4): One is a traditional algorithm, and the other is a Modern algorithm.
The details of their variations are presented below.

4.1. Traditional SI Algorithms for Load Balancing

The idea to apply “collective intelligence” inspires the study of swarm intelligence.
This intelligence is decentralized, coordinated, and distributed in an atmosphere [30].
Using swarm-based load balancing algorithms can efficiently solve the problem of load
balancing in cloud computing environments [38].

Various selected types of algorithms based on Swarm Intelligence for load balancing
are shown in Figure 4:

(a) Genetic Algorithms;
(b) Particle Swarm Optimization;
(c) Ant Colony Optimization;
(d) Artificial Bee Colony;
(e) Grey Wolf Optimization;
(f) BAT Algorithm.

Electronics 2021, 10, 2718 10 of 46Electronics 2021, 10, x FOR PEER REVIEW 10 of 46

Figure 4. Swarm intelligence algorithms under discussion.

4.1. Traditional SI Algorithms for Load Balancing
The idea to apply “collective intelligence” inspires the study of swarm intelligence.

This intelligence is decentralized, coordinated, and distributed in an atmosphere [30]. Us-
ing swarm-based load balancing algorithms can efficiently solve the problem of load bal-
ancing in cloud computing environments [38].

Various selected types of algorithms based on Swarm Intelligence for load balancing
are shown in Figure 4:

Figure 4. Swarm intelligence algorithms under discussion.

Electronics 2021, 10, 2718 11 of 46

4.1.1. Genetic Algorithm (GA)

GAs are basic examples of artificial life strategies that takes biological systems as
a model to produce computer programs. These computer programs then learn in the
same manner as living systems [39]. Therefore, genetic algorithms are grouped with
swarm intelligence in order to evolve the methods of optimization. They are concerned
with simulating the biological progression of evolution [40]. Genetic algorithms reflect
extension at the biological level. In the natural world, genetics convey an organism’s
inherited information. This biological information is carried by chromosomes in the form
of genetic codes. Particularly, these codes can be used for identifying the characteristics of
an organism. It has been concluded by Darwin that the survivability of any organism purely
depends upon the characteristics that it has inherited from the parents. The organisms
“most fit” to survive in an environment will be chosen to propagate and pass their genes.
Three key parameters are involved in the GA [18]: selection, crossover, and mutation.
In the first, the solutions with the best match are selected, crossover is selected for child
generation, more than one parent is selected, and as far as the mutation is concerned, the
gene meaning in the chromosome essentially changes. Figure 5 shows the main phases of
GA. It comprises different operators such as natural selection, crosses over, and mutation.
The fitness function is used in natural selection to select the next population.

Electronics 2021, 10, x FOR PEER REVIEW 11 of 46

(a) Genetic Algorithms;
(b) Particle Swarm Optimization;
(c) Ant Colony Optimization;
(d) Artificial Bee Colony;
(e) Grey Wolf Optimization;
(f) BAT Algorithm.

4.1.1. Genetic Algorithm (GA)
GAs are basic examples of artificial life strategies that takes biological systems as a

model to produce computer programs. These computer programs then learn in the same
manner as living systems [39]. Therefore, genetic algorithms are grouped with swarm in-
telligence in order to evolve the methods of optimization. They are concerned with simu-
lating the biological progression of evolution [40]. Genetic algorithms reflect extension at
the biological level. In the natural world, genetics convey an organism’s inherited infor-
mation. This biological information is carried by chromosomes in the form of genetic
codes. Particularly, these codes can be used for identifying the characteristics of an organ-
ism. It has been concluded by Darwin that the survivability of any organism purely de-
pends upon the characteristics that it has inherited from the parents. The organisms “most
fit” to survive in an environment will be chosen to propagate and pass their genes. Three
key parameters are involved in the GA [18]: selection, crossover, and mutation. In the first,
the solutions with the best match are selected, crossover is selected for child generation,
more than one parent is selected, and as far as the mutation is concerned, the gene mean-
ing in the chromosome essentially changes. Figure 5 shows the main phases of GA. It
comprises different operators such as natural selection, crosses over, and mutation. The
fitness function is used in natural selection to select the next population.

Figure 5. Genetic algorithm [41].

The steps involved are presented in the algorithm.

Pseudocode of GA [42]
1. Produce initial population “I” comprising chromosomes.
2. Utilize fitness function to measure the value of fitness of each genetic code.
3. Use the selection operator to pick the genetic codes that the next generation will make.
4. Utilize these chromosomes to perform the crossover procedure.
5. Now pick these chromosomes and execute the mutation process on them.
6. Produce the fitness value of offspring known as these newly produced genetic codes.
7. Improvise the population by changing irrelevant choices with genetic codes of better
offspring.
8. Go to step 3 and execute until 7 until the situation of termination is reached.
The terminating scenario can be the last number of iterations possible or the fitness
value of genetic code for all the possible runs is not able to update.

Figure 5. Genetic algorithm [41].

The steps involved are presented in the algorithm.

Pseudocode of GA [42]

1. Produce initial population “I” comprising chromosomes.
2. Utilize fitness function to measure the value of fitness of each genetic code.
3. Use the selection operator to pick the genetic codes that the next generation will make.
4. Utilize these chromosomes to perform the crossover procedure.
5. Now pick these chromosomes and execute the mutation process on them.
6. Produce the fitness value of offspring known as these newly produced genetic codes.
7. Improvise the population by changing irrelevant choices with genetic codes of better offspring.
8. Go to step 3 and execute until 7 until the situation of termination is reached.
The terminating scenario can be the last number of iterations possible or the fitness value of
genetic code for all the possible runs is not able to update.
9. Return the best genetic code as a final result.

GA and Its Variations

Simple Genetic Algorithm: In 2016, Hussain A Makasarwala and Prasun Hazari per-
formed load balancing by using GA [18]. The initialization of the population is dependent
on the priority of the order and based on time (short time requests have more priority).
After this, the selection of chromosomes is carried out based on fitness. Partial Mapping
Crossover (PMX) is then used as a crossover operator for the ordered chromosomes. The
block is interchanged between two parents in this process, and duplicates are sorted. Then,
mutation is performed by swapping digits to enforce abrupt change in population. After

Electronics 2021, 10, 2718 12 of 46

these steps, the chromosome is added to the new population and checks for termination
conditions. Then, the algorithm ends.

In 2015, a combination of two methods has been proposed by Santanu Dam et al. [43].
GELS is particularly used for the initiation of GA populations. The initiation of the first
population is based on the GELS determination of the velocity of chromosomes. Then,
based on fitness, the two chromosomes are chosen, two-point crossover is applied, and
mutation is performed accordingly. This entire process is repeated one more time and
then added to the new population. Then, the algorithm ends. They used cloud analyst
simulation of the proposed algorithm to obtain significant results.

Improved Genetic Algorithm: In 2017, an Improved Genetic Algorithm (IGA) was
proposed [44]. It improves the resource utilization of simple GA. The improved GA keeps
a continuous track of all the available virtual machines. If a VM is found in free state
then it assigns a newly arrived task to it. If there is no free VM, then the improved GA
techniques check for the VMs in which its task is about to finish. This is performed based
on completion time. After checking, the newly arrived task is assigned to the VM that has
less time left than compared to other VMs [45]. In this manner, this algorithm not only
balances the load but also saves energy and cost as well.

Hybrid Fuzzy-Genetic Algorithm: A hybrid technique has been presented to intel-
ligent person load balancing in cloud computing [46]. Ali Saadat and Ellips Masehian
proposed two modules to achieve load balancing. The first module is uses a Genetic Algo-
rithm for selecting optimum arrangements of tasks, and the second module is for fuzzy
logic. It effectively creates the objective function of defining busy server states according to
their unique task queues. The optimization of GA offers robustness, reliability, and general-
ity where service availability is a fuzzy performance. In this study, computer tests are also
performed, and the best solution obtained is demonstrated. This eventually contributes
to greater user retention. The designed software is used to produce and distribute ten
jobs to the user, which are passed by three machines in the workspace. Matlab had been
used to program the model and to execute it. The results of using the generated model on
multiple orders revealed that the best answer could be found in the first ten iterations of
the projected 20 iterations. The optimum answer was found in half the time it was expected
to take, resulting in increased satisfaction level of the client.

Multi-agent Genetic Algorithm: Anant Kumar Jayswal and Prem Chand Saxena [19]
presented the idea for efficient load balancing by using multi-agent GA. The proposed
algorithm takes the users’ priority and the finishing time of the earliest job.

At the request of a specific user, the load is balanced between all VMs based on CPU
memory availability. The fitness function is defined as the difference between each host’s
load and the average load of the system. The results are analyzed by using cloud analyst
for simulating the experiments. It performs continuous execution of simulations for load
balancing, and the output is displayed in graphical mode with a high level of flexibility.

The IGA [44] is further improved by Vishal Goar et al. [47], which is known as
Enhanced Improved GA. The main approach adopted is to reduce the number of migrations.
This can be accomplished by changing the mutation calculation points, which ultimately
makes the execution faster and more reliable. The results of the proposed Enhanced IGA
are tested on MATLAB and compared with IGA. After comparing the response time (RT),
finish time (FT), energy consumption (E), cost (C), and number of migrations (N) of both
algorithms, it was analyzed that EIGA is better than IGA. Table 3 represents the comparison
between IGA and EIGA.

Table 3. Comparison between IGA and EIGA.

Algorithms RT
(ms)

FT
(ms)

E
(Joules)

C
(Buffers)

N
(in

Numbers)

IGA [44] 2.8 2.7 0.53 0.53 10
EIGA [47] 2.5 2.25 0.5 0.44 7

Electronics 2021, 10, 2718 13 of 46

In addition to the algorithms discussed, there are some other algorithms presented in
the literature. This includes techniques based on Tabu search, multi-agent systems, PSO,
multi-population GA, Job Spanning Time and Load Balancing (JLGA), and hybridization of
good features of JLGA (HJLGA). The details of these algorithms can be observed in [9,36].

4.1.2. Particle Swarm Optimization (PSO)

The actual concept behind PSO is inspired by the flying swarm of birds. The swarm
of flying birds finds a point to land, and the decision of which point to land is a complex
problem to identify [48]. The landing depends on several factors. These factors include
the availability of food and the risk of the existence of carnivores. Therefore, the birds
fly synchronically unless or until they find the best place to land, and finally, they land
at once [49].

The measurement of the performance of several other algorithms shows that particle
swarm optimization combines the workload with a reduced reaction period for any as-
signed task. PSO has lower costs for computing, and it is easier to grasp and execute [50].
It also deals with the tradeoff between convergence and divergence by working in adaptive
mode and ultimately finds the optimal solution to the complex issue of load balancing in a
cloud-based environment. Figure 6 presents the flowchart of particle swarm optimization.

Electronics 2021, 10, x FOR PEER REVIEW 13 of 46

are tested on MATLAB and compared with IGA. After comparing the response time (RT),
finish time (FT), energy consumption (E), cost (C), and number of migrations (N) of both
algorithms, it was analyzed that EIGA is better than IGA. Table 3 represents the compar-
ison between IGA and EIGA.

In addition to the algorithms discussed, there are some other algorithms presented
in the literature. This includes techniques based on Tabu search, multi-agent systems,
PSO, multi-population GA, Job Spanning Time and Load Balancing (JLGA), and hybridi-
zation of good features of JLGA (HJLGA). The details of these algorithms can be observed
in [9,36].

Table 3. Comparison between IGA and EIGA.

Algorithms RT
(ms)

FT
(ms)

E
(Joules)

C
(Buffers)

N
(in Numbers)

IGA [44] 2.8 2.7 0.53 0.53 10
EIGA [47] 2.5 2.25 0.5 0.44 7

4.1.2. Particle Swarm Optimization (PSO)
The actual concept behind PSO is inspired by the flying swarm of birds. The swarm

of flying birds finds a point to land, and the decision of which point to land is a complex
problem to identify [48]. The landing depends on several factors. These factors include the
availability of food and the risk of the existence of carnivores. Therefore, the birds fly syn-
chronically unless or until they find the best place to land, and finally, they land at once
[49].

The measurement of the performance of several other algorithms shows that particle
swarm optimization combines the workload with a reduced reaction period for any as-
signed task. PSO has lower costs for computing, and it is easier to grasp and execute [50].
It also deals with the tradeoff between convergence and divergence by working in adap-
tive mode and ultimately finds the optimal solution to the complex issue of load balancing
in a cloud-based environment. Figure 6 presents the flowchart of particle swarm optimi-
zation.

Figure 6. Particle swarm optimization flowchart [41].

The steps involved are presented in the algorithm. The next section presents various
algorithms based on PSO. However, a range of other algorithms is also available, such as
low time complexity and low cost BPSO, IPSO-TSA, and TBSLB-PSO [51–53].

Pseudocode of PSO [54]
1. Place vector and velocity vector initialization of each particle.
2. Convert the continuous vector of position to a discrete vector.
3. Calculate each particle’s fitness value using a fitness function.

Figure 6. Particle swarm optimization flowchart [41].

The steps involved are presented in the algorithm. The next section presents various
algorithms based on PSO. However, a range of other algorithms is also available, such as
low time complexity and low cost BPSO, IPSO-TSA, and TBSLB-PSO [51–53].

Pseudocode of PSO [54]

1. Place vector and velocity vector initialization of each particle.
2. Convert the continuous vector of position to a discrete vector.
3. Calculate each particle’s fitness value using a fitness function.
4. The “psobest” of each particle is given its best value of location until now. If the current fitness
value of the particle is higher than the “psobest” of the particle, then substitute “psobest” with
current position value.
5. From all particles, pick the particle with the best fitness value as pobest.
6. Using the following equations to change each particle’s vectors:
Vj + 1 = qVj + i1n1 * (psobest − xj) + i2n2 * (pobest − xj), j is for iteration
Xj + 1 = Xj + Vj + 1
where,
q = interia
i1, i2 =acceleration coefficients
n1, n2 = Random numbers distributed arbitrary
pobest = In a population, the best place of entire particles
7. Go to step 2 and loop till 6 until the situation for termination is met. The last number of
iterations or when the fitness value of particles for the next iterations stops changing is the
terminating condition.
8. The best particle is created as the final solution.

Electronics 2021, 10, 2718 14 of 46

PSO and Its Variations

Simple PSO Algorithm: Using the concept of PSO, Alguliyev et al. proposed this tech-
nique for load balancing in Cloud environments [55]. The presented method is to migrate
the tasks requiring computing intensity relative to high-performing virtual machines. All
scheduling processes are assigned with a corresponding weight to present the significance.
These weights help to identify the optimal solution. In this research, the objective function
has also been proposed, which is different than compared to the existing ones, and the
scheduling of tasks is considered for heterogeneous virtual machines [56]. A task-based
load balancing optimization method is used. The minimization of the task execution time
and task transfer time as optimization objectives is considered by this optimization strategy.
The software packages Jswarm and Cloudsim are used to assess the performance of the
suggested solution. As compared to other optimization techniques, PSO has found more
enhancing performance in dealing with discrete problems to be optimized [57].

Improved PSO algorithm: Another approach is presented by author Mahya Moham-
madi Golchi et al. [58] to enable better average loads in cloud environments. In this research,
they considered the disadvantage associated with PSO that it is highly sensitive to initial
conditions. If there is any issue in choosing the initial population, then achieving a good
result is not possible. To overcome this, a hybrid method has been proposed. This method
promotes a hybrid approach of two concepts: One is based on firefly, and the other is on the
improved version of PSO. First, the main target is to minimize the search range of optimal
response by using the Firefly algorithm. The second target is to find the optimal response
by using the improved PSO algorithm. In this manner, they are achieving tasks with high
speed. It is concluded that the average load time of IPSO is 0.457 ms and Firefly is 0.47 ms,
but the average load time of the hybrid IPSO-Firefly algorithm is 0.259 ms.

In another research, Kai Pan et al. [59] proposed a model to balance the load in
cloud environments when the network is complex. The model utilized the concept of the
PSO algorithm. The improved PSO algorithm proposed by the paper shows tremendous
performance. This improved version performs some adjustments to define the particle’s
position and velocity. The rules followed for the continuous updates ultimately re-evaluate
the fitness value to manage loads more intelligently.

Binary PSO algorithm: Jean Pepe Buanga Mapetu et al., [59] have proposed an ap-
proach based on a binary PSO algorithm. The target is to resolve the issue of optimal
scheduling and balancing of diversified tasks onto different heterogeneous virtual ma-
chines without taking a long time. To achieve task scheduling and load balancing, a proper
framework of the BPSO algorithm is proposed. This framework is based on three modules.
The first module receives the user requests and splits them into multiple tasks. These
tasks are received by the cloud manager. This cloud manager is the second module that
ultimately outputs a task’s local queue for each virtual machine. This module utilizes the
IBPSO algorithm to balance tasks by assigning each local queue to the corresponding vir-
tual machine after analyzing optimization constraints. At the same time, the pricing model
determines the execution cost for all executed tasks. While virtual machine manager is the
third module that relies on various hosts, its purpose is to manage the virtual machines
used to execute the tasks of users. This idea provides scalability with proper load balancing
and task scheduling.

Adaptive Pbest discrete PSO (APDPSO): Zhang Miao et al. [42] proposed an APDPSO
algorithm to overcome the issues associated with the PSO algorithm. The major drawback
experienced by PSO is randomness in the movement of particles which ultimately affects
the discretization strategies. The proposed algorithm utilizes the stored good solutions to
update the personal best positions of particles with a certain probability. A discretization
method is also applied on PSO for continuous management of change in the velocity and
position vectors of the particles.

Electronics 2021, 10, 2718 15 of 46

4.1.3. Ant Colony Optimization (ACO)

ACO is a population-centered metaheuristic algorithm that can be used to estimate
potential solutions to complex problems with efficient optimization [38]. This algorithm
is inspired by ant colonies. It checks for good solutions to a given problem with a set of
artificial ants (i.e., software agents). To find the best possible course, a weighted graph is
designed. By moving on the graph, the software agents gradually construct solutions (the
same as ants moving in a straight line). A presumptive solution construction mechanism is
a collection of parameters linked with graph components (either nodes or arcs) for which
its values are changed by the agents at runtime. Figure 7 depicts the activity of ants in the
ACO. Some of the ant colony-based algorithms are presented in the next section. Interested
readers are recommended [60,61] to other algorithms such as IMaxMin-ACO, CUDA-based
ACO, IACO, and modified ACO.

Electronics 2021, 10, x FOR PEER REVIEW 15 of 46

modules. The first module receives the user requests and splits them into multiple tasks.
These tasks are received by the cloud manager. This cloud manager is the second module
that ultimately outputs a task’s local queue for each virtual machine. This module utilizes
the IBPSO algorithm to balance tasks by assigning each local queue to the corresponding
virtual machine after analyzing optimization constraints. At the same time, the pricing
model determines the execution cost for all executed tasks. While virtual machine man-
ager is the third module that relies on various hosts, its purpose is to manage the virtual
machines used to execute the tasks of users. This idea provides scalability with proper
load balancing and task scheduling.

Adaptive Pbest discrete PSO (APDPSO): Zhang Miao et al. [42] proposed an
APDPSO algorithm to overcome the issues associated with the PSO algorithm. The major
drawback experienced by PSO is randomness in the movement of particles which ulti-
mately affects the discretization strategies. The proposed algorithm utilizes the stored
good solutions to update the personal best positions of particles with a certain probability.
A discretization method is also applied on PSO for continuous management of change in
the velocity and position vectors of the particles.

4.1.3. Ant Colony Optimization (ACO)
ACO is a population-centered metaheuristic algorithm that can be used to estimate

potential solutions to complex problems with efficient optimization [38]. This algorithm
is inspired by ant colonies. It checks for good solutions to a given problem with a set of
artificial ants (i.e., software agents). To find the best possible course, a weighted graph is
designed. By moving on the graph, the software agents gradually construct solutions (the
same as ants moving in a straight line). A presumptive solution construction mechanism
is a collection of parameters linked with graph components (either nodes or arcs) for
which its values are changed by the agents at runtime. Figure 7 depicts the activity of ants
in the ACO. Some of the ant colony-based algorithms are presented in the next section.
Interested readers are recommended [60,61] to other algorithms such as IMaxMin-ACO,
CUDA-based ACO, IACO, and modified ACO.

Figure 7. Environment of ant colony optimization [41].

The steps involved are presented in the algorithm.

Pseudocode of Ant Colony [62]
1. Initialize the Ant Colony, targeted limitations, and the memory required for the source

of food.
2. Repeat steps 2–11 until stopping criteria not reached
3. Allocate the starting position to each ant
4. i = 1
5. For i<=ant perform the following operations
6. Use the state transfer rule to pick the next node.
7 Perform pheromone updations on each step

Figure 7. Environment of ant colony optimization [41].

The steps involved are presented in the algorithm.

Pseudocode of Ant Colony [62]

1. Initialize the Ant Colony, targeted limitations, and the memory required for the source of food.
2. Repeat steps 2–11 until stopping criteria not reached
3. Allocate the starting position to each ant
4. i = 1
5. For i<=ant perform the following operations
6. Use the state transfer rule to pick the next node.
7 Perform pheromone updations on each step
8. i++
9. End loop
10. Before each ant has established a solution.
11. Update the best one and perform updations on pheromone
12. Output: Print Optimal solution

ACO and Its Variations

Simple ACO algorithm: In an article about task scheduling termed SWIM (System
Wide Information Management), Gang Li and Zhijun Wu focused [63] on the load imbal-
ance problem. The users required better quality load balancing in terms of task scheduling.
Project scheduling approaches are combined with the standard ACO algorithm to accom-
plish this large-scale network information system. Updating the pheromone uses the
hardware output quality index and load standard deviation feature. Load balancing is
implemented in this article by using the key principle to choose the best task scheduling
order for the ant colony algorithm. The scheduler is seen as an ant in the specific scenario,
and the scheduling phase is seen as the process of ant foraging. As indicated by the per-
formance of hardware parameters, the pheromone is updated, keeping the total expected
time at a minimum. To estimate the heuristic function of the ant colony algorithm, this
projected length is then used. In the end, to deal with the assigned mission, a node that has
high performance and low load witty minimum completion time is selected.

Electronics 2021, 10, 2718 16 of 46

Load Balancing ACO algorithm: The LB_ACO algorithm [64] first performs pheromone
initialization, followed by the task of selecting a VM based on that value. It maintains
two matrices in which one is the completion time matrix, and the other is the matrix of
pheromones. It computes the completion duration of all jobs using the beginning time of
the corresponding job. After this, an arbitrary initialization is performed at the beginning
time of the first task. It is possible to determine the beginning time of other tasks from the
completion stamp of tasks previously assigned to the respective computers. At last, at the
time when all activities are finished, the full completion time is then the magnitude of the
plan. By the ACO algorithm, the best mapping of tasks to VMs is determined. By using the
process followed by an ant, we obtain a more workable solution. The available resources
are assigned by utilizing the ant concept. Assigning each task to any of the available
resources without preemption is proposed. It first initializes the pheromone matrix. By
calculating met heuristic probability, a subsequent task is assigned by using the transition
rule. Depending upon the highest probability, the tasks are assigned to a particular VM (by
keeping track of the completion time). For every ant, the fitness function is calculated to
find the local solution. Later on, it ultimately changes the global solution. After performing
non-dominated sorting on solutions, an optimal solution is achieved.

Improved ACO algorithm: Awatif Ragmani et al. [65] introduces an improved ant
colony algorithm by introducing a fuzzy logic module with it. The fuzzy logic module
calculates the pheromone value [66]. It also uses the Taguchi concept to optimize the ACO
algorithm parameters. A CloudAnalyst is also used as a simulator, which confirms that
the algorithm is appropriate for dealing with complex networks through experimental
outcomes. The simulations proved that the technique adopted improves load balancing in
the cloud environment while the response time is reduced to 82%.

Hybrid ACO algorithm: M Junaid et al. [21] has suggested a hybrid approach. This
approach comprises two phases. In the first level, the vector machine support is updated
to establish precise classifications across various file formats. Best classification over es-
tablished validity metrics has been demonstrated by the initially classified results. Values
for these metrics differ between 0 and 1. The performance of the File Type Formatting
algorithm using the Help Vector Machine is the data that ACOFTF will obtain for schedul-
ing purposes. The ACO algorithm performs QoS metrics for multi-object scheduling (i.e.,
reduced violations, minimum migration time, high optimization, reduced makespan, and
high response time).

4.1.4. Artificial Bee Colony (ABC)

ABC is produced by inspiration from the colony of bees that consists of three bee
groups: bees working, scouts, and onlookers. For each food source, one artificial bee is
predicted. We can, thus, deduce that the number of working bees in the colony is the
same as the number of food sources around the hive [67], and after coming back from the
food source to their hive, they dance in this area. It becomes a scout after this bee whose
food supply is refused, and it looks for new food. The artificial bee colony algorithm’s
operators, control parameters, and application domains are depicted in Figure 8. Some of
the algorithms based on ABC are presented next. Some other variations of ABC algorithm
such as ABC with EA, IABC, GB guided ABC, modified ABC, cross over and mutated ABC,
Hybrid ABC, memetic ABC, etc., are also presented in various research studies [68].

Electronics 2021, 10, 2718 17 of 46

Electronics 2021, 10, x FOR PEER REVIEW 17 of 46

4.1.4. Artificial Bee Colony (ABC)
ABC is produced by inspiration from the colony of bees that consists of three bee

groups: bees working, scouts, and onlookers. For each food source, one artificial bee is
predicted. We can, thus, deduce that the number of working bees in the colony is the same
as the number of food sources around the hive [67], and after coming back from the food
source to their hive, they dance in this area. It becomes a scout after this bee whose food
supply is refused, and it looks for new food. The artificial bee colony algorithm’s opera-
tors, control parameters, and application domains are depicted in Figure 8. Some of the
algorithms based on ABC are presented next. Some other variations of ABC algorithm
such as ABC with EA, IABC, GB guided ABC, modified ABC, cross over and mutated
ABC, Hybrid ABC, memetic ABC, etc., are also presented in various research studies [68].

Figure 8. Artificial bee colony [69].

The steps involved are presented in the algorithm.

Pseudocode of ABC [70]
1. Initialize the bat population and evaluate the fitness.
2. Calculate the initial fitness value, f_init.
3. Set the best solution, s_best.
4. Set maximum no. of iterations, Noi.
5. Set the population size, N.
6. i = 1
7. Start loop end till iteration < Noi
8. Generate a random solution for all no. of employed bees.
9. Generate solution for all onlooker bees
10. Apply a random structure on the selected bees, s_Changed.
11. IF (s_best< s_Changed)
12. Then s_Changed=s_best
13. END IF
14. Scout bees identify the abandoned source of food and ultimately replace it with new
15. i ++
16. End loop
17. Output: the best solution

Figure 8. Artificial bee colony [69].

The steps involved are presented in the algorithm.

Pseudocode of ABC [70]

1. Initialize the bat population and evaluate the fitness.
2. Calculate the initial fitness value, f_init.
3. Set the best solution, s_best.
4. Set maximum no. of iterations, Noi.
5. Set the population size, N.
6. i = 1
7. Start loop end till iteration < Noi
8. Generate a random solution for all no. of employed bees.
9. Generate solution for all onlooker bees
10. Apply a random structure on the selected bees, s_Changed.
11. IF (s_best< s_Changed)
12. Then s_Changed=s_best
13. END IF
14. Scout bees identify the abandoned source of food and ultimately replace it with new
15. i ++
16. End loop
17. Output: the best solution

ABC and Its Variations

Simple ABC algorithm: ABC algorithm is a method of optimization that is very
good at inspection but bad for manipulation [20]. The bee algorithm is suggested for
performing optimization techniques by utilizing the intelligent foraging behavior of honey
bees. The gathering of honey bees is called a swarm, which can adequately conclude the full
mission by cooperation. Different researchers used the ABC algorithm for improvements
in load balancing [49].

Preemptive ABC algorithm: To define an optimal schedule of tasks for virtual ma-
chines, task scheduling using artificial bee foraging (TSABF) optimization is proposed by
Geetha Muthsamy [71]. Using the principle of ABC, the activities are preemptively pre-
pared. In the suggested methodology, the purpose of task preemption is performed to turn
down the execution time of the tasks about different priorities. The researchers compared
the results of the experiments with another load balancing algorithm. It has been concluded
from the experimental results that load balancing can be intelligently achieved by using
TSABF with improved QoS than compared to existing honey bee behavior-inspired load
balancing algorithms.

Electronics 2021, 10, 2718 18 of 46

Hybrid discrete ABC algorithm: In a cloud environment, Junqing Li et al. [72] con-
siders and solves the flexible task scheduling issue. To solve the problem, the hybrid
discrete ABC algorithm is being used. It is suggested to first model the question as a
hybrid flow shop scheduling problem. They considered both single and multiple goals.
The proposed work considers three types of bees (i.e., the working bee, the onlooker bee,
and the scout bee). As a primary contributor to coping with manipulation skills, various
forms of permutation systems are investigated. An efficient selection approach is also used
for the enhancement of the exploitation process. The convergence ability is also improved
to increase by designing the abandoned solution. The performance of the algorithm is
confirmed by performing proof of work (i.e., tested on authenticated benchmarks).

Enhanced Bee Colony Algorithm: The proposed method [73] utilizes the foraging
behavior of bees to improve load balancing in cloud environments. Inspired from the
ACO algorithm, rescheduling is performed after identifying the underloaded machines.
For every task (honey bee), calculate the load on VM (honey bee foraging a food source)
and make a decision either to shift load or not. After this, the VMs are grouped based on
load. Then, by using the groups, sorting is performed to make sets of overloaded (honey
bees starve for a food source) and under-loaded machines. The procedure of sorting is
performed again to prioritize the overloaded tasks. After assigning priorities, the capacity
of underloaded VMs is checked in order to identify a suitable VM for load allocation. After
assigning load, the overloaded and underloaded machines are updated in order to be
considered for future load balancing.

Load Balancing Algorithm Based on Honey Bee (LBA_HB): Walaa Hashem et al. [74]
proposed the LBA_HB algorithm. It mainly focuses on distributing the load to the network
links in the most balanced way. For proper management of workload, whenever there is a
task that asks to be processed by the VM, it checks for two conditions:

1. No. of tasks being processed by the VM < No. of tasks processing by other VMs;
2. The deviation of the VM processing time from the average processing time of all

VMs is less than the threshold. In this manner, the overall response times and data
center processing times are successfully minimized (proved by simulations). As the
algorithm intelligently focuses on distributing load to avoid under and overutilization
of VMs, compared to other swarm algorithms i.e., ACO and ABC, the balancing
performed by LBA_HB is more efficient.

4.1.5. Grey Wolf Optimization (GWO)

GWO algorithm [75] is developed for allocating tasks in order to balance load effi-
ciently. This algorithm duplicates the hunting style of wolves. Similarly as the wolves
that live in a pack of four levels, this algorithm breaks the strategy of load balancing into
four levels. These four levels are categorized as omega, delta, beta, and alpha. On the first
level is the one who leads the pack (independent from the gender) in terms of making
decisions. On level 2, there are supporters who help the leader to decide and maintain
control in the pack. Level 3 is for scouts to keep an eye on the limitations for protection.
Level 4 includes the substitutions in the pack; they eat last. Figure 9 represents the behavior
of the grey wolf optimization algorithm. In addition to the algorithms discussed in the
next section, some other variations of the GWO algorithm such as DGWO, TLBO-GW,
Modified GWO, hybridized versions GWO, PGWO [76–78], etc., are also presented in other
research studies.

Electronics 2021, 10, 2718 19 of 46

Electronics 2021, 10, x FOR PEER REVIEW 19 of 46

levels. These four levels are categorized as omega, delta, beta, and alpha. On the first level
is the one who leads the pack (independent from the gender) in terms of making decisions.
On level 2, there are supporters who help the leader to decide and maintain control in the
pack. Level 3 is for scouts to keep an eye on the limitations for protection. Level 4 includes
the substitutions in the pack; they eat last. Figure 9 represents the behavior of the grey
wolf optimization algorithm. In addition to the algorithms discussed in the next section,
some other variations of the GWO algorithm such as DGWO, TLBO-GW, Modified GWO,
hybridized versions GWO, PGWO [76–78], etc., are also presented in other research stud-
ies.

Figure 9. Gray wolf optimization algorithm [79].

The steps involved are presented in the algorithm.

Pseudocode of GWO [54]
1. Select the max no. of iterations L.
2. Initialization of the population Xi = (i = 1, 2, 3, 4, …, n)
3. Initialization of r, N, D, & T = 1.
3. Produce fitness of all the wolves (searching machines)
4. Let, P = searching machine (best)
5. Let, Q = searching machine (second best)
6. Let, R = searching machine (third best)

7. Start while (i < L) do
8.Repeat step 9 for every searching machine

9. Change the position’s value of the recently available
searching machine.

10. Change the values of r, N, and D
11. Find the fitness of all searching machines
12. Update P, Q, and R
13. i ++

14. end while
15. OUTPUT the best searching machine

GWO and Its Variations
Improved GWO Algorithm: Optimal scheduling of tasks on VMs is the goal of the

Improved GWO Algorithm [80]. Firstly, it collects all the task and resource information

Figure 9. Gray wolf optimization algorithm [79].

The steps involved are presented in the algorithm.

Pseudocode of GWO [54]

1. Select the max no. of iterations L.
2. Initialization of the population Xi = (i = 1, 2, 3, 4, . . . , n)
3. Initialization of r, N, D, & T = 1.
3. Produce fitness of all the wolves (searching machines)
4. Let, P = searching machine (best)
5. Let, Q = searching machine (second best)
6. Let, R = searching machine (third best)
7. Start while (i < L) do
8.Repeat step 9 for every searching machine
9. Change the position’s value of the recently available searching machine.
10. Change the values of r, N, and D
11. Find the fitness of all searching machines
12. Update P, Q, and R
13. i ++
14. end while
15.OUTPUT the best searching machine

GWO and Its Variations

Improved GWO Algorithm: Optimal scheduling of tasks on VMs is the goal of the
Improved GWO Algorithm [80]. Firstly, it collects all the task and resource information
and checks whether the allocation requirements are satisfied or not. After viewing the best
possible option, a resource is assigned to the scheduler. Based on the information about
CPU, storage, and bandwidth, cloud resource management updates the resource nodes
accordingly. It target is to reduce the make span, total cost, and the maximum no. of task
completion within the specified time. Improved GWO is used to find the optimal solution.
The potential of the proposed technique has been proved by implementing it on CloudSim.

Hybrid GWO-PSO Algorithm: A hybrid system [81] is proposed using GWO and PSO
algorithms for load balancing. In this approach, GWO is suggested to be used first in order
to produce the best position as alpha, i.e., Xα. After this, instead of calculating the personal
best position, PSO is executed by utilizing alpha. In this manner, the main contribution
achieved using this approach is to contrive an objective function that efficiently manages
the load in a cloud environment.

Fuzzy GWO algorithm: Fuzzy GWO algorithm [82] is adapted to implement a modi-
fied load balancing algorithm in cloud computing and IoT. The objective is to achieve better

Electronics 2021, 10, 2718 20 of 46

response times with a balanced load. The algorithm saves all the information along with the
assigned demands to the VMs as wolves first find the overloaded system. Whenever there
is an allocation request, the least loaded system for assigning the assignment is found, just
as the second move for the wolves is to identify the status. The researchers then modified
the procedure by introducing fuzzy logic with GWO for making the system stable. This
technique considers CPU speed and load as inputs for better load adjustment. They assign
rules by using fuzzy logic, i.e., LOW when speed is ZERO (0), MEDIUM when speed is 0.4,
HIGH when speed is 0.6–0.7, and VERY HIGH when speed is ONE (1).

A Hybrid GWO and ABC Algorithm: A hybrid solution is proposed by Soukaina
Ouhame, Youssef Hadi, and Arifullah [83]. The resource allocation method in VM often
fails because of a lack of proper load balancing. It is either overloaded or underloaded.
To resolve this discrepancy, a hybrid of the GWO and ACO algorithms is proposed. The
grey wolf performs the first improvement at local search; it is then utilized by the ABC
algorithm for further improvements in fitness function. In this manner, this hybrid tech-
nique improves overall throughput, stability, execution time, and energy consumption.
It efficiently improves the resource allocation system in VM to 1.25% than compared to
simple ACO and GWO algorithms in cloud environments.

4.1.6. BAT Algorithm

BAT is an optimization algorithm that is inspired by echolocation behavior. BATs
use their sounds to locate their target. When bats generate sound, it spreads to different
prey available in frequency form. Based on this frequency, they calculate the distance after
collecting all the signals [84]. The same idea can be adapted for load balancing as it runs
individually and focuses the node to make the coordination localized.

Arif Ullah and Nazri Mohd Nawi [85] applied the BAT algorithm in VM to verify that
this idea improves load balancing in cloud environments. The idea is that whenever there
is a need to entertain a task, an optimal VM among all the available VMs is first searched for.
In that way, this algorithm assigns the task to the optimally available VM. Figure 10 shows
the flowchart of the BAT algorithm. Several variations of this algorithm are presented
in the next section. Some other variations of the BAT Algorithm such as chaotic BAT
Algorithm, directional BAT Algorithm, θ-Modified BAT, BAT mutation crossover, etc., can
be seen in [86,87].

The steps involved are presented in the algorithm.

Pseudocode of BAT [88]

1. Input: Population of searching machine Z, dimension of solutions n, upper and lower bounds
of solutions [y1, . . . , yn, L1, . . . , Ln], Maximum iterations
Output: The best searching machine P
1. Initialize the grey wolf population Xi = (x1, x2, . . . , xn)
where (i ∈ [N]) and xj ∈ [yj, Lj] |∀ j ∈ [n]
2. Initialize a, A, C, & i = 1.
3. Find the fitness of each searching machine f(Xi), where (i ∈ [Z])
4. Let, P = the best searching machine.
5. Let, Q = the second-best searching machine
6. Let, R = the third-best searching machine.
7. while (i < Max iterations) do
8. for each search agent do
9. Change the position of the current searching machine accordingly
10. end for
11. Update a, A, and C
12. Calculate the fitness of all searching machine
13. Update P, Q, and R
14. i++
15. end while
16. Output P as the best solution

Electronics 2021, 10, 2718 21 of 46Electronics 2021, 10, x FOR PEER REVIEW 21 of 46

Figure 10. BAT algorithm flowchart.

The steps involved are presented in the algorithm.

Pseudocode of BAT [88]
1. Input: Population of searching machine Z, dimension of solutions n, upper and lower
bounds of solutions [y1, ..., yn, L1, …, Ln], Maximum iterations
Output: The best searching machine P
1. Initialize the grey wolf population Xi = (x1, x2, …, xn)
 where (i ∈ [N]) and xj ∈ [yj, Lj] |∀ j ∈ [n]
2. Initialize a, A, C, & i = 1.
3. Find the fitness of each searching machine f(Xi), where (i ∈ [Z])
4. Let, P = the best searching machine.
5. Let, Q = the second-best searching machine
6. Let, R = the third-best searching machine.

7. while (i < Max iterations) do
8. for each search agent do

9. Change the position of the current searching machine accordingly
10. end for
11. Update a, A, and C
12. Calculate the fitness of all searching machine
13. Update P, Q, and R
14. i++

15. end while
16. Output P as the best solution

Figure 10. BAT algorithm flowchart.

BAT and Its Variations

Improved BAT Optimization (IBO) Algorithm: Improved BAT algorithm [89] is pro-
posed to obtain more optimum and the finest results. To make this possible, the algorithm
needs to be executed iteratively. Whenever there is a task for processing, the BAT algorithm
finds the optimal server among the available. At the same time, the load scheduler also
identifies the job type and resource required and selects the optimal VM for task execution.
If the available server is meeting the requirements efficiently, then the load is assigned;
otherwise, if the load is higher than it is distributed to more than one server. In that manner,
this algorithm maintains load balancing by keeping all the servers busy and maintains
them as neither under loaded nor overloaded. The suggested technique not only minimizes
the response time but also performs load balancing without any delay.

iBAT Algorithm: A system is operated using an Improvised BAT algorithm for load
balancing [62]. The iBAT algorithm utilizes the Minimum-Min and Max-Minimum algo-
rithms, which aim to produce a population of more optimized virtual bats. The minimum-
minimum and max-minimum algorithms are used for listing the least and most observed
ending time of the tasks, respectively. In this manner, it schedules resources with the least
execution time. In this manner, a more desirable population is generated to achieve the
best results.

MicroBAT Algorithm: A system model [90] utilizes the concept of micro-bats as they
recognize the shortest iteration to the prey. The model proposed improves its computations
by adapting the echolocation method of bats. Youssef Fahim et al. separated their modeling
in two sections. The first one is for the classification performed before allocation. This
classification is based on the meta-heuristics bat algorithm. It pre-classifies the spots
as per the available resources in the cloud environment. The second one permits the
task to multiple VMs after checking the load (status and allocation). In this manner, this
method allocates jobs to VMs with equal load distribution. It also guarantees all the

Electronics 2021, 10, 2718 22 of 46

possible allocations in series or parallel mode. This technique also proposes shifting tasks
from one VM to another in order to manage the load more efficiently (i.e., to avoid over
and underutilization).

Hybrid PSO-BAT Algorithm: A hybrid approach of PSO and BAT algorithm is pre-
sented by Valarmathi, R et al. The idea is to swap and update the population by using both
algorithms until the best population target is achieved. This technique mainly focuses on
the main drawback of the PSO algorithm. Keeping in mind the fact that the convergence
of PSO becomes slow after several iterations, the BAT algorithm increases this diversity.
The fitness function monitors the poor population of both algorithms and transforms them
into stronger ones. These good individuals are merged at the end to achieve enhanced
optimization. The simulator proves the better performance achieved after performing task
scheduling conducted in the cloud for load balancing. It reduces the cost and makespan.
At the same time, it also improves the utilization of resources. Table 4 presents the pros
and cons of the discussed traditional SI algorithms.

Table 4. Pros and cons of traditional SI algorithms.

Algorithm Pros Cons

GA It makes greater use of resources and offers a better
load balancing solution.

The numerous steps of computation add to computational
complexity. When the search space is expanded, the
efficiency suffers. It does not offer the same level of

priority time.

PSO
It has a higher utilization rate. The load is

redistributed from an overburdened virtual machine
to a physical machine.

The performance of the algorithm depends on
the problem.

ACO Optimal resource usage through efficient load
distribution among nodes. Convergence takes a longer period time.

ABC Enhances the maximum throughput limit.
When utilized in a sequential process, the lack of

supporting material causes the process to slow down, and
the solution raises the computing cost.

GWO
It is easier to use and converges more quickly due to
less randomness and varied numbers of individuals
assigned in global and local searching procedures.

The equal importance of the grey wolves’ positions, which
is not consistent strictly with their social hierarchy.

BAT It boasts a high level of precision and efficiency. In
terms of processing costs, it outperforms.

There is no mathematical analysis to link the parameters
with convergence rates at an early stage; therefore,

convergence occurs quickly.

4.2. Modern SI Algorithm for Load Balancing

As we have discussed in the last sections, adequate work is performed on traditional
swarm intelligence algorithms to cope with the issues of load balancing in cloud-based task
allocation [91]. There are certain issues associated with these algorithms that ultimately
limit the pertinence of utilizing the best of them. Therefore, due to slow convergence,
intricacy in implementation, and complexity to ensure scalability, some state-of-the-art
techniques are highly required. In this section, the most increasingly competitive swarm
intelligence-based load balancing strategies in the cloud include the whale, spider, dragon-
fly, and raven; roosting optimization algorithms are discussed.

4.2.1. Whale Optimization Algorithm (WOA)

In 2016, Australian researchers Mirjalili and Lewis [92] suggested the Whale Opti-
mization Algorithm as a new swarm intelligence optimization algorithm. The model
captures the humpback whale population’s shrinking, encircling, loop updating location,
and arbitrary hunting strategies, which were influenced by natural humpback whale hunt-
ing conduct. Figure 11 depicts the bubble hunting technique of the whale optimization
technique. The main steps of WOA involve the following [93]:

Electronics 2021, 10, 2718 23 of 46

1. Initialization phase: During this phase, the population is randomly created.
2. Fitness calculation phase: In this phase, a fitness function is calculated. This is used to

calculate the fitness function. Depending on the outcomes of the test, the best whale
(agent) is selected.

3. Encircling prey phase: The location of the prey is believed to be fixed during this
process. Assuming that the current approach is the safest, the prey is covered by
humpback whales. Other whales change their positions in accordance with the
existing best agent. The exploration phase uses the following mathematical model
(Equations (1) and (2)):

SD = | C. W∗(i)−W(i)| (1)

W (i + 1) = Wr(i)− A.SD (2)

where i is the recent number of iterations;

Electronics 2021, 10, x FOR PEER REVIEW 24 of 46

𝑊𝑟 is the random position vector; 𝐴 is the coefficient vector.
The spiral equation for the humpback whale’s spiral adjusting location strategy to

prey follows Equation (3). (𝑖 + 1) = 𝑆𝐷ᇱ. 𝑒. cos(2𝜋𝑙) 𝑊∗(𝑖) (3)

Figure 11. Bubble net hunting strategy of whale optimization load balancing technique [91].

The steps involved are presented in the algorithm.

Pseudocode of Standard WO
1. Initialize the population of whales (agents) “W”
2. Calculate the value of the fitness function.
3. Randomly pick the search agent W*
4. While i = 1 and t < MAX_LIMIT
5. Repeat for each search agent
6. if (probability < 0.5)
7. if (|A| <1)
8. Update the position of ith search agent by Eqution (1)
9. else if (probability < 0.5 AND |A| ≤ 1)
10. Update the position of ith search agent by Eqution (2)
11. end if
12. else if (probability ≥ 0.5)
13. Update the position of ith search agent by Eqution (3)
14. end if
15. End inner loop
16. Calculate the fitness of W(t + 1) and update W*
17. End Outer loop

WOA and Its Variations
Chaotic Whale Optimization Algorithm (CWOA): Kaur et al. [94] targeted the slow

convergence issue of standard whale optimization. To overcome this problem, the solu-
tion to improve the overall convergence speed is proposed. The study highlights the chaos
technique to integrate with the standard WOA so that better performance will be
achieved. The proposed algorithm begins by performing a probabilistic initialization of
the whale group (VMs). It is then used to map a particular chaotic map, along with the
setup of its first chaotic number and a variable. After that, the suggested variables are

Figure 11. Bubble net hunting strategy of whale optimization load balancing technique [91].

W is the position vector;
W∗ is the position vector of the best solution obtained;
C is the coefficient vector.
SD is the search distance;
Wr is the random position vector;
A is the coefficient vector.
The spiral equation for the humpback whale’s spiral adjusting location strategy to

prey follows Equation (3).

(i + 1) = SD′.ebl . cos(2πl)W∗(i) (3)

The steps involved are presented in the algorithm.

Electronics 2021, 10, 2718 24 of 46

Pseudocode of Standard WO

1. Initialize the population of whales (agents) “W”
2. Calculate the value of the fitness function.
3. Randomly pick the search agent W*
4. While i = 1 and t < MAX_LIMIT
5. Repeat for each search agent
6. if (probability < 0.5)
7. if (|A| <1)
8. Update the position of ith search agent by Eqution (1)
9. else if (probability < 0.5 AND |A| ≤ 1)
10. Update the position of ith search agent by Eqution (2)
11. end if
12. else if (probability ≥ 0.5)
13. Update the position of ith search agent by Eqution (3)
14. end if
15. End inner loop
16. Calculate the fitness of W(t + 1) and update W*
17. End Outer loop

WOA and Its Variations

Chaotic Whale Optimization Algorithm (CWOA): Kaur et al. [94] targeted the slow
convergence issue of standard whale optimization. To overcome this problem, the solution
to improve the overall convergence speed is proposed. The study highlights the chaos
technique to integrate with the standard WOA so that better performance will be achieved.
The proposed algorithm begins by performing a probabilistic initialization of the whale
group (VMs). It is then used to map a particular chaotic map, along with the setup of its
first chaotic number and a variable. After that, the suggested variables are used to regulate
the exploration and exploitation process and are as much the same as in WOA, which
is ultimately configured. In addition, the chaotic number of the chaotic map is set. The
fitness of all the whales (VMs) is initialized in the objective function. This fitness is then
assessed by using various statistical benchmark functions in the next phase. The whale
(VM) with the highest fitness is thought to be the strongest quest agent at the moment.
The recommended procedure is used to balance workload and resource distribution in the
cloud in order to reduce energy consumption.

Hybrid Whale Optimization Algorithm (HWOA): Strumberger et al. [93] proposed
a modification in the original whale optimization technique. The research study targets
the tradeoff between exploitation and exploration in simple WO algorithms. The Hybrid
WOA performed the exploration as bee colony metaheuristics. This approach then uses
additional hybrid controlling parameters to monitor new exploration criteria. Finally,
this hybrid proposal integrates the firefly algorithm in order to further update the search
equation. Comparative analysis showed that the Hybrid WOA surpassed Simple WOA by
about 19% in the benchmark of 100 tasks.

Optimized Whale Optimization Algorithm (OWO): Farinaz et al. [95] highlighted
the early convergence issue of simple WOA. To address this issue, a new concept for
grouping whales is presented. The chosen strategy divides the filtered population into a
specific number of groups, then randomly selects a member of each group for use in the
whale optimization algorithm’s encircling prey segment. The mean best fitness was then
increased to aid with exploitation, discovery, and convergence rate. At high workloads,
the Optimized Whale algorithm is used in a cloud computing environment to minimize
average execution time, response time, and throughput in the cloud computing setting.
Experiments prove its response time far better than the others. The progress in percentage
when compared to standard WOA is about 37.60 percent, 81.21% when contrasted to bat,
79.60% when compared to Chaotic WO algorithm, and 79.90% when compared to particle
swarm algorithm.

Electronics 2021, 10, 2718 25 of 46

Improved Whale Optimization Algorithm (IWO): To boost the optimal solution ex-
ploration capability of the WOA-based system, Xuan Chen et al. [96] suggest an effective
algorithm called Improved WOA for cloud task scheduling. The researchers are particu-
larly interested in optimizing the makespan, load, and price expense of a cloud computing
environment for specific tasks, and these considerations will be critical in ensuring that the
VMs’ overall functionality is as efficient as possible. In the very beginning, the proposed
task scheduling scheme is used to map the foraging whale model. This model ultimately
allows obtaining an estimated optimal solution. On this foundation, the study recommends
Improved WOA for cloud task scheduling for load balancing, an advanced method aimed
at enhancing WOA’s optimal solution exploration ability. IWC starts by setting network
input tasks and all the available specifications. It also identifies the underlying virtual ma-
chines, tasks, and resources, allowing them to be mapped according to a particular strategy.
The task scheduler at the scheduler layer will then create an optimized task execution plan
based on modeling to meet the assigned specifications. Ultimately, the configured control
plan is sent to the task control center for operation, with the output results being sent to the
clients. IWC outperforms the competition around the board, showing that it can efficiently
minimize device costs while optimizing the load in VMs for cloud computing activities.

4.2.2. Social Spider Algorithm (SSA)

Spiders include a large order of nearly 50,000 species identified by scientists all over
the world. Researchers have classified them into three groups [70]. These types include
colonial, subsocial, and social spiders. Social spiders are unique among these three groups.
These spiders congregate in groups and communicate with one another. Yu et al. [97]
suggested SSA as one of the most prevalent methodologies for optimization techniques,
which was influenced by the foraging behavior of social spiders, which can be observed
in Figure 12.

Electronics 2021, 10, x FOR PEER REVIEW 26 of 46

Figure 12. Behavior of social spider technique [91].

The steps involved are presented in the algorithm.

Pseudocode of SSA [98]
1. Inputs:

Total count of spiders “T”
Total No. of female spiders “Tf”
Total No. of male spiders “Tm”

2. Initialize the positions of male and female spiders
3. Ti = total no. of iterations
4. Output: The fitness value of the optimization problem and the optimal location

of social spiders.
5. Process:

while i ≤ Ti do
6. Determine the mating radius for female and male spiders.
7. Determine the weight of the spiders.
8. Based on female and male collective operators, determine the response of female

and male spiders.
9. Accomplish a mating procedure with a dominant male and a dominant female.
If the spider progenies are larger, then update the strategies.

SSA and Its Variations
Spider Mesh Overlay (SMO): Usurelu et al. [99] showed the various characteristics of

a novel, naturally influenced spider mesh overlay that was used for load balancing non-
pre-emptive jobs, each of which consumes a substantial amount of energy. Each overlay
unit can provide the highest capacity for a specific resource while providing lower capac-
ities for other devices. The routing policy removes the chances of redundant communica-
tions and ultimately improves performance by assigning nodes efficiently. The network’s
central point serves as a task manager. This task manager manages the distribution of jobs
depending on the required resource. A node is matched by a task based on two methods.
It first ensures that the node has the resources required to complete the task and then
ensures that the task does not surpass the node’s usable resource capacities. Both methods
highlight that the server load and the overlay topology are stable. The suggested algo-
rithm achieves an average integrated load of 50 to 85%.

Load Balance Task Allocation (LBTA-SSO): Mahato et al. [100] also targeted the issue
of load balancing in cloud environments. The idea is to enhance the performance of cloud-

Figure 12. Behavior of social spider technique [91].

The steps involved are presented in the algorithm.

Electronics 2021, 10, 2718 26 of 46

Pseudocode of SSA [98]

1. Inputs:
Total count of spiders “T”
Total No. of female spiders “Tf”
Total No. of male spiders “Tm”
2. Initialize the positions of male and female spiders
3. Ti = total no. of iterations
4. Output: The fitness value of the optimization problem and the optimal location of social spiders.
5. Process:
while i ≤ Ti do
6. Determine the mating radius for female and male spiders.
7. Determine the weight of the spiders.
8. Based on female and male collective operators, determine the response of female and male
spiders.
9. Accomplish a mating procedure with a dominant male and a dominant female.
If the spider progenies are larger, then update the strategies.

SSA and Its Variations

Spider Mesh Overlay (SMO): Usurelu et al. [99] showed the various characteristics
of a novel, naturally influenced spider mesh overlay that was used for load balancing
non-pre-emptive jobs, each of which consumes a substantial amount of energy. Each
overlay unit can provide the highest capacity for a specific resource while providing
lower capacities for other devices. The routing policy removes the chances of redundant
communications and ultimately improves performance by assigning nodes efficiently.
The network’s central point serves as a task manager. This task manager manages the
distribution of jobs depending on the required resource. A node is matched by a task based
on two methods. It first ensures that the node has the resources required to complete the
task and then ensures that the task does not surpass the node’s usable resource capacities.
Both methods highlight that the server load and the overlay topology are stable. The
suggested algorithm achieves an average integrated load of 50 to 85%.

Load Balance Task Allocation (LBTA-SSO): Mahato et al. [100] also targeted the issue
of load balancing in cloud environments. The idea is to enhance the performance of
cloud-based environments with improved efficiency. In order to achieve balance load task
allocation, a modified algorithm of SSA is presented. The proposed technique focuses on
providing the resources on a real-time basis. In this manner, there will be no superfluous rise
in the traffic of requests. This scheme eventually results in no degradation in performance
and reliability in any transaction.

The algorithm first generates the total available nodes. After that, it initializes the
vibration of the target node for every node available. The algorithm maintains a transaction
queue. It continuously monitors the targeted node’s value for every transaction and node,
respectively, until the transaction queue becomes empty. If the vibration of the targeted
node is greater than the maximum possible value of vibration, then that transaction is
assigned to the targeted node. Otherwise, the algorithm picks the best vibration among
the available nodes’ vibrations. This selected vibration is then compared with the targeted
vibration. If it is greater than the targeted one, then the transaction is then allocated
to the node that contains the best vibration. Finally, all nodes will update the fitness
value accordingly.

Chaotic Social Spider Algorithm (CSSA): In a research paper [101], a chaotic social
spider algorithm was proposed. The idea of this technique is driven by the social spider
in order to solve the job planning problems in interconnected virtual machines. Each
searching machine in Chaotic SSA has a memory that holds the position of the practical
alternative as well as the fitness value of the VM in the form of a Broadcast Message.
Furthermore, each search machine is set up to be dynamic, with the ability to communicate
and transfer to another VM location at any time. CSSA considered the spider web as a
cloud computing environment, where each resource, i.e., VM, is represented as a feasible

Electronics 2021, 10, 2718 27 of 46

solution (food source in case of spiders) in the cloud. Each searching device in the cloud
environment moves freely in the solution space to find the best VM for the user tasks.
When the number of tasks is 200, the CSSA decreases the total cost by an average of
33.66% relative to Genetic, PSO, and ABC Algorithms. Furthermore, Genetic, PSO, and
ABC algorithms show efficiency up to 79%, 83%, and 86%, respectively, whereas CSSA
generates 97% efficiency. As far as other performance parameters are considered, CSSA
proves effective performance improvements.

Social Spider Cloud Web Algorithm (SSCWA): Abrol et al. [102] proposed that the
tasks will behave as spiders, and their QoS characteristics will be defined as the spider’s
fitness based on the Social Spiral algorithm. The tools function as prey, and their ability
corresponds to the health of the prey. In contrast to other tasks, tasks with a higher QoS, i.e.,
a high resource consumption criterion, are given higher priority. The proposed procedure
first generates the population of tasks and resources along with the quality constraints.
The fitness value is obtained from the given tasks and every available resource. After
this, depending upon the available resource utilizations, a vibration is produced. The
task’s vibration frequency is related to the resource’s vibration intensity. If the vibration
frequency of the resource is greater than the vibration intensity of the task, then the task
will be assigned to the resource. Otherwise, another resource with a higher vibration rate
than the previous one is found. The task’s vibration frequency concerning service vibration
strength is calculated. To find the best solution, a population of tasks and resources
with QoS requirements is created. In terms of execution cost, throughput, execution, and
response time, experimental results indicated that the QoS aware SSCWA surpasses ABC,
PSO, and ACO.

4.2.3. Dragonfly Optimization Algorithm (DOA)

DA is imitating a dragonfly’s swarming action [103]. Relocation and hunting are the
two main causes of their swarming (dynamic swarm or static swarm, respectively). Small
groups of dragonflies pass around a limited area to hunt other species in a static group.
Social motions and sudden changes are characteristic of this form of swarming. Dynamic
swarming, on the other hand, involves a large number of dragonflies forming a single
community and moving in a specific direction for a long period.

Dragonflies should adjust their weights to respond to the transformation from intensi-
fying to diversifying during the optimization phase, ensuring the convergence of dragonfly
individuals. Figure 13 depicts the dragonfly swarming behavior of jobs within partitions,
which involves assembling a swarm of jobs of varied sizes to travel towards the best-fit
virtual machines.

Electronics 2021, 10, x FOR PEER REVIEW 28 of 46

Dragonflies should adjust their weights to respond to the transformation from inten-
sifying to diversifying during the optimization phase, ensuring the convergence of drag-
onfly individuals. Figure 13 depicts the dragonfly swarming behavior of jobs within par-
titions, which involves assembling a swarm of jobs of varied sizes to travel towards the
best-fit virtual machines.

Figure 13. Behavior of dragonfly optimization algorithm [91].

The steps involved are presented in the algorithm.

Pseudocode of Standard DAO [104]
1. Initialization of data centers, host machines, and virtual machines
2. Demands for resource distribution are entered.
3. The demands are divided into several tasks.
4. Attempt to determine the number of VMs and the number of initial tasks to be

executed
5. if (it is the end of the process)
6. Then (to balance the load) determine the execution requirements and
resource time.
7. else
8. divide the activity between processors while maintaining load
9. Apply DFO for the scheduling of job while maintaining load
10. If (all VMs are active)
11. Then Go to step 4
12. else Go to Step 6

DOA and Its Variations
Constraint Measure Dragonfly optimization (CMDO): Polepally et al. [105] proposed

a constraint measure algorithm for load balancing in cloud computing. According to the
scheme, the requests from different users are entertained by the VMs present at the data
center. These data centers hold physical machines. Each machine holds several VMs.
While entertaining the jobs of any user, the VMs follow the constraint measure algorithm.
The algorithm first decides among the available VMs and maintains a decision list. After
this, a selection list is obtained for all the jobs requested by users. At this point, the drag-
onfly algorithm is used to produce the optimal maximum values. According to DAO, if
the VM’s load is higher than the controlled threshold level and the virtual machine has a

Figure 13. Behavior of dragonfly optimization algorithm [91].

Electronics 2021, 10, 2718 28 of 46

The steps involved are presented in the algorithm.

Pseudocode of Standard DAO [104]

1. Initialization of data centers, host machines, and virtual machines
2. Demands for resource distribution are entered.
3. The demands are divided into several tasks.
4. Attempt to determine the number of VMs and the number of initial tasks to be executed
5. if (it is the end of the process)
6. Then (to balance the load) determine the execution requirements and resource time.
7. else
8. divide the activity between processors while maintaining load
9. Apply DFO for the scheduling of job while maintaining load
10. If (all VMs are active)
11. Then Go to step 4
12. else Go to Step 6

DOA and Its Variations

Constraint Measure Dragonfly optimization (CMDO): Polepally et al. [105] proposed
a constraint measure algorithm for load balancing in cloud computing. According to the
scheme, the requests from different users are entertained by the VMs present at the data
center. These data centers hold physical machines. Each machine holds several VMs. While
entertaining the jobs of any user, the VMs follow the constraint measure algorithm. The
algorithm first decides among the available VMs and maintains a decision list. After this,
a selection list is obtained for all the jobs requested by users. At this point, the dragonfly
algorithm is used to produce the optimal maximum values. According to DAO, if the VM’s
load is higher than the controlled threshold level and the virtual machine has a higher
deciding factor, the VM is removed from the decision list and the job with the highest
selection factor is allocated to it. The delegated job has been excluded from the list of
choices. Similarly, all of the functions are distributed evenly among these VMs.

Resource allocation-based dragonfly optimization algorithm (RDOA): Amini et al. [104]
proposed the dragonfly optimization technique to manage resources so that load balancing
becomes possible. This technique targets the task scheduling issue in the datacenters of the
cloud. Therefore, initially, the datacenter starts the VMs to run the user’s request. After
that, the cloud environment finds the requests. Each of these requests will be divided into
a sequence of jobs to be executed by VMs. After this step, VMs and several tasks will be
picked for building or executing. Then, it will be checked to see if the VM’s task evaluation
has been completed by using the dragonfly optimization technique. If it is completed,
then the simulation will stop; otherwise, the DOA will be used to schedule tasks. The
proposed algorithm is also compared with other swarm algorithms such as ACO, PSO, and
Hybrid ACO_PSO. However, the evaluated experimental results show that the dragonfly
algorithm makes more substantial performance increases in scheduling tasks, balancing
load, and allocating resources.

Adaptive dragonfly algorithm (ADA): Neelima [106] elaborates the ADA algorithm
by highlighting the capability of minimization of execution time and cost. What underlies
both of the main focuses is allocating the request to VM by using ADA so that the issue
of under or overutilization can be avoided. To exclude this issue, this research proposes
the idea of achieving load balancing in cloud computing. The algorithm at the very first
instance considers the data center. The data center consists of multiple physical systems.
To accomplish any job requested by the user, each physical system used multiple VMs: the
load balancer. This load balancer works on the hybrid dragonfly and firefly algorithms.
This load balancer firsts evaluate the fitness function by using dragonfly then firefly. After
calculations, the load balancer compares the best fitness value between them. The greater
fitness value is selected at the end of the iteration. In this manner, the load balancer shifts
load to that particular VM by utilizing processing time.

Electronics 2021, 10, 2718 29 of 46

4.2.4. Raven Roosting Optimization Algorithm (RROA)

Ravens usually reach roosts sometime before sunset and depart in highly contempo-
rized groups the next day at sunrise [107]. These ravens initially decide on a space for
roosting, which they remained fixed at for the rest of the time. Each raven is then assigned
a randomly decided initial position to search for food. This ultimately results in evaluating
the fitness value of all the ravens. Among them, the one who is at the best solution at the
end of the entire evaluation is declared as a leader. After this decision, a specific number
of ravens are selected. These selected ravens leave the roost along with the leader to find
the best location present far away. The companion ravens first evaluate the radius of the
hemisphere in the last best solution found. After evaluating, they pick any arbitrary point
from it.

The jobs to identify suitable virtual machines resemble the social roosting behavior of
ravens with respect to following or unfollowing the leader in order to find a huge number
of food supply, as shown in Figure 14.

Electronics 2021, 10, x FOR PEER REVIEW 30 of 46

Figure 14. Social roosting behavior of raven roosting load balancing technique [91].

The steps involved are presented in the algorithm.

Pseudocode of Standard RRA [108]
1. Initialization of solutions and load of data centers
1. A proportion of the load is shifted to leave an overloaded VM and find the leading

machine.
1. The arrived load searches for a VM for allocation as per the leading machine

2. if (i < the total number of VMs)
3. then
4. Search for the VM among the perception radius
5. Evaluate and reassign the ID
6. else
7. Evaluate and reassign the id if mandatory
8. if (terminating condition not meet)
9. then go to step 1
10. else
11. End the search process

RROA and Its Variations
Basic Raven Roosting Optimization Algorithm (RROA): Rani et al. [109] highlighted

the procedure of simple RRA to manage task scheduling and ultimately balances the load
in a cloud environment. According to research, birds and insects enroll in roosting amid
their diversity. As far as raven roosting is concerned, the targeted problem is solved by
the roosts (i.e., main servers). This technique targets finding the capacity of VMs. Based
on the capacity and no. tasks assigned to a specific machine, the load is eventually trans-
ferred from one VM to another. This allocation of the load is random and will drastically
shift the makespan. This algorithm improves the makespan, average response, and aver-
age waiting time as well. Above all, the issue with basic RRO is its premature convergence.

Improved Raven Roosting Optimization algorithm (IRROA): Torabi et al. [108] pre-
sented IRROA to resolve the premature convergence issue present in the basic RRO algo-
rithm. The proposed algorithm first creates the initial solutions, sets the current amount

Figure 14. Social roosting behavior of raven roosting load balancing technique [91].

The steps involved are presented in the algorithm.

Pseudocode of Standard RRA [108]

1. Initialization of solutions and load of data centers
2. A proportion of the load is shifted to leave an overloaded VM and find the leading machine.
3. The arrived load searches for a VM for allocation as per the leading machine
4. if (i < the total number of VMs)
5. then
6. Search for the VM among the perception radius
7. Evaluate and reassign the ID
8. else
9. Evaluate and reassign the id if mandatory
10. if (terminating condition not meet)
11. then go to step 1
12. else
13. End the search process

Electronics 2021, 10, 2718 30 of 46

RROA and Its Variations

Basic Raven Roosting Optimization Algorithm (RROA): Rani et al. [109] highlighted
the procedure of simple RRA to manage task scheduling and ultimately balances the load
in a cloud environment. According to research, birds and insects enroll in roosting amid
their diversity. As far as raven roosting is concerned, the targeted problem is solved by the
roosts (i.e., main servers). This technique targets finding the capacity of VMs. Based on the
capacity and no. tasks assigned to a specific machine, the load is eventually transferred
from one VM to another. This allocation of the load is random and will drastically shift the
makespan. This algorithm improves the makespan, average response, and average waiting
time as well. Above all, the issue with basic RRO is its premature convergence.

Improved Raven Roosting Optimization algorithm (IRROA): Torabi et al. [108] pre-
sented IRROA to resolve the premature convergence issue present in the basic RRO algo-
rithm. The proposed algorithm first creates the initial solutions, sets the current amount of
food to one, and checks the determination of the leader. After selecting these parameters,
the weak and greedy raven will follow the leaders. The leaders continue the search process
by using the perception radius in the leader’s vicinity. The flight will continue the search
process in a certain range possessing the perception radius and evaluate and update the
location until or unless they reach the maximum no. of flight steps. If the maximum
number is reached, then the last location will evaluate and update if required. The current
amount of food is also updated. If the termination is observed, then the algorithm will
stop; otherwise, it will continue with finding the current initial position and a leader who
repeats the steps. This algorithm improves performance and better exploration.

The algorithm in this manner always assigns load to any VM after considering the
recent load available.

Hybrid Raven Roosting Optimization algorithm (Hybrid IRRO): S. Torabi et al. [110]
proposed a hybrid technique in which the IRROA is combined with chicken swarm op-
timization (CSO) to combine the good features of both of them. The CSO algorithm is
proposed because of its efficiency in creating a balance between local and global search,
while the IRRO algorithm is selected because it solves the issue of premature convergence
and performs better in larger complex environments. The involvement of IRROA is em-
phasized at the start of this hybrid approach. IRROA tests the optimization requirements
first, as well as all available resource details. IRROA measures the percentage of approved
tasks based on this analysis. This mapping will finally be sent to the virtual machine. The
population size and the best solution found thus far are then sent as the input parameter
to the chicken swarm algorithm. Then, the CSO algorithm schedules based on the data
gathered from the buffers as they are processed in real-time. If there are any tasks in the
buffer, CSO will schedule them. In this manner, the VMs that will be sent to the resource
manager will have the best possible mapping. In reality, the recommended mapping of
jobs to VMs that is sent to the resource manager for ultimate allocation is the global optimal
position in the CSO algorithm.

Reinforcement Learning with Raven Roosting Optimization Policy (RROP): Bhar-
gavi et al. [111] considered all the challenges and QoS parameters of balancing load in a
cloud environment, and after that, they suggest an RROP algorithm. Via reinforcement
learning and the implementation of raven foraging behavior, the potential load balancer
will proactively adjust to the complex data center. The effective task completion rate is
reported to be significant, while the response time and blocking likelihood of devices
are found to be minimal. The model presented here is for a cloud environment with a
variety of tasks and a specific number of physical and virtual machines. All tasks are
performed by the task scheduler, which divides them into many subtasks and performs the
same with the available physical machines, as per the algorithm. Every physical system
has Reinforcement Learning with RROA Policy Dependent Load Balancing Agent that
manages and allocates the distribution of an incoming subset of tasks among the optimal
VMs. Table 5 presents the pros and cons of the discussed modern SI algorithms.

Electronics 2021, 10, 2718 31 of 46

Table 5. Pros and cons of modern algorithms.

Algorithm Pros Cons

WOA Increases the rate at which tasks are
completed successfully.

It frequently fails during the initial
iterative cycle, resulting in

delayed convergence.

SSA Improves various QoS parameters by
adopting the global best match.

As the number of comparable types of
VMs expands, the rate of lucrative job

execution falls.

DOA
Provides fast convergence to the

global optimum solution with high
resource utilization.

In the lack of a nearby solution, overall
response rates are shown to be ordinary

rather than quick and fast.

RROA Efficiently prevents overloading
and underloading.

Beginning iterations have a reduced
rate of work completion.

5. Summary of the Reviewed SI Algorithms

Table 6 presents the summary (along with proper references) of the discussed SI
based load balancing algorithms along with the main objective, area of application, and
targeted issue(s). It summarizes the discussion about GA, PSO, ACO, Grey wolf, ABC,
BAT, Whale optimization, SSO, DO, and RR optimization algorithm along with their
variations. It presents the evolution of swarm-based algorithms with the main objective to
assign load, better response time, distribution of resources, achievement of low time and
low-cost complexities, optimize task scheduling, balancing heterogeneous resources, non-
preemptive job allocation, etc.; all of these objectives ultimately lead towards balancing the
load in cloud-based environments. All this demonstrates that SI based algorithms neither
ensure the cloud to be neither one nor decentralized by maintaining migrations in the cloud.
These algorithms exploit the capabilities of heterogeneous resources; consider the priority to
obtain real-world virtualization by minimizing makespan; increasing throughput; reducing
the response, waiting, and processing time; and improving the convergence rate with
increased performance. This efficient utilization of resources makes the fitness function
improve premature converge, and this fast convergence ultimately satisfies the QoS metrics.

Analysis in terms of time complexity and quality of solution
We observed the following through an extensive study:

• GA has average time complexity and average solution quality, and ABC has the best
solution quality despite having the worst time complexity.

• In addition, PSO looks to have the best time complexity, but the quality of its solution
is not comparable to that of ABC.

• ACO has a good solution quality and a lower time complexity.
• BAT has the poorest solution quality but surpasses ABC in terms of convergence speed,

whereas GWO’s convergence speed is more efficient in terms of ABC’s solution quality.
• In terms of recent SI algorithms, dragonfly and raven have significantly better perfor-

mance based on time complexity and solution quality; however, the whale’s solution
quality is below average with reduced time complexity.

• When compared to WWO, SSOs have an average time complexity and improved
solution quality.

Electronics 2021, 10, 2718 32 of 46

Table 6. Summary of the SI based load balancing algorithms for cloud computing.

Algorithm Authors Main Objective Area of Application Targeted Issue(s)

Genetic algorithm (GA)

Genetic algorithm Hussain A Makasarwala; Prasun
Hazari, 2017

Load balancing in cloud
environments to achieve better

response time.

Considers the priority to obtain
real-world visualization.

To increase the range of request IDs
through permutation encoding. Better

response time is achieved.

Genetic Algorithm and
Gravitational Emulation

Santanu, Gopa Mandal, Dasgupta,
and Paramartha Dutta, 2015

Distribution of load among
VMs.

Minimizes the makespan as well as reduces
the number of VMs that are going to miss

their deadlines

The combination of both strategies
reduces the response time of VMs and

guaranteed specifications for QoS.

Fuzzy Logic-based
Genetic Algorithm Saadat, A., and Masehian, E, 2020 Load Balancing in

Cloud Computing.
Make output scheduling decisions correctly

and based on efficient methods.

The objective function enables
scheduling the order with the least

possible delay.

Multi-Agent
Genetic Algorithm

Anant Kumar Jayswal, Prem Chand
Saxena, 2020

Efficient Load Balancing in
Cloud Computing.

Minimizes makespan time and significantly
improves the average throughput

performance and resource load balancing
on VMs.

Utilizes the resources efficiently and
ensures QoS.

Particle Swarm Optimization Algorithm (PSO)

Particle Swarm
Optimization Algorithm

R.M.Al Guliyev, Y. N. Imamverdiyev,
F. J. Abdullayeva, 2019 Optimize the load. Minimizes task execution and transfer time

using target functions.
Time optimization for running and

using energy.

Hybrid Firefly iPSO
Algorithm Golchi, 2019 Reach the better average load in

a cloud environment.
Minimizes the makespan as well as

increases the throughput.

Rapid convergence made it more
effective and efficient.

A high-speed response is achieved.

Binary Particle Swarm
Optimization Algorithm

Jean Buanga Mapetu, Zhen and
Lingfu Kong, 2019

Achievement of low-time
complexity and low cost in load

balancing.

Minimizes make-up, waiting for time, and
degree of imbalance while minimizing
scheduling time, cost of execution, and

maximizing the use of resources.

It targets load balancing, cloud resource
management task scheduling, and

ensures device scalability.

Particle Swarm
Optimization Algorithm

Vidya, S. H., and Prakash,
R. M. (2020).

Maintaining the load of
infrastructure in Cloud.

Reduces the response time and balancing
of load.

Exploit the capabilities of
heterogeneous resources.

Ant colony optimization Algorithm (ACO)

Load
balancing_ACO Algorithm Gupta, A., and Garg, R., 2017 Maintain load by

task scheduling.
Meet users’ demands in terms of execution
efficiency and increase resource utilization Makespan optimization.

Ant colony
Optimization Algorithm Gang Li, Zhijun Wu, 2019 Optimize the load by

task scheduling.

Maximize the load handling requirements
of the system when efficiently completing

the scheduling mission.
Better performance is achieved.

Electronics 2021, 10, 2718 33 of 46

Table 6. Cont.

Algorithm Authors Main Objective Area of Application Targeted Issue(s)

Fuzzy-Ant
Colony Algorithm

A. Ragmani, N. Abghour, and M.
Rida, 2019

Ensures neither the load is
under or over-allocated.

Reduces the response and processing time
up to 82% and 90%, respectively. For handling complex networks.

Ant colony Algorithm with
Support Vector Machine

Junaid, M., Sohail, A., Ahmed, A., Baz,
A., Khan, I. A., and
Alhakami, H, 2020.

Maintaining accuracy in load
balancing.

Reduce violations, minimum migration
time, high optimization, reduced makespan,

and high response time.

Targets scalability and robustness in
cloud environments.

Artificial Bee Colony (ABC)

LBA_Honey Bee W. Hashem, H. Nashaat, R. Rizk, 2017 Maintaining load in a
cloud-based environment. Propose to avoid under and overutilization.

Reduces the execution time, reaction
time, makespan, and load

standard deviation.

Artificial Bee Colony
Arif Ullah, Nazri, Jamal Uddin,

Samad Baseer, Ansam Hadi
Rashed, 2019

Cloud Load Balancing with
VM Strategy.

Convergence rates and global search
efficiency are validated. Fast convergence with high flexibility.

Artificial bee foraging
optimization

Geetha Muthsamy, Suganthe Ravi
Chandran, 2020

Managing the load of
distributed systems.

Task preemption to reduce the tasks’
response and execution time. Improves QoS metrics.

Hybrid artificial bee
colony Algorithm with

multi-objective
Jun-qing, Yun-qi, 2020. Flexible task Scheduling in

cloud computing.
Improves the rate of convergence with

increased performance. Enhances the exploitation process.

Grey Wolf Optimization (GWO)

Simple GWO Patel, D., Patra, M. K., and Sahoo,
B.,2020

Maintaining load in a
cloud-based environment.

Propose resource allocation and load
balancing. Reduces the makespan.

Hybrid
GWO_PSO
Algorithm

Gohil, B. N., and Patel, D. R., 2018 Cloud Load Balancing with
heterogeneous resources. Convergence near the optimal solution. Satisfy quality of service constraints.

Fuzzy GWO Xingjun, L., Zhiwei, S., Hongping, C.,
and Mohammed, 2020

Managing the load on
cloud-based IoT.

Ensures the utilization of resources
efficiently.

Reduces response time and improves
the degree of imbalancing.

Hybrid GWO_ABC Soukaina Ouhame, Youssef Hadi,
2020

The resource allocation system is
utilizing load balancing.

Improves 1.25% precision and reliability for
cloud computing resource allocation

systems in VM.

Improves efficiency, energy
consumption, and the average time for

network execution.

Improved GWO Gobalakrishnan Natesan, Arun
Chokkalingam, 2020

Optimize the Load by task
scheduling and resource

optimization.

In terms of make-up, cost, and the overall
amount of work completed during the
deadline, obtain the closest optimum

schedule of tasks.

Improves the overall QoS.

Electronics 2021, 10, 2718 34 of 46

Table 6. Cont.

Algorithm Authors Main Objective Area of Application Targeted Issue(s)

BAT Algorithm

iBAT Algorithm Raj, Ranjan, Rizvi, Pranav, and
Paul, 2017

Managing the load on
cloud-based IoT.

To achieve a desirable population (i.e.,
better utilization). Optimized makespan is achieved.

Micro BAT
Youssef, Hamza, Rahhali, Hanine,

Benlahmar, Houssine, Mostafa, and
Ahmed Eddaoui, 2018

To avoid under and overloading
the VMs.

Improve the resource allocation in series or
parallel mode.

Load shifting to avoid overloaded or
idle VMs.

BAT Algorithm Arif Ulah, Nazri Mohd, Mubashir
Khan, 2020

To improve load in a
cloud-based environment. Select VM optimally. Satisfy QoS.

IBO Algorithm Vinothini, Balasubramanie,
K. Arvind, 2020

Provide load balancing in a
multi-server environment. Convergence near the optimal solution. Better performance is achieved.

Hybrid PSO and
BAT Algorithm Valarmathi, R., and Sheela, T., 2017 Optimize task scheduling in the

cloud to achieve load balancing. Fast convergence. Reduces makespan and improves
resource utilization.

Whale Optimization Algorithm (WOA)

Chaotic WOA Kaur G and Arora S, 2018 Balance workload and resource
distribution. Improve the convergence speed. Reduces energy consumption with

better performance.

Hybrid WOA Strumberger, I., Bacanin, N., Tuba, M.,
and Tuba, E. (2019)

Load balancing in the cloud
environment. Fast convergence. The trade between exploitation and

exploration in simple WO.

Optimized WOA FHemasian-Etefagh, F., and
Safi-Esfahani, F., 2019

Load balancing in the cloud with
improved quality parameters.

Minimize the average execution time,
response time, and throughput. The early convergence issue.

Improved WOA
Xuan Chen, Long Cheng, Cong Liu,

Qingzhi Liu, Jinwei Liu,
Ying Mao., 2020

Cloud task scheduling Optimizes the makespan, price, and load. To boost the optimal solution
exploration capability.

Social Spider Algorithm (SSA)

Spider Mesh Overlay Mahato, D. P., and Singh, R. S., 2017 Load balancing
pre-emptive jobs. Improved fitness with fast convergence. Enhance performance with improved

efficiency of cloud-based environments.

Chaotic SSA Arul Xavier, V. M., and
Annadurai, S., 2018

To promote load transfer for
effective scheduling. Effective performance improvements. To solve job planning problems in

the cloud.

SS Cloud Web Algorithm Preeto Abrola, Savita Gupta,
Sukhwinder Singh, 2019

Load balancing non
pre-emptive jobs. Improve QoS requirements. Create the population of tasks and

resources with quality constraints.

Electronics 2021, 10, 2718 35 of 46

Table 6. Cont.

Algorithm Authors Main Objective Area of Application Targeted Issue(s)

Dragonfly Optimization Algorithm (DOA)

Constraint Measure DOA Polepally, V., and Shahu Chatrapati,
K., 2017 Load balancing in cloud. Improve Performance. Delegated job scheduling.

Resource allocation
based DOA

Zahra Amini, Mehrdad Maeen,
Mohammad Reza Jahangir., 2018

Resource Management to
balance the load.

Substantial performance increase in
scheduling tasks, balancing load, and

allocating resources.
Task scheduling issues in data centers.

Adaptive DOA Neelima, P., and Reddy, A. R. M., 2020 To avoid under
and overutilization. Optimal utilization of processing time. The capability of minimization of

execution time and cost.

Raven Roosting Algorithm (RRO)

Basic RRO E. Rani and H. Kaur., 2017 Efficient task scheduling. Improves makespan, average response, and
waiting time. To find the capacity of VMs.

Improved RRO Torabi, S., & Safi-Esfahani, F., 2018 Effective load scheduling. Improve performance, avg. response, and
waiting time. To resolve premature convergence.

Hybrid IRRO S. Torabi and F. Safi-Esfahani, 2018 Improve the allocation of tasks. The optimal solution for load balancing. To overcome premature convergence
and lacking performance.

Reinforcement Learning
with RRO Policy Bhargavi, K., and Babu, B. S., 2019 Load balancing in cloud Proactive adjustment to the complex

data center. All the challenges and QoS parameters.

Electronics 2021, 10, 2718 36 of 46

6. Comparative Performance Analysis of Various SI Algorithms Used for
Load Balancing

This part consists of two types of comparative analysis that have been surveyed.
In the Section 1, performance analysis is presented with respect to some discussed al-
gorithms, while the Section 2 is composed of some quality parameters achieved by the
discussed algorithms.

6.1. Comparative Performance Analysis of SI Algorithms in Cloud Computing
6.1.1. Comparative Performance Analysis of Average Response Time (TRT) for Different
User Bases (UB) and Data Centers (DC)

Tables 7–10 present the comparative performance analysis among GA, ant colony,
and particle swarm optimization techniques used for load balancing based on average
response time for different UBs and DCs. This comparative study is supported by the
graphs presented in [112].

Table 7. Performance analysis of avg. TRT for 10, 20, 30, and 50 UB with 5 DC.

Algorithms Avg. TRT for 10 UB (ms) Avg. TRT for 20 UB (ms) Avg. TRT for 30 UB (ms) Avg. TRT for 50 UB (ms)

GA 48.4 49.2 52.3 56.4
ACO 46.7 49 52.6 58.2
PSO 45.6 47.2 50.3 53.2

Table 8. Performance analysis of avg. TRT for 10, 20, 30, and 50 UB with 10 DC.

Algorithms Avg. TRT for 10 UB (ms) Avg. TRT for 20 UB (ms) Avg. TRT for 30 UB (ms) Avg. TRT for 50 UB (ms)

GA 45.6 46 48.4 52.8
ACO 44.6 46.9 49 52.8
PSO 43.2 45.2 47.8 50.8

Table 9. Performance analysis of avg. TRT for 10, 20, 30, and 50 UB with 15 DC.

Algorithms Avg. TRT for 10 UB (ms) Avg. TRT for 20 UB (ms) Avg. TRT for 30 UB (ms) Avg. TRT for 50 UB (ms)

GA 42.1 43.2 45.8 47.9
ACO 41.2 42.6 44 46.2
PSO 40.2 42.2 44 47.6

Table 10. Performance analysis of avg. TRT for 10, 20, 30, and 50 UB with 20 DC.

Algorithms Avg. TRT
for 10 UB (ms)

Avg. TRT
for 20 UB (ms)

Avg. TRT
for 30 UB (ms)

Avg. TRT
for 50 UB (ms)

GA 39.6 41.3 43.9 46.4
ACO 38.7 39.8 41.2 43.9
PSO 37.8 38.4 39.8 41.2

Table 7 compares the TRT for 10, 20, 30, and 50 UB with five DC. It can be concluded
that PSO provides reduced average TRT than compared to GA and ACO. Table 8 increases
DC to 10. PSO’s performance for reduced average TRT in this particular condition is still
the best than compared to GA and ACO. In the case of 15 DC (Table 9), the average TRT of
GA is the greatest than compared to ACO and PSO. The same trend is observed in Table 10.

If we make comparisons, then PSO’s response time is better than GA and ACO. After
the comparative results obtained from Table 5, it can be concluded that the response time
of PSO is approximately 4.5% better than ACO and GA.

Electronics 2021, 10, 2718 37 of 46

As far as overall progress is concerned, all algorithms show promising results with
20 Data Centers than compared to five DCs.

6.1.2. Comparative Performance Analysis of Average Data Center Processing Time (DCPT)
for Different User Bases (UB) and Data Centers (DC)

Tables 11–14 present the comparative performance analysis among GA, ant colony,
and particle swarm optimization techniques used for load balancing based on average data
center processing time for different UBs and DCs.

Table 11. Performance analysis of avg. DCPT for 10, 20, 30, and 50 UB with 5 DC.

Algorithms Avg. DCPT for 10 UB
(ms)

Avg. DCPT for 20 UB
(ms)

Avg. DCPT for 30 UB
(ms)

Avg. DCPT for 50 UB
(ms)

GA 6.4 6.1 6 5.6
ACO 5.6 5.2 5.1 4.8
PSO 5.9 5.1 4.9 4.6

Table 12. Performance analysis of avg. DCPT for 10, 20, 30, and 50 UB with 10 DC.

Algorithms Avg. DCPT for 10 UB
(ms)

Avg. DCPT for 20 UB
(ms)

Avg. DCPT for 30 UB
(ms)

Avg. DCPT for 50 UB
(ms)

GA 5.8 5.6 5.5 5.2
ACO 5.2 5 4.8 4.6
PSO 5.4 4.8 4.6 4.3

Table 13. Performance analysis of avg. DCPT for 10, 20, 30, and 50 UB with 15 DC.

Algorithms Avg. DCPT for 10 UB
(ms)

Avg. DCPT for 20 UB
(ms)

Avg. DCPT for 30 UB
(ms)

Avg. DCPT for 50 UB
(ms)

GA 5.6 5.3 5.1 4.7
ACO 5 4.8 4.7 4.4
PSO 5.1 4.6 4.5 4.2

Table 14. Performance analysis of avg. DCPT for 10, 20, 30, and 50 UB with 20 DC.

Algorithms Avg. DCPT for 10 UB
(ms)

Avg. DCPT for 20 UB
(ms)

Avg. DCPT for 30 UB
(ms)

Avg. DCPT for 50 UB
(ms)

GA 5.3 5.1 4.9 4.5
ACO 4.8 4.6 4.5 4.2
PSO 4.9 4.5 4.3 4

The average data center processing time (DCPT) for various UBs is shown in Table 11
with five DC. The average DCPT of GA is the greatest than compared to ACO and PSO,
which ultimately shows that ACO has the least average DCPT. The results for 10, 15, and
20 DC are shown in Tables 12–14 with the same observation.

The comparative result analysis from Tables 9–12 showed that the DCPT of GA is
higher than ACO and PSO. It can be concluded that as the number of user bases increased
from 10 to 50, the lowest DCPT is produced by PSO than compared to GA and ACO.

As far as overall progress is concerned, all algorithms show slightly better results with
the increased numbers of UBs.

Electronics 2021, 10, 2718 38 of 46

6.1.3. Comparative Performance Analysis Based on Time and Cost to Complete Tasks

Tables 15 and 16 present the comparative performance analysis among GA, ant colony,
and particle swarm optimization techniques used for load balancing based on average data
center processing time for different UBs and DCs.

Table 15. Approximate comparison of time to complete tasks.

No of Tasks 3 4 5 6

GA (time) 2.1 3 5.75 6
PSO (time) 1.5 2.5 5 5.5

Table 16. Approximate comparison of cost to complete tasks.

No of Tasks 3 4 5 6

GA (cost) 20 42 90 112
PSO (cost) 10 25 80 100

It is inferred from the table that no matter how much the number of tasks increased,
PSO is significantly better than GA. As the number of tasks increases, the cost of PSO and
GA also increases; but PSO’s cost is considerably lower than GA.

Comparative result analysis from Tables 13 and 14 showed that the PSO is better than
compared to GA based on time and cost. It consumes less time and has less cost.

By utilizing comparative studies, we have analyzed that the GA experiences the
highest DCPT. Another key observation is for DCPT, which shows that when DC is set
to five, ACO achieves higher DCPT, and PSO produces the very same DCPT. It has been
discovered that GA achieves the highest DCPT.

6.1.4. Comparative Performance Analysis Based on Makespan

Table 17 presents the comparative analysis of numerous algorithms based on quality
metrics that are used to evaluate the performance of algorithms. The key parameters are
defined below:

Response Time (RT): This is the time that the device takes to respond to the request of
the client. To provide good user experiences, a quick response is preferable.

Throughput (T): This is the rate at which requests from customers are handled
for processing.

Makespan (MS): This is the amount of time needed to process the specified collection
of tasks.

Energy conservation (EC): This illustrates the reliability and efficacy of the use of
electrical resources for various data center services, e.g., providing the desirable power to
servers and cooling systems.

Scalability (S): This reflects the ability of the SI algorithm to manage the rising demands
of the user effectively.

Resource utilization (RU): In the cloud datacenter, it evaluates the amount of resource
utilization of computing resources.

In Table 17, the tick mark indicates that the mentioned SI algorithm for load balancing
enhances the parameter of the corresponding load balance effect assessment.

Electronics 2021, 10, 2718 39 of 46

Table 17. Comparative analysis based on improved quality parameters.

Algorithms (with Reference) RT T MS EC S RU

GA (2017, [18,25]) 7
√ √

7
√

7

IGA (2017, [44]) 7
√ √

7 7
√

Fuzzy based GA (2020, [46])
√ √ √

7 7
√

Multi Agent GA (2020, [113]) 7
√ √

7 7
√

PSO (2019, [55])
√

7 7 7 7
√

IPSO (2019, [58])
√

7
√ √

7
√

Hybrid PSO (2017, [114])
√

7
√

7 7
√

ACO (2015, [63]) 7 7 7
√ √

7

Improved ACO (2016, [65]) 7 7 7
√ √ √

LBA_Honey Bee (2017, [74])
√ √ √

7 7 7

Enhanced Bee colony (2016, [73]) 7 7
√

7 7
√

ABC (2018, [20]) 7 7
√

7 7 7

Improved ABC (2020, [71])
√

7
√

7 7
√

Fuzzy GWO (2017, [82]) 7 7
√

7 7
√

GWO (2020, [81])
√

7
√

7 7 7

Improved GWO (2020, [80])
√ √ √

7 7
√

BAT (2016, [84])
√

7 7 7 7
√

iBAT (2017, [62]) 7 7
√

7 7
√

microBAT (2018, [90]) 7 7 7 7
√ √

Improved BAT (2020, [115])
√ √

7 7 7
√

Chaotic WOA (2018, [94])
√

7 7 7
√

7

Hybrid WOA (2019, [93])
√

7 7 7
√

7

Optimized WOA (2019, [95])
√ √

7
√ √

7

Improved WOA (2020, [96])
√ √ √ √ √

7

Spider Mesh Overlay (2017, [99]) 7 7 7
√ √ √

Chaotic SSA (2018, [101]) 7 7 7
√ √ √

SS Cloud Web Algorithm (2019, [102])
√

7 7
√ √ √

Constraint Measure DOA (2017, [105])
√ √

7
√ √ √

Resource allocation based DOA (2018, [104])
√

7 7
√ √ √

Adaptive DOA (2020, [106])
√

7 7
√ √ √

Basic RRO (2017, [109])
√ √ √

7 7
√

Improved RRO (2018, [108])
√ √ √ √

7
√

Hybrid IRRO (2017, [110])
√ √

7 7
√ √

Reinforcement Learning with RRO Policy
(2019, [111])

√ √ √
7 7

√

The improved GA targets throughput, makespan, and availability, while the improved
versions of GA also target improved response time and optimized resource utilization. PSO
algorithms focus on reducing response time with efficient resource utilization while the hy-
brid and improved approaches of PSO facilitate the improvement of makespan and energy
conservation. Simple ACO targets the performance parameters of energy conservation
and scalability, while the improved hybridized variations of ACO also facilitate efficient
resource utilization. Artificial honey bee incorporates the reduction in response time,
throughput, and makespan while its improved versions also facilitate efficient utilization
of available resources. Basic GWO further provides load balancing with reduced response
time with better scalability while their improved versions also target at reducing the re-
sponse time with better resource utilization. The simple BAT algorithm for load balancing
reduces the response time with better utilization of resources but the proposed improved
variations not only support resource optimization but also facilitate makespan with high
scalability. The Modern Chaotic Wave algorithm is introduced to support reduced response
time with better scalability while the improved and optimized variations of whale opti-
mization support reduced response time, better throughput, makespan, conservation of
energy, and better scalability. Spider Mesh Overlay supports load balancing by provid-
ing better energy conservation, scalability, and optimized resource utilization. Dragonfly
optimization is another swarm-based load balancing technique that targets at improving
scalability, energy conservation with optimized resources, and reduced response time.

Electronics 2021, 10, 2718 40 of 46

The basic raven roosting algorithm focuses on improving the performance parameters of
response time, throughput, makespan, and resource utilization, while its improved version
further provides better energy conservation with improved scalability.

From the above comparison, it is concluded that the overall performance of the dragon-
fly optimization algorithm and raven roosting algorithm is better than the other surveyed
algorithms. They improve scalability, energy conservation with optimized resources, and
reduced response time.

7. Future Directions

It is inferred from the analysis performed during this research process that a range
of problems is still open in the process of load balancing [116]. In this review paper, we
have discussed various SI load balancing algorithms along with certain variations. It is
surveyed that these algorithms contribute to improving quality parameters and QoS in
cloud computing. Despite having many advantages, there are some loopholes as well,
such as inadequate frequency regulation, power loss, slow convergence rate, complexity,
low efficiency, no accurate method to estimate execution time, throughput being low in
dynamic load balancing, etc. Table 18 indicates the research challenges that are faced in
load balancing.

Table 18. Key challenges.

Sr. No. Challenges

1 The backup program even system does not fail completely
2 Maintenance of system regularly
3 Resources must be used competently under load conditions

In the future, they can be resolved by applying some innovative and advanced load
balancing algorithms, particularly along with additional QoS metrics and algorithm com-
plexity assessment dimensions [117]. As the emergence of cloud computing deals with
more and more data, the swarm load balancing algorithms also need to evolve in the fields
of machine learning, artificial intelligence, IoT, blockchain, etc. Furthermore, in most of the
review techniques, some important cloud computing factors such as security, cost of service,
storage space, and carbon emission were not considered, which are more qualitative and
quantitative attributes related to selecting the suitable service. Maintaining the network’
self-organization as everything is adapting to the concept of the Internet of things and man-
aging the load efficiently by keeping all the quality parameters in view can be other future
research possibilities. Therefore, there is an absolute demand for techniques that efficiently
deal with the complex nature of load without bypassing any of the quality parameters.

8. Conclusions

This research paper emphasizes the dynamic solution of one of the most highlighted
challenges of cloud computing, i.e., load balancing. Cloud computing is something that we
all use the entire day without realizing. This tremendous increase in use adds exponential
load relative to the cloud due to which its performance can suffer.

LB’s primary objective is to fulfill user needs by spreading the workload across several
network nodes and optimizing the usage of resources and increasing the performance of
devices. To overcome this challenge, a comprehensive survey is presented, focusing on
some traditional and modern techniques of SI based algorithms for load balancing in the
cloud. These techniques include GA, PSO, ACO, BAT, ABC, GWO, WOA, RRO, DO, and
SSO and their variants for performing load balancing in cloud computing more efficiently.
A comparative analysis based on the performance and quality parameters of the algorithms
surveyed is also provided. It is noted that the algorithms surveyed usually work to boost
QoS, the response time, utilization of resources, throughput, makespan, scalability, and
fast convergence.

Electronics 2021, 10, 2718 41 of 46

Apart from all of the improved advantages, these algorithms have some discrepancies
as well, such as resource and energy overutilization, insufficient control rates, and static
thresholds. Therefore, in the future, more enhancements are required in the field of load
balancing by using swarm intelligence algorithms to boost the quality. Close comparisons
are performed on the surveyed algorithms. The actual quality of the raven roosting
and dragonfly algorithms is found to be higher than the other implementations after
evaluating all of the surveyed techniques. It has been discovered by the observation that
both dragonfly and raven roosting algorithms perform load balancing more effectively
than other approaches. Although some of the strategies are ineffective with mediocre
results, others are not worse. The function and application are completely reliant on the
cloud environment and quality-control criteria.

This survey considers the most crucial consideration for supplying cloud services
adequately, which is load balancing. Therefore, this survey paper provides a proper
breakdown of SI based cloud load balancing algorithms and the issues these algorithms
pose when applied in a cloud context in this research study. The entire set of algorithms
investigated in this study has been presented with pros and cons. As a result, the algorithms
still have the potential for development. As a result, the plan is to develop our swarm
intelligence-based methodology in the near future in order to confront the concerns that
have been raised and discussed. This survey will also make it easier for investigators to
compare quality characteristics and contribute to this critical area of attention, which will
more effectively help to balance the load in cloud infrastructure by using more optimized
state-of-the-art techniques.

Due to the tremendous benefits in practical problems [118], several industries are
adopting dynamic load balancing techniques:

• For software or hardware maintenance, the complete network does not need to be
taken down or offline;

• It can be performed on one server at a time while other servers’ services are still functioning;
• When more storage or processing capability is needed, businesses may simply ask their

service provider to swiftly and seamlessly deploy additional servers to the connection;
• In the case of a catastrophe at the primary data center, distributed load balancing

can provide disaster restoration services by diverting user connection requests in a
disaster recovery data center;

• Massive enterprises with resource-intensive services, large amounts of constantly
expanding data, and continual traffic want network connectivity, reliability, and
flexibility in order to ensure that consumers can access their services or products at
any location worldwide.

Author Contributions: Conceptualization, M.A.E. and D.S.; methodology, M.A.E. and A.S.; valida-
tion, N.I., A.A. and S.R.; formal analysis, A.S. and A.A.; investigation, M.A.E. and S.R.; resources,
D.S. and S.R.; data curation, A.S. and N.I.; writing—original draft preparation, M.A.E. and A.S.;
writing—review and editing, S.R., N.I. and A.A.; visualization, S.R. and A.A.; supervision, A.S.;
project administration, S.R.; funding acquisition, M.A.E. All authors have read and agreed to the
published version of the manuscript.

Funding: The authors express their gratitude to the ministry of education and the Deanship of
Scientific Research of Najran University, Kingdom of Saudi Arabia, for financial and technical
support under code number NU/-/SERC/10/555.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. DeStefano, T.; Kneller, R.; Timmis, J. Cloud Computing and Firm Growth; 2020; p. 8306. Available online: https://papers.ssrn.com/

sol3/papers.cfm?abstract_id=3618829 (accessed on 15 July 2021).
2. Chen, Y.; Li, X.; Chen, F. Overview and analysis of cloud computing research and application. In Proceedings of the 2011

International Conference on E-Business and E-Government (ICEE), Shanghai, China, 6–8 May 2011.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3618829
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3618829

Electronics 2021, 10, 2718 42 of 46

3. Shahid, M.A.; Islam, N.; Alam, M.M.; Mazliham, M.S.; Musa, S. Towards Resilient Method: An exhaustive survey of fault
tolerance methods in the cloud computing environment. Comput. Sci. Rev. 2021, 40, 100398. [CrossRef]

4. Langmead, B.; Nellore, A. Cloud computing for genomic data analysis and collaboration. Nat. Rev. Genet. 2018, 19, 208–219.
[CrossRef] [PubMed]

5. Velte, A.T.; Velte, T.J.; Elsenpeter, R. Cloud Computing: A Practical Approach. ISSN 2019, 2278, 0181.
6. Kumar, P.; Kumar, R. Issues and challenges of load balancing techniques in cloud computing: A survey. ACM Comput. Surv.

(CSUR) 2019, 51, 1–35. [CrossRef]
7. Gutierrez-Garcia, J.O.; Ramirez-Nafarrate, A. Collaborative agents for distributed load management in cloud data centers using

live migration of virtual machines. IEEE Trans. Serv. Comput. 2015, 8, 916–929. [CrossRef]
8. Chen, S.-L.; Chen, Y.-Y.; Kuo, S.-H. CLB: A novel load balancing architecture and algorithm for cloud services. Comput. Electr.

Eng. 2017, 58, 154–160. [CrossRef]
9. Kaur, K.; Kumar, Y. Swarm Intelligence and its applications towards Various Computing: A Systematic Review. In Proceedings of

the 2020 International Conference on Intelligent Engineering and Management (ICIEM), London, UK, 17–19 June 2020.
10. Princess, G.A.P.; Radhamani, A. A Hybrid Meta-Heuristic for Optimal Load Balancing in Cloud Computing. J. Grid Comput. 2021,

19, 1–22.
11. Chien, N.K.; Son, N.H.; Loc, H.D. Load balancing algorithm based on estimating finish time of services in cloud computing. In

Proceedings of the 2016 18th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Korea,
31 January–3 February 2016.

12. Xavier, M.G.; Neves, M.V.; Rossi, F.D.; Ferreto, T.C.; Lange, T.; Rose, C.A.F. Performance evaluation of container-based virtualiza-
tion for high performance computing environments. In Proceedings of the 2013 21st Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, Belfast, UK, 27 February–1 March 2013.

13. Soltesz, S.; Pötzl, H.; Fiuczynski, M.E.; Bavier, A.; Peterson, L. Container-based operating system virtualization: A scalable,
high-performance alternative to hypervisors. In Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, Lisbon, Portugal, 21–23 March 2007.

14. Santos, J.; Wauters, T.; Volckaert, B.; Truck, F.D. Towards network-aware resource provisioning in Kubernetes for fog computing
applications. In Proceedings of the 2019 IEEE Conference on Network Softwarization (NetSoft), Paris, France, 24–28 June 2019.

15. Fazio, M.; Celesti, A.; Ranjan, R.; Liu, C.; Chen, L.; Villari, M. Open issues in scheduling microservices in the cloud. IEEE Cloud
Comput. 2016, 3, 81–88. [CrossRef]

16. Burns, B.; Beda, J.; Hightower, K. Kubernetes: Up and Running: Dive into the Future of Infrastructure; O’Reilly Media: Sebastopol,
CA, USA, 2019.

17. Mishra, S.K.; Sahoo, B.; Parida, P.P. Load balancing in cloud computing: A big picture. J. King Saud Univ.-Comput. Inf. Sci. 2020,
32, 149–158. [CrossRef]

18. Makasarwala, H.A.; Hazari, P. Using genetic algorithm for load balancing in cloud computing. In Proceedings of the 2016 8th
International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Ploiesti, Romania, 30 June–2 July 2016.

19. Elmagzoub, M.A.; Shaikh, A.; Alghamdi, A.; Rajab, K. A review on MIMO wireless signals over fibre for next generation fibre
wireless (FiWi) broadband networks. Electronics 2010, 9, 2014. [CrossRef]

20. Mosa, M.A.; Anwar, A.S.; Hamouda, A. A survey of multiple types of text summarization with their satellite contents based on
swarm intelligence optimization algorithms. Knowl.-Based Syst. 2015, 163, 518–532. [CrossRef]

21. Junaid, M.; Sohail, A.; Ahmed, A.; Baz, A.; Khan, I.A.; Alhakami, H. A hybrid model for load balancing in cloud using file type
formatting. IEEE Access 2020, 8, 118135–118155. [CrossRef]

22. Gźsior, J.; Seredyński, F. Decentralized Job Scheduling In The Cloud Based On A Spatially Generalized Prisoner’s Dilemma Game.
Int. J. Appl. Math. Comput. Sci. 2015, 25, 737–751. [CrossRef]

23. Kennedy, J. Swarm Intelligence. In Handbook of Nature-Inspired and Innovative Computing; Springer: Boston, MA, USA, 2006;
Volume 1, pp. 187–219. ISBN 978-0387-27705-9.

24. Tan, Y.; Shi, Y.; Tuba, M. Advances in Swarm Intelligence, In Proceedings of the 11th International Conference ICSI 2020, Belgrade, Serbia,
14–20 July 2020; Springer Nature: Basingstoke, UK, 2020; Volume 12145.

25. Fahad, M.; Aadil, F.; Khan, S.; Shah, P.A.; Muhammad, K.; Lloret, J.; Wang, H.; Lee, J.W.; Mehmood, I. Grey wolf optimization
based clustering algorithm for vehicular ad-hoc networks. Comput. Electr. Eng. 2018, 70, 853–870. [CrossRef]

26. Sun, W.; Tang, M.; Zhang, L.; Huo, Z.; Shu, L. A survey of using swarm intelligence algorithms in IoT. Sensors 2020, 20, 1420.
[CrossRef] [PubMed]

27. Xu, M.; Tian, W.; Buyya, R. A survey on load balancing algorithms for virtual machines placement in cloud computing. Concurr.
Comput. Pract. Exp. 2017, 29, e4123. [CrossRef]

28. Chakraborty, T.; Datta, S.K. Application of swarm intelligence in internet of things. In Proceedings of the 2017 IEEE International
Symposium on Consumer Electronics (ISCE), Kuala Lumpur, Malaysia, 14–15 November 2017.

29. Houssein, E.H.; Gad, A.G.; Wazery, Y.M.; Suganthan, P.N. Task scheduling in cloud computing based on meta-heuristics: Review,
taxonomy, open challenges, and future trends. Swarm Evol. Comput. 2021, 62, 100841. [CrossRef]

30. Ojha, V.K.; Abraham, A.; Snášel, V. Metaheuristic design of feedforward neural networks: A review of two decades of research.
Eng. Appl. Artif. Intell. 2017, 60, 97–116. [CrossRef]

http://doi.org/10.1016/j.cosrev.2021.100398
http://doi.org/10.1038/nrg.2017.113
http://www.ncbi.nlm.nih.gov/pubmed/29379135
http://doi.org/10.1145/3281010
http://doi.org/10.1109/TSC.2015.2491280
http://doi.org/10.1016/j.compeleceng.2016.01.029
http://doi.org/10.1109/MCC.2016.112
http://doi.org/10.1016/j.jksuci.2018.01.003
http://doi.org/10.3390/electronics9122014
http://doi.org/10.1016/j.knosys.2018.09.008
http://doi.org/10.1109/ACCESS.2020.3003825
http://doi.org/10.1515/amcs-2015-0053
http://doi.org/10.1016/j.compeleceng.2018.01.002
http://doi.org/10.3390/s20051420
http://www.ncbi.nlm.nih.gov/pubmed/32150912
http://doi.org/10.1002/cpe.4123
http://doi.org/10.1016/j.swevo.2021.100841
http://doi.org/10.1016/j.engappai.2017.01.013

Electronics 2021, 10, 2718 43 of 46

31. Zhang, B.; Lin, C.; Huo, L.; Wang, Z.; Chan, C.K. A simple high-speed WDM PON utilizing a centralized supercontinuum
broadband light source for colorless ONUs. In Proceedings of the 2006 Optical Fiber Communication Conference and the National
Fiber Optic Engineers Conference, Anaheim, CA, USA, 5–10 March 2006.

32. Buyya, R.; Srirama, S.N.; Casale, G.; Calheiros, R.; Simmhan, Y.; Varghese, B.; Gelenbe, E.; Javadi, B.; Vaquero, L.M.;
Netto, M.A.; et al. A manifesto for future generation cloud computing: Research directions for the next decade. ACM Comput.
Surv. (CSUR) 2018, 51, 1–38. [CrossRef]

33. Ebadifard, F.; Babamir, S.M. Autonomic task scheduling algorithm for dynamic workloads through a load balancing technique
for the cloud-computing environment. Clust. Comput. 2021, 24, 1075–1101. [CrossRef]

34. Singh, S.; Chana, I. A survey on resource scheduling in cloud computing: Issues and challenges. J. Grid Comput. 2016, 14, 217–264.
[CrossRef]

35. Vakili, A.; Navimipour, N.J. Comprehensive and systematic review of the service composition mechanisms in the cloud
environments. J. Netw. Comput. Appl. 2017, 81, 24–36. [CrossRef]

36. Hota, A.; Mohapatra, S.; Mohanty, S. Survey of different load balancing approach-based algorithms in cloud computing: A
comprehensive review. Comput. Intell. Data Min. 2019, 711, 99–110.

37. Jyoti, A.; Shrimali, M.; Tiwari, S.; Singh, H.P. Cloud computing using load balancing and service broker policy for IT service: A
taxonomy and survey. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 4785–4814. [CrossRef]

38. Ghomi, E.J.; Rahmani, A.M.; Qader, N.N. Load-balancing algorithms in cloud computing: A survey. J. Netw. Comput. Appl. 2017,
88, 50–71. [CrossRef]

39. Sa, P.K.; Sahoo, M.N.; Murugappan, M.; Wu, Y.; Majhi, B. (Eds.) Progress in Intelligent Computing Techniques: Theory, Practice, and
Applications: Proceedings of ICACNI 2016, Volume 2; Springer: Berlin/Heidelberg, Germany, 2017; Volume 719.

40. Kabir, M.S.; Kabir, K.M.; Islam, D.R. Process of load balancing in cloud computing using genetic algorithm. Electr. Comput. Eng.
Int. J. (ECIJ) 2015, 4, 57–65. [CrossRef]

41. Shafiq, D.A.; Jhanjhi, N.; Abdullah, A. vLoad balancing techniques in cloud computing environment: A review. J. King Saud Univ.
-Comput. Inf. Sci. 2021. [CrossRef]

42. Miao, Z.; Yong, P.; Mei, Y.; Quanjun, Y.; Xu, X. A discrete PSO-based static load balancing algorithm for distributed simulations in
a cloud environment. Future Gener. Comput. Syst. 2021, 115, 497–516. [CrossRef]

43. Dam, S.; Mandal, G.; Dasgupta, K.; Dutta, P. Genetic algorithm and gravitational emulation based hybrid load balancing strategy
in cloud computing. In Proceedings of the 2015 Third International Conference on Computer, Communication, Control and
Information Technology (C3IT), Hooghly, India, 7–8 February 2015.

44. Kaur, S.; Sengupta, J. Load balancing using improved genetic algorithm (iga) in cloud computing. Int. J. Adv. Res. Comput. Eng.
Technol. (IJARCET) 2017, 6, 2278-1123.

45. Basu, S.; Kannayaram, G.; Ramasubbareddy, S.; Venkatasubbaiah, C. Improved Genetic Algorithm for Monitoring of Virtual
Machines in Cloud Environment. In Smart Intelligent Computing and Applications; Springer: Berlin/Heidelberg, Germany, 2019;
pp. 319–326.

46. Saadat, A.; Masehian, E. Load Balancing in Cloud Computing Using Genetic Algorithm and Fuzzy Logic. In Proceedings of
the 2019 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 5–7
December 2019.

47. Goar, V.; Kuri, M.; Kumar, R.; Senjyu, T. Advances in Information Communication Technology and Computing; Springer:
Berlin/Heidelberg, Germany, 2021.

48. Jafarnejad Ghomi, E.; Masoud Rahmani, A.; Nasih Qader, N. Service load balancing, task scheduling and transportation
optimisation in cloud manufacturing by applying queuing system. Enterp. Inf. Syst. 2019, 13, 865–894. [CrossRef]

49. Vidya, S.H.; Prakash, R.M. Response time analysis of dynamic load balancing algorithms in Cloud Computing. In Proceed-
ings of the 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK,
27–28 July 2020.

50. Dashti, S.E.; Rahmani, A.M. Dynamic VMs placement for energy efficiency by PSO in cloud computing. J. Exp. Theor. Artif. Intell.
2016, 28, 97–112. [CrossRef]

51. Mapetu, J.P.B.; Chen, Z.; Kong, L. Low-time complexity and low-cost binary particle swarm optimization algorithm for task
scheduling and load balancing in cloud computing. Appl. Intell. 2019, 49, 3308–3330. [CrossRef]

52. Ebadifard, F.; Babamir, S.M. A PSO-based task scheduling algorithm improved using a load-balancing technique for the cloud
computing environment. Concurr. Comput. Pract. Exp. 2018, 30, e4368. [CrossRef]

53. Singh, A.B.; Bhat, S.; Raju, R.; D’Souza, R. Survey on various load balancing techniques in cloud computing. Adv. Comput. 2017,
7, 28–34.

54. Gaidhane, P.J.; Nigam, M.J. A hybrid grey wolf optimizer and artificial bee colony algorithm for enhancing the performance of
complex systems. J. Comput. Sci. 2018, 27, 284–302. [CrossRef]

55. Alguliyev, R.M.; Imamverdiyev, Y.N.; Abdullayeva, F.J. PSO-based load balancing method in cloud computing. Autom. Control.
Comput. Sci. 2019, 53, 45–55. [CrossRef]

56. Agarwal, R.; Baghel, N.; Khan, M.A. Load balancing in cloud computing using mutation based particle swarm optimization.
In Proceedings of the 2020 International Conference on Contemporary Computing and Applications (IC3A), Lucknow, India,
5–7 February 2020.

http://doi.org/10.1145/3241737
http://doi.org/10.1007/s10586-020-03177-0
http://doi.org/10.1007/s10723-015-9359-2
http://doi.org/10.1016/j.jnca.2017.01.005
http://doi.org/10.1007/s12652-020-01747-z
http://doi.org/10.1016/j.jnca.2017.04.007
http://doi.org/10.14810/ecij.2015.4206
http://doi.org/10.1016/j.jksuci.2021.02.007
http://doi.org/10.1016/j.future.2020.09.016
http://doi.org/10.1080/17517575.2019.1599448
http://doi.org/10.1080/0952813X.2015.1020519
http://doi.org/10.1007/s10489-019-01448-x
http://doi.org/10.1002/cpe.4368
http://doi.org/10.1016/j.jocs.2018.06.008
http://doi.org/10.3103/S0146411619010024

Electronics 2021, 10, 2718 44 of 46

57. Jordehi, A.R.; Jasni, J. Particle swarm optimisation for discrete optimisation problems: A review. Artif. Intell. Rev. 2015, 43,
243–258. [CrossRef]

58. Golchi, M.M.; Saraeian, S.; Heydari, M. A hybrid of firefly and improved particle swarm optimization algorithms for load
balancing in cloud environments: Performance evaluation. Comput. Netw. 2019, 162, 106860. [CrossRef]

59. Pan, K.; Chen, J. Load balancing in cloud computing environment based on an improved particle swarm optimization. In
Proceedings of the 2015 6th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China,
23–25 September 2015.

60. Ghumman, N.S.; Kaur, R. Dynamic combination of improved max-min and ant colony algorithm for load balancing in cloud
system. In Proceedings of the 2015 6th International Conference on Computing, Communication and Networking Technologies
(ICCCNT), Dallas-Fortworth, TX, USA, 13–15 July 2015.

61. Gao, R.; Wu, J. Dynamic load balancing strategy for cloud computing with ant colony optimization. Future Internet 2015, 7,
465–483. [CrossRef]

62. Raj, B.; Ranjan, P.; Rizvi, N.; Pranav, P.; Paul, S. Improvised Bat Algorithm for Load Balancing-Based Task Scheduling. In Progress
in Intelligent Computing Techniques: Theory, Practice, and Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 521–530.

63. Li, G.; Wu, Z. Ant colony optimization task scheduling algorithm for SWIM based on load balancing. Future Internet 2019, 11, 90.
[CrossRef]

64. Gupta, A.; Garg, R. Load balancing based task scheduling with ACO in cloud computing. In Proceedings of the 2017 International
Conference on Computer and Applications (ICCA), Doha, Qatar, 6–7 September 2017.

65. Ragmani, A.; Elomri, A.; Abghour, N.; Moussaid, K.; Rida, M. An improved hybrid fuzzy-ant colony algorithm applied to load
balancing in cloud computing environment. Procedia Comput. Sci. 2019, 151, 519–526. [CrossRef]

66. Pourghaffari, A.; Barari, M.; Sedighian Kashi, S. An efficient method for allocating resources in a cloud computing environment
with a load balancing approach. Concurr. Comput. Pract. Exp. 2019, 31, e5285. [CrossRef]

67. Tang, L.; Pan, J.S.; Hu, Y.; Ren, P.; Tian, Y.; Zhao, H. A novel load balance algorithm for cloud computing. In International
Conference on Genetic and Evolutionary Computing; Springer: Berlin/Heidelberg, Germany, 2015.

68. Kumar, A.; Kumar, D.; Jarial, S. A review on artificial bee colony algorithms and their applications to data clustering. Cybern. Inf.
Technol. 2017, 17, 3–28. [CrossRef]

69. Rajan, C.; Geetha, K.; Priya, C.R.; Sasikala, R. Investigation on bio-inspired population based metaheuristic algorithms for
optimization problems in ad hoc networks. Int. J. Math. Comput. Phys. Electr. Comput. Eng. 2015, 9, 163–170.

70. Pruitt, J.N.; Avilés, L. Social spiders: Mildly successful social animals with much untapped research potential. Anim. Behav. 2018,
143, 155–165. [CrossRef]

71. Muthsamy, G.; Ravi Chandran, S. Task scheduling using artificial bee foraging optimization for load balancing in cloud data
centers. Comput. Appl. Eng. Educ. 2020, 28, 769–778. [CrossRef]

72. Li, J.-Q.; Han, Y.-Q. A hybrid multi-objective artificial bee colony algorithm for flexible task scheduling problems in cloud
computing system. Clust. Comput. 2020, 23, 2483–2499. [CrossRef]

73. Babu, K.R.; Samuel, P. Enhanced bee colony algorithm for efficient load balancing and scheduling in cloud. In Innovations in
Bio-Inspired Computing and Applications; Springer: Berlin/Heidelberg, Germany, 2016; pp. 67–78.

74. Hashem, W.; Nashaat, H.; Rizk, R. Honey bee based load balancing in cloud computing. KSII Trans. Internet Inf. Syst. 2017, 11,
5694–5711.

75. Patel, D.; Patra, M.K.; Sahoo, B. GWO Based Task Allocation for Load Balancing in Containerized Cloud. In Proceedings of the
2020 International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 26–28 February 2020.

76. Abed-alguni, B.H.; Alawad, N.A. Distributed Grey Wolf Optimizer for scheduling of workflow applications in cloud environments.
Appl. Soft Comput. 2021, 102, 107113. [CrossRef]

77. Mousavi, S.; Mosavi, A.; Varkonyi-Koczy, A.R.; Fazekas, G. Dynamic resource allocation in cloud computing. Acta Polytech. Hung.
2017, 14, 83–104.

78. Faris, H.; Aljarah, I.; Al-Betar, M.A.; Mirjalili, S. Grey wolf optimizer: A review of recent variants and applications. Neural Comput.
Appl. 2018, 30, 413–435. [CrossRef]

79. Niu, P.; Niu, S.; Chang, L. The defect of the Grey Wolf optimization algorithm and its verification method. Knowl.-Based Syst.
2019, 171, 37–43. [CrossRef]

80. Natesan, G.; Chokkalingam, A. An improved grey wolf optimization algorithm based task scheduling in cloud computing
environment. Int. Arab. J. Inf. Technol. 2020, 17, 73–81. [CrossRef]

81. Gohil, B.N.; Patel, D.R. A hybrid GWO-PSO algorithm for load balancing in cloud computing environment. In Proceed-
ings of the 2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT), Bangalore, India,
16–18 August 2018.

82. Xingjun, L.; Zhiwei, S.; Hongping, C.; Mohammed, B.O. A new fuzzy-based method for load balancing in the cloud-based
Internet of things using a grey wolf optimization algorithm. Int. J. Commun. Syst. 2020, 33, e4370. [CrossRef]

83. Ouhame, S.; Hadi, Y.; Arifullah, A. A hybrid grey wolf optimizer and artificial bee colony algorithm used for improvement in
resource allocation system for cloud technology. Int. J. Online Biomed. Eng. 2020, 16, 4–17. [CrossRef]

http://doi.org/10.1007/s10462-012-9373-8
http://doi.org/10.1016/j.comnet.2019.106860
http://doi.org/10.3390/fi7040465
http://doi.org/10.3390/fi11040090
http://doi.org/10.1016/j.procs.2019.04.070
http://doi.org/10.1002/cpe.5285
http://doi.org/10.1515/cait-2017-0027
http://doi.org/10.1016/j.anbehav.2017.08.015
http://doi.org/10.1002/cae.22236
http://doi.org/10.1007/s10586-019-03022-z
http://doi.org/10.1016/j.asoc.2021.107113
http://doi.org/10.1007/s00521-017-3272-5
http://doi.org/10.1016/j.knosys.2019.01.018
http://doi.org/10.34028/iajit/17/1/9
http://doi.org/10.1002/dac.4370
http://doi.org/10.3991/ijoe.v16i14.16623

Electronics 2021, 10, 2718 45 of 46

84. Chételat, J.; Hickey, M.B.C.; Poulain, A.J.; Dastoor, A.; Ryjkov, A.; McAlpine, D.; Vanderwolf, K.; Jung, T.S.; Hale, L.; Cooke,
E.L.; et al. Spatial variation of mercury bioaccumulation in bats of Canada linked to atmospheric mercury deposition. Sci. Total
Environ. 2018, 626, 668–677. [CrossRef]

85. Ullah, A.; Nawi, N.M.; Khan, M.H. BAT algorithm used for load balancing purpose in cloud computing: An overview. Int. J. High
Perform. Comput. Netw. 2020, 16, 43–54. [CrossRef]

86. Jayabarathi, T.; Raghunathan, T.; Gandomi, A. The bat algorithm, variants and some practical engineering applications: A review.
In Nature-Inspired Algorithms and Applied Optimization; Springer: Berlin/Heidelberg, Germany, 2018; pp. 313–330.

87. Kotteeswaran, R.; Sivakumar, L. A Novel Bat algorithm based re-tuning of PI controller of coal gasifier for optimum response. In
Mining Intelligence and Knowledge Exploration; Springer: Berlin/Heidelberg, Germany, 2013; pp. 506–517.

88. Kalra, M.; Singh, S. A review of metaheuristic scheduling techniques in cloud computing. Egypt. Inform. J. 2015, 16, 275–295.
[CrossRef]

89. Shaddad, R.Q.; Mohammad, A.B.; Al-Gailani, S.A.; Al-Hetar, A.M. Optical frequency upconversion technique for transmission of
wireless MIMO-type signals over optical fiber. Sci. World J. 2014, 2014, 170471. [CrossRef]

90. Fahim, Y.; Rahhali, H.; Hanine, M.; Benlahmar, E.H.; Labriji, E.H.; Hanoune, M.; Eddaoui, A. Load balancing in cloud computing
using meta-heuristic algorithm. J. Inf. Process. Syst. 2018, 14, 569–589.

91. Bhargavi, K.; Babu, B.S.; Pitt, J. Performance Modeling of Load Balancing Techniques in Cloud: Some of the Recent Competitive
Swarm Artificial Intelligence-based. J. Intell. Syst. 2021, 30, 40–58. [CrossRef]

92. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
93. Strumberger, I.; Bacanin, N.; Tuba, M.; Tuba, E. Resource scheduling in cloud computing based on a hybridized whale optimization

algorithm. Appl. Sci. 2019, 9, 4893. [CrossRef]
94. Kaur, G.; Arora, S. Chaotic whale optimization algorithm. J. Comput. Des. Eng. 2018, 5, 275–284. [CrossRef]
95. Hemasian-Etefagh, F.; Safi-Esfahani, F. Dynamic scheduling applying new population grouping of whales meta-heuristic in cloud

computing. J. Supercomput. 2019, 75, 6386–6450. [CrossRef]
96. Chen, X.; Cheng, L.; Liu, C.; Liu, Q.; Liu, J.; Mao, Y.; Murphy, J. A woa-based optimization approach for task scheduling in cloud

computing systems. IEEE Syst. J. 2020, 14, 3117–3128. [CrossRef]
97. James, J.; Li, V.O. A social spider algorithm for global optimization. Appl. Soft Comput. 2015, 30, 614–627.
98. Evangeline, D.; Abirami, T. Social spider optimization algorithm: Theory and its applications. Int. J. Innov. Technol. Explor. Eng.

2019, 8, 327–332.
99. Usurelu, C.C.; Nita, M.C.; Istrate, R.; Pop, F.; Tapus, N. Spider mesh overlay for task load balancing in cloud computing.

In Proceedings of the 2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP),
Cluj-Napoca, Romania, 3–5 September 2015.

100. Mahato, D.P.; Singh, R.S. Balanced task allocation in the on-demand computing-based transaction processing system using social
spider optimization. Concurr. Comput. Pract. Exp. 2017, 29, e4214. [CrossRef]

101. Xavier, V.A.; Annadurai, S. Chaotic social spider algorithm for load balance aware task scheduling in cloud computing. Clust.
Comput. 2019, 22, 287–297.

102. Abrol, P.; Gupta, S.; Singh, S. QoS aware social spider cloud web algorithm: Analysis of resource placement approach. In
Proceedings of the International Conference on Advancements in Computing & Management (ICACM), Jaipur, India, 13–14
April 2019.

103. Rahman, C.M.; Rashid, T.A. Dragonfly algorithm and its applications in applied science survey. Comput. Intell. Neurosci. 2019,
2019, 9293617. [CrossRef] [PubMed]

104. Amini, Z.; Maeen, M.; Jahangir, M.R. Providing a load balancing method based on dragonfly optimization algorithm for resource
allocation in cloud computing. Int. J. Netw. Distrib. Comput. 2018, 6, 35–42. [CrossRef]

105. Polepally, V.; Chatrapati, K.S. Dragonfly optimization and constraint measure-based load balancing in cloud computing. Clust.
Comput. 2019, 22, 1099–1111. [CrossRef]

106. Neelima, P.; Reddy, A.R.M. An efficient load balancing system using adaptive dragonfly algorithm in cloud computing. Clust.
Comput. 2020, 23, 2891–2899. [CrossRef]

107. Brabazon, A.; Cui, W.; O’Neill, M. The raven roosting optimisation algorithm. Soft Comput. 2016, 20, 525–545. [CrossRef]
108. Torabi, S.; Safi-Esfahani, F. Improved raven roosting optimization algorithm (IRRO). Swarm Evol. Comput. 2018, 40, 144–154.

[CrossRef]
109. Rani, E.; Kaur, H. Efficient Load Balancing Task Scheduling in Cloud Computing using Raven Roosting Optimization Algorithm.

Int. J. Adv. Res. Comput. Sci. 2017, 8, 2419–2424.
110. Torabi, S.; Safi-Esfahani, F. A dynamic task scheduling framework based on chicken swarm and improved raven roosting

optimization methods in cloud computing. J. Supercomput. 2018, 74, 2581–2626. [CrossRef]
111. Bhargavi, K.; Babu, B.S. Load Balancing Scheme for the Public Cloud using Reinforcement Learning with Raven Roosting

Optimization Policy (RROP). In Proceedings of the 2019 4th International Conference on Computational Systems and Information
Technology for Sustainable Solution (CSITSS), Bengaluru, India, 20–21 December 2019.

112. Arulkumar, V.; Bhalaji, N. Performance analysis of nature inspired load balancing algorithm in cloud environment. J. Ambient.
Intell. Humaniz. Comput. 2021, 12, 3735–3742. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2018.01.044
http://doi.org/10.1504/IJHPCN.2020.110258
http://doi.org/10.1016/j.eij.2015.07.001
http://doi.org/10.1155/2014/170471
http://doi.org/10.1515/jisys-2019-0084
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.3390/app9224893
http://doi.org/10.1016/j.jcde.2017.12.006
http://doi.org/10.1007/s11227-019-02832-7
http://doi.org/10.1109/JSYST.2019.2960088
http://doi.org/10.1002/cpe.4214
http://doi.org/10.1155/2019/9293617
http://www.ncbi.nlm.nih.gov/pubmed/31885533
http://doi.org/10.2991/ijndc.2018.6.1.4
http://doi.org/10.1007/s10586-017-1056-4
http://doi.org/10.1007/s10586-020-03054-w
http://doi.org/10.1007/s00500-014-1520-5
http://doi.org/10.1016/j.swevo.2017.11.006
http://doi.org/10.1007/s11227-018-2291-z
http://doi.org/10.1007/s12652-019-01655-x

Electronics 2021, 10, 2718 46 of 46

113. Li, Z.; Yi, L.; Zhang, Y.; Dong, Y.; Xiao, S.; Hu, W. Compatible TDM/WDM PON using a single tunable optical filter for
both downstream wavelength selection and upstream wavelength generation. Photonics Technol. Lett. IEEE 2012, 24, 797–799.
[CrossRef]

114. Valarmathi, R.; Sheela, T. Ranging and tuning based particle swarm optimization with bat algorithm for task scheduling in cloud
computing. Clust. Comput. 2019, 22, 11975–11988. [CrossRef]

115. Al-Shargabi, M.A.; Shaikh, A.; Ismail, A.S. Enhancing the quality of service for real time traffic over Optical Burst Switching
(OBS) networks with ensuring the fairness for other traffics. PLoS ONE 2016, 11, e0161873. [CrossRef]

116. Sethi, S.; Sahu, A.; Jena, S.K. Efficient load balancing in cloud computing using fuzzy logic. IOSR J. Eng. 2012, 2, 65–71. [CrossRef]
117. Afzal, S.; Kavitha, G. Load balancing in cloud computing–A hierarchical taxonomical classification. J. Cloud Comput. 2019, 8, 1–24.

[CrossRef]
118. Dey, R.K.; Roy, S.; Bose, R.; Sarddar, D. Assessing Commercial Viability of Migrating On-Premise Mailing Infrastructure to Cloud.

Int. J. Grid Distrib. Comput. 2021, 14, 1–10.

http://doi.org/10.1109/LPT.2012.2186435
http://doi.org/10.1007/s10586-017-1534-8
http://doi.org/10.1371/journal.pone.0161873
http://doi.org/10.9790/3021-02716571
http://doi.org/10.1186/s13677-019-0146-7

	Introduction
	Objectives of the Research
	Implications of the Research
	Motivation

	Background and Design of Survey
	Research Questions
	What Is the Need and Importance of Load Balancing in Cloud Computing?
	What Is the Main Idea of SI?
	How Can the Occurring Issues in Cloud Computing Be Reformulated by SI?
	How Does SI Support Load Balancing in Cloud Computing?
	What Are the Current and Future Challenges Associated with Load Balancing in Cloud Computing?

	Benchmark of Search
	Origin of Data
	Exploration Criteria
	Quality Evaluation

	Literature Review
	Load Balancing in Cloud Computing Using SI
	Traditional SI Algorithms for Load Balancing
	Genetic Algorithm (GA)
	Particle Swarm Optimization (PSO)
	Ant Colony Optimization (ACO)
	Artificial Bee Colony (ABC)
	Grey Wolf Optimization (GWO)
	BAT Algorithm

	Modern SI Algorithm for Load Balancing
	Whale Optimization Algorithm (WOA)
	Social Spider Algorithm (SSA)
	Dragonfly Optimization Algorithm (DOA)
	Raven Roosting Optimization Algorithm (RROA)

	Summary of the Reviewed SI Algorithms
	Comparative Performance Analysis of Various SI Algorithms Used for Load Balancing
	Comparative Performance Analysis of SI Algorithms in Cloud Computing
	Comparative Performance Analysis of Average Response Time (TRT) for Different User Bases (UB) and Data Centers (DC)
	Comparative Performance Analysis of Average Data Center Processing Time (DCPT) for Different User Bases (UB) and Data Centers (DC)
	Comparative Performance Analysis Based on Time and Cost to Complete Tasks
	Comparative Performance Analysis Based on Makespan

	Future Directions
	Conclusions
	References

