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Abstract: Nowadays, the main grid is facing several challenges related to the integration of renewable
energy resources, deployment of grid-level energy storage devices, deployment of new usages such
as the electric vehicle, massive usage of power electronic devices at different electric grid stages and
the inter-connection with microgrids and prosumers. To deal with these challenges, the concept of
a smart, fault-tolerant, and self-healing power grid has emerged in the last few decades to move
towards a more resilient and efficient global electrical network. The smart grid concept implies a
bi-directional flow of power and information between all key energy players and requires smart
information technologies, smart sensors, and low-latency communication devices. Moreover, with
the increasing constraints, the power grid is subjected to several disturbances, which can evolve to
a fault and, in some rare circumstances, to catastrophic failure. These disturbances include wiring
issues, grounding, switching transients, load variations, and harmonics generation. These aspects
justify the need for real-time condition monitoring of the power grid and its subsystems and the
implementation of predictive maintenance tools. Hence, researchers in industry and academia
are developing and implementing power systems monitoring approaches allowing pervasive and
effective communication, fault diagnosis, disturbance classification and root cause identification.
Specifically, a focus is placed on power quality monitoring using advanced signal processing and
machine learning approaches for disturbances characterization. Even though this review paper is not
exhaustive, it can be considered as a valuable guide for researchers and engineers who are interested
in signal processing approaches and machine learning techniques for power system monitoring and
grid-disturbance classification purposes.

Keywords: smart grid; resilience; signal processing; disturbance classification; power quality;
PSD estimation; demodulation methods; time-frequency analysis; pattern recognition techniques;
machine learning; information theoretical criteria

1. Introduction

A smart grid is a developing electrical network of transmission lines, switches and
transformers, protection equipment, sensors, computers, automations, controls and new
communication and information technologies working together in order to meet the 21st
century demand for electricity while reducing greenhouse gas emissions and handling
the security and privacy issues [1–3]. It is characterized by a two-way dialogue where
electricity and information can be exchanged between the utility grid, microgrids and its
costumers and aggregators [4]. This two-way exchange makes the electrical grid more
efficient, more reliable, more secure, and greener. A smart grid enables newer technologies
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to be integrated such as solar panels, wind turbines, marine renewable energy resources,
plug-in electric vehicle charging, and green hydrogen production through electrolysis of
water, etc. [5–7]. Moreover, the smart grid will enable power system operators to control
and manage the electricity demand with the cooperation of customers especially during
peak power demand times [8]. This implies the need for smart-meters and smart-appliances
to be implemented at houses and buildings level using the Internet of Things (IoT) concept
for demand response management [9–11]. As a result, utilities will achieve an operating
cost reduction by shifting electricity usage away from peak hours and having appliances
and devices running during off-peak periods. Consequently, electricity production is more
evenly distributed throughout the day, which mitigates electric grid congestion. Smart grid
technologies provide a huge amount of relevant information that enables grid operators to
supervise and manage the electricity demand in real-time, which reduces outages, lowers
the need for peak power facilities, and allows operators to predictably manage electricity
production [12,13].

Traditionally, utilities typically rely on complex power distribution schemes and man-
ual switching to ensure power flow to the customers. Any breakage in the distribution
network caused by storms, bad weather or sudden changes in the electricity demand can
lead to outages. The smart grid distribution intelligence counters these energy fluctuations
and outages by automatically identifying problems and actuating backup facilities (con-
ventional power plants, storage systems, distributed energy generation, etc.) or shedding
non-critical loads using demand response incentives in order to ensure the continuity
of power delivery [14,15]. In the near future, the main grid is expected to experience
a significant mutation in order to be cost-effective, self-healing, and resilient to system
anomalies while meeting power quality standards [16–18].

Power quality (PQ) focuses on the interaction between the power grid and the end-
users and involves both voltage and current quality [19,20]. Voltage quality measures
the way the power system affects the customers and their appliances, and current quality
measures the way the end-users loads affect the grid [21]. Power system voltage deviations
from nominal values are considered as disturbances, which can be categorized into two
classes: power quality deviation and events. Power quality deviation includes small
variations of voltage and frequency around their nominal values. Events, however, stand
for large deviations from nominal values and include mainly voltage sag and voltage swell,
which may lead to power supply interruption. Other disturbances can effect the power
quality such as flicker, harmonics and interharmonics [22,23]. These disturbances can have
a huge impact over power delivery reliability, metering performance, equipment lifespan,
and may lead to protection devices malfunctioning and big issues of electromagnetic
compatibility. Consequently, power quality monitoring is of paramount importance in
smart grids [24–26].

Within this context, power quality has become essential for building the future smart
grid. Control, energy management, and condition monitoring of power systems is manda-
tory in order to increase its reliability and availability and reduce outages and shut-downs
in future smart grids [27,28]. A wide area measurement system (WAMS) is a set of advanced
measurement devices, information and communication technologies, and operational in-
frastructure that enhance the situational awareness of the grid operator. WAMS helps
trigger a proactive power quality disturbance detection, which allows activating a fault
ride-through approach, minimizing downtime, and operating and maintenance costs while
maximizing productivity [29]. Phasor Measurement Units (PMU) is a key component
of WAMS that plays a key role in supervising and identifying the operating state of the
smart grid by collecting and processing electrical signals (currents and voltages) [30]. The
IEC/IEEE 60255-118-1 standard divides PMUs into P-class and M-class PMUs [31]. It is
defined as a device used to estimate the magnitude and phase angle of an electrical phasor
quantity (such as voltage and current) in the electric grid using a common time source
for synchronization. These measurements are critical because if the grid supply/demand
balance is not perfectly matched, frequency imbalances and voltage amplitude fluctuations
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can cause stress on the grid, which is a potential cause of power outages [32]. It is worth
emphasizing that optimal PMU placement in WAMS is one of the most investigated issues
by researchers and engineers in order to improve the observability and security of the
power system [33,34].

The last few years have witnessed the publication of several original papers, reviews,
and survey papers dealing with the timely topic of transmission and distribution networks
condition monitoring, and microgrids and smart grids resilience. Table 1 provides the main
published review papers and their contributions. Various signal processing techniques have
been extensively investigated for disturbance features extraction in PMUs. Indeed, several
approaches have been proposed in the literature such as the Interpolated Discrete Fourier
Transform (IpDFT) and its extensions [35], the Taylor Weighted Least-Squares (TWLS) [36],
the Kalman filter [37], and the Frequency Down-Conversion and Low-Pass Filtering (DCF)
technique [38]. Moreover, adaptive extended Kalman filter has been proposed for achieving
better phasor and frequency estimations of PMUs under changing harmonics [39]. The
Clarke transformation-based DFT method was proposed for attaining better accuracy of
phasor and frequency estimations [40]. A quasipositive-sequence DFT method has been
proposed for single phase angle estimation in [41]. A modified DFT method was presented
to accurately obtain a phasor estimate in the presence of a decaying DC offset in [42].
Moreover, an iterative IpDFT method has also been proposed for synchrophasor estimation
under static conditions in [43]. Interpolated dynamic DFT (IpD2FT) has been proposed for
obtaining superior estimation of dynamic frequency and synchrophasor in [44]. Similarly,
double suboptimal-scaling-factor adaptive strong tracking Kalman filter has been used to
achieve better accuracy in dynamic phase estimation under transient conditions [45]. The
accuracy of dynamic phasor estimation had also been improved by using Gauss-Newton
ADALINE [46] and Taylor K-Kalman filters [47]. In an unbalanced three-phase power sys-
tem, frequency estimation has been improved by a coupled orthogonal constant modulus
algorithm [48]. In [49], a modular positive-sequence estimation algorithm was presented
to achieve better accuracy of synchrophasor estimation. Amplitude and phase modula-
tion models of the signal have been used for better dynamic phasor estimation under
off-nominal frequency and oscillations conditions [50]. An empirical wavelet transform
method was also developed for obtaining phasor estimation at the distribution level [51].
In [52], a compressive sensing-based Taylor-Fourier method was developed for achieving
multi-frequency phasor estimation in distribution systems. A sync interpolation function
has been used to improve dynamic synchrophasor estimation in [53]. A low-complexity
weighted least square method has also been proposed to improve phasor and frequency
estimations of power systems under off-nominal operating conditions [54]. In [55], the ac-
curacy of dynamic phase estimation was improved using a combination of Taylor weighted
least squares and matrix pencil method against an out-of-band interference compromised
signal. Furthermore, a weighted Taylor-Fourier transform was also developed to achieve
better synchrophasor estimation with low computational complexity in [56].
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Table 1. A list of review papers dealing with power systems monitoring.

Year Ref. Contributions

2015 [57]
This paper provides a comprehensive review of digital signal processing and machine learning
techniques for automatic classification of power quality (PQ) events by investigating the effect of
noise on these approaches’ performance.

2017 [58] This paper reviews smart grid features and data issued from various energy resources and discusses
techniques used for big data analysis in smart grid applications.

2019

[59]

This article provides a comprehensive review on digital signal processing (DSP) methods for fault
detection and machine learning for fault classification and causes identification. The focus is to
provide an overview of techniques used for automatic recognition of PQ events. Specifically,
microgrid applications have been considered where the use of power electronic technology in
renewable energy systems and distributed generators increases the risk of PQ issues.

[60]
This paper reviews machine learning and big data techniques for efficiently processing the massive
data volume generated by Internet of Things (IoT) devices for reliable decision-making and ensuring
the safety of both data and infrastructure against cyber attacks in a smart grid.

2020

[61]

This paper presents failures in smart grid components (conventional energy systems, renewable
resources, cables and transmission lines, power electronics and power transformers) and describes
sensors, communication tools, including 5G, and monitoring infrastructure. Moreover, it discusses
procedures associated with smart grids fault detection and location and provides an insight into
lessons learned and future trends.

[62] This paper reviews signal processing techniques and machine learning approaches used in the field
of power quality disturbance detection and classification.

[63]
This review paper highlights the interest of machine learning techniques for the efficient handling of
a massive amount of data generated from smart meters and phasor measurement units in the next
generation of power systems.

[64]
This paper provides a critical review of approaches used for PQ disturbances detection and
classification in the utility grid with renewable energy integration. It presents various concepts
utilized for features extraction for detecting and classifying PQ disturbances in a noisy environment.

In this context, this paper focuses on power quality monitoring in a smart grid.
The main objective is to present a state-of-the-art review on the methods, advances and
prospects on signal processing for feature extraction [23,65] and pattern recognition tech-
niques for electric power grid monitoring and disturbance classification [59,66,67]. To this
end, power spectral density estimation techniques, which are termed frequency-domain al-
gorithms, are first presented to deal with stationary signals, which are more appropriate for
steady state conditions [68]. Classical methods are presented and critically analyzed, then
more advanced power spectral density estimation approaches are discussed such as Max-
imum Likelihood estimation (MLE), Multiple Signal Classification (MUSIC), Estimation
of Signal Parameters via Rotational Invariance Techniques (ESPRIT) and AutoRegressive
Moving Average (ARMA) techniques [69–71]. Afterward, demodulation techniques, which
are considered as time-domain algorithms, are explored for instantaneous frequency and
instantaneous amplitude tracking. The aforementioned approaches present the interest of
being easy to implement but assumes the signal to be mono-component; a sinusoid, which
may be amplitude and/or frequency modulated [72,73]. For multi-component signals, a
filtering approach is first required to separate the frequency components (modes) before
applying the appropriate demodulation technique. In the case where mono-component
signals can not be extracted by filtering, more sophisticated approaches are required such
as Empirical Mode Decomposition (EMD) [74] and its extensions or Discrete Wavelet
transform (DWT) [75–77]. For transient and nonstationary environments, time-frequency
and time-scale approaches are more appropriate and are extensively discussed in this
paper [78–80]. These approaches allow retrieving the evolution of signal frequency content
and amplitudes over time and allow abnormal operating condition tracking over time.
Generally speaking, all the previously discussed methods for PQ monitoring try to deal
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with the trade-off between frequency estimates accuracy and reporting latency, which is
related to the computational burden of the method, especially in P-class PMUs [81,82].

These signal processing approaches allow signal feature extraction. For the results to
be analyzed and interpreted, an expert of power systems and power quality monitoring
is required, and in some conditions, the results analysis is quite complicated. To perform
an automatic detection, power quality disturbances classification and decision making, it
is mandatory to implement sophisticated artificial intelligence techniques. Hence, for the
sake of power quality disturbances classification, some classical classifiers are used such
as the ABC classifier [83] and symmetrical component classifier [84]. Moreover, pattern
recognition techniques have been extensively investigated in the literature for power
systems monitoring such as Artificial Neural Network (ANN), Support Vector Machine
(SVM), etc. [85–93]. Furthermore, deep learning algorithms have the inherent capability
to automatically learn optimal features from raw input data, without pre-processing
using sophisticated signal processing techniques. These approaches include and are not
limited to convolution neural network (CNN), recurrent neural network (RNN), identity-
recurrent neural network (I-RNN), long short-term memory (LSTM), gated recurrent units
(GRU) and convolutional neural network-long short-term memory (CNN-LSTM). These
approaches have not only been proposed for power quality disturbances classification but
also for power system protection [94], renewable energy forecasting and energy production
prediction [95] as well as consumer profile identification and uncertainty management [96].
In addition to that, information criteria rules and detection theory have been proposed and
their efficiency has been proven to overcome the complexity and the computational burden
of AI techniques [97].

The main contributions of the paper are threefold:

• A systematic review of smart grid disturbances, PMU requirements for PQ measure-
ment, and European and international PQ standards is presented,

• An in-depth and comprehensive survey of methods for grid frequency, rate of change
of frequency (ROCOF) and synchronized phasor estimation is provided.

• A survey on classification methods for intelligent system application to disturbances
diagnosis in power systems is conducted. A critical analysis on signal processing
and machine learning is presented and a brief discussion on relevant topics for future
developments is conducted.

The remainder of the paper is organized as follows. Section 2 presents the main
power quality disturbances reported in the literature. Then, it deals with the power quality
measurement issue and presents the phasor measurements units implemented in critical
power system substations for condition monitoring. Section 3 presents major advances
in signal processing techniques for frequency and phasor estimations for electric power
grid monitoring. Then, Section 4 briefly describes some major classification and pattern
recognition techniques for disturbances classification and root causes identification. Finally,
conclusions and future challenges regarding power system monitoring are provided in
Section 5.

2. Power Quality Measurement

Over the last decades, there has been a significant increase in the use of the nonlinear
loads consisting of power electronics converters in power networks. The use of such
systems can induce harmonic pollution, disturbances, and power quality events within a
power grid, leading to abnormal operating conditions of equipment and materials. It is,
therefore, mandatory to characterize power quality disturbances in order to enhance the
power system’s efficiency and reliability [97,98].

2.1. Power Grid Disturbances

Power grid disturbances can be classified as either affecting the fundamental frequency
component (50 Hz or 60 Hz) or harmonic disturbances. Fundamental frequency distur-
bances affect the amplitude, frequency, and initial phase shift of the fundamental frequency
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such as voltage dips, outages, overvoltages and unbalances. Harmonic disturbances induce
distortion of the signals (voltages or currents) waveform and are characterized by the
appearance of new frequency components that are multiples of the fundamental frequency.

2.1.1. Typical Power Quality Disturbances

A balanced electrical grid is a three-phase power system characterized by sinusoidal
waveforms, where the three-phases have the same fundamental frequency (equal to the
nominal value), the same voltage magnitude, and a phase shift of 120◦. If one of these
conditions is not satisfied, the power grid is considered to be experiencing a power quality
disturbance. A power quality disturbance is defined as any problem that causes voltage or
frequency deviations in the power supply and may result in equipment failure or malfunc-
tion of the power grid, which may cause issues at the load ends. These power quality events
include voltage sag, very short interruptions, voltage swell, voltage fluctuation, voltage
unbalance, harmonics, inter-harmonics, distortion, spikes, notches, flicker, noise and tran-
sients. Figure 1 depicts a classification of major power quality disturbances as described
in the literature [99–102]. These power quality disturbances can be broadly classified into
two categories, which are power quality variations and events. Power quality variation is
regarded as a steady-state disturbance and corresponds to a small frequency and ampli-
tude deviation from its nominal values. Conversely, a power quality event is related to a
large deviation such as outage, sag, and swell. These disturbances can have a substantial
influence on grid stability, security (protective relays malfunction), equipment’s useful life,
and power system measurement performance and generate electromagnetic noise.Version September 15, 2021 submitted to Electronics 7 of 40
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2.1.2. Causes and Consequences

Poor power quality issues can be due to several causes and conditions. Inductive and
capacitive loads such as motors, ballasts, and electronic devices can induce a voltage and
current phase angle, which deteriorates the power factor quality. Nonlinear loads and
operating loads with rapidly changing energy demand cause harmonics, which require
static and dynamic filters to mitigate. Improper load distribution across each phase leads
to phases being unbalanced. High energy loads turning on or off cause voltage variations
(dips and swells), which can be mitigated by proper load capacity resizing and adjusting
transformer tapping. Transients are characterized by fast (sub-half cycle) changes in voltage,
which exceeds the device insulation breakdown voltage rating, and are caused by switch
contacts (arcing) and lightning.

These PQ disturbances affect businesses in different ways such as loss of production,
products damage, reduced lifetime of equipment, loss of data or data corruption, etc. Table 2
summarizes typical power quality disturbance causes and the main consequences [99,103].
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Table 2. Power quality disturbance causes and consequences.

Category Typical Causes Main Consequences

Notching
Lightning strike, transformer energization,
capacitor switching, disconnection of heavy
loads, power electronic rectifiers commutation

Destruction of components and insulation
materials, data processing error, electromagnetic
interference, etc.

Voltage spikes
Lightning, switching of lines or power factor
correction capacitors, disconnection of heavy
loads

Destruction of components and of insulation
materials, data processing errors or data loss,
electromagnetic interference

Voltage flicker
Line, capacitor or load switching, frequent
start/stop of electric motors and oscillating
loads, arc furnace

Light flickering, unsteadiness of visual
perception

Overvoltage Switching large load, energizing a capacitor
bank, incorrect tap settings on transformers

Light flicker, stoppage or damage of sensitive
equipment

Harmonic

Nonlinear loads (variable speed drives, SMPS),
data processing equipment, high efficiency
lighting, arc furnaces, electric machines working
above the knee of the magnetization curve

Transformers overheating, neutral overload,
overheating of cables and equipment, loss of
efficiency in electric machines, increased
probability in the occurrence of resonance,
electromagnetic interference with
communication systems, errors in measures
when using average reading meters, nuisance
tripping of thermal protections.

Undervoltage Switching on a large load or switching off a large
capacitor bank Light flicker, unsteadiness of visual perception

Voltage swell
Start or stop of heavy loads, badly dimensioned
power sources and regulated transformers,
system faults, load and capacitor switching

Light flicker, data loss, stoppage or damage of
sensitive equipment

Voltage sag

Faulty consumer installations, faulty
transmission or distribution electric network,
start-up of large motors and connection of heavy
loads

Malfunction of information technology
equipment, tripping of contactors and
electromechanical relays and loss of efficiency in
electric rotating machines

Interruptions
Equipment failure in the power system network,
tripping of protection devices, storms, human
errors, failure of protection devices

Stoppage of all equipment

Power quality characterization is of paramount importance in order to improve the
power systems safety and reliability. Figure 2 depicts power quality characterization stages,
which include signal acquisition based on appropriate sensors, feature extraction stage
for signal parameter estimation, detection stage, and finally the classification stage to
determine PQ disturbance types [104]. The feature extraction stage is performed based on
advanced signal processing approaches, which include power spectral density estimation
techniques, demodulation techniques, and time–frequency analysis. The classification
stage is mainly performed using machine learning approaches.
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2.2. Power Quality Analysis

Moving towards smart grids requires advanced control strategies, energy manage-
ment systems, modern protective devices, and power quality monitoring to deal with PQ
issues. The latter can be performed using measurement substations, which use intelligent
electronic devices, including PMUs and supervisory control and data acquisition (SCADA)



Electronics 2021, 10, 2725 8 of 40

infrastructure. PMUs are used for the secure measurement and parameter estimation
of power signals. These parameters are transferred to a central controller via a SCADA
infrastructure for further post-processing and transient characterization of PQ disturbance.
These characteristics allow higher power quality and less downtime while supporting
power from intermittent power sources and distributed generation.

2.2.1. Definition

Power quality is an estimate of the stability of the power supply in terms of volt-
age magnitude, frequency, and waveform required for the safe, correct, and continuous
operation of a specific electrical load. Indeed, maintaining PQ requirements of voltage
and current in a power system to the right level enables safe and continuous operation of
electric loads. Good power quality can be viewed as a steady supply voltage that is within
the prescribed range, has a frequency close to the rated value, and has a waveform close
to sine wave (no distortion, no harmonics, no spikes and flicker, etc.). The electric power
system is composed of electricity generation devices, electric power transmission lines, an
electric power distribution network, and finally, the electricity meters at the end-users level.
The electric power system complexity combined with meteorological events, generation
and consumption fluctuations, power electronics usage at grid and consumers levels, as
well as the integration of intermittent and distributed generation systems provide several
factors that comprimise the power quality.

2.2.2. Wide Area Measurement System

A wide area measurement system (WAMS) is a stand-alone measurement technol-
ogy, information tool, and operational infrastructure that complements the conventional
supervisory control and data acquisition system (SCADA) used for main grid control
and monitoring [34]. WAMS is designed for the monitoring of real-time dynamics of
power systems, identification of control and stability weaknesses, and implementation of
countermeasures in order to enhance the power system reliability [33]. It allows obtaining
more detailed data (specifically, the real-time synchrophasors) on the steady-state power
system operating condition and transients that arise due to various power system distur-
bances. The main objectives of WAMS are real-time monitoring, post-disturbance analysis,
adaptive protection and power system restoration. Figure 3 provides a scheme describing
the components of WAMS. It includes PMUs, PDC, GPS for time synchronization of the
phasors, communication channels, visualization and analysis tools, a wide area situational
awareness system and a wide area protection and control system.
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2.2.3. Phasor Measurement Units

A phasor measurement unit (PMU) is a high-speed smartmeter used for power systems
state estimation and power quality monitoring with accuracy in the order of microsec-
onds, which is much faster than the existing SCADA technologies [105,106]. PMU allows
estimating the frequency, magnitude and phase angle of an electrical phasor quantity
(voltage or current) with respect to global time reference in order to obtain synchronized
real-time measurements of multiple widely dispersed locations in the power system net-
work [107,108]. Time synchronization is mainly provided by the Global Positioning System
(GPS) or IEEE 1588 Precision Time Protocol. The measured quantities are represented by a
synchrophasor, as depicted by Figure 4. The calculation of real-time phasor measurements
that are synchronized to an absolute time reference is of paramount importance as it allows
an efficient response to power system disturbances and possible cascading blackouts.

Version September 15, 2021 submitted to Electronics 8 of 40

Category Typical causes Main consequences
Notching Lightning strike, transformer energiza-

tion, capacitor switching, disconnection
of heavy loads, power electronic recti-
fiers commutation

Destruction of components and insula-
tion materials, data processing error,
electromagnetic interference, etc.

Voltage spikes Lightning, switching of lines or power
factor correction capacitors, disconnec-
tion of heavy loads.

Destruction of components and of insula-
tion materials, data processing errors or
data loss, electromagnetic interference.

Voltage flicker Line, capacitor or load switching, fre-
quent start/stop of electric motors and
oscillating loads,arc furnace

Light flickering, unsteadiness of visual
perception

Overvoltage Switching large load, energizing a ca-
pacitor bank, incorrect tap settings on
transformers

Light flicker, stoppage or damage of sen-
sitive equipments

Harmonic Non linear loads (Variable speed drives,
SMPS), data processing equipment,
high efficiency lighting, arc furnaces,
electric machines working above the
knee of the magnetization curve

Transformers overheating, neutral over-
load, overheating of cables and equip-
ments, loss of efficiency in electric ma-
chines, increased probability in occur-
rence of resonance, electromagnetic in-
terference with communication systems,
errors in measures when using average
reading meters, nuisance tripping of
thermal protections.

Undervoltage Switching on a large load or switching
off a large capacitor bank

Light flicker, unsteadiness of visual per-
ception

Voltage swell Start or stop of heavy loads, badly di-
mensioned power sources and regulated
transformers, system faults, load and
capacitor switching

Light flicker, data loss, stoppage or dam-
age of sensitive equipment

Voltage sag Faulty consumer installations, faulty
transmission or distribution electric net-
work, start-up of large motors and con-
nection of heavy loads

Malfunction of information technology
equipments, tripping of contactors and
electromechanical relays and loss of effi-
ciency in electric rotating machines

Interruptions Equipment failure in the power system
network, tripping of protection devices,
storms, human errors, failure of protec-
tion devices

Stoppage of all equipments

Table 2: Power quality disturbances causes and consequences.
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Figure 4. Synchrophasor representation of a sinusoidal signal for healthy and faulty conditions
(voltage sag on phase 1).

PMU measures voltages and currents at critical substations of the power transmission
lines and computes time-stamped phasors, as depicted by Figure 5. A real-time comparison
of these synchronized measurements allows assessing power system conditions and detect-
ing disturbances that may affect the power quality. The phasor data are collected either
on-site or at centralized locations using Phasor Data Concentrator (PDC) technologies (see
Figure 3) [109]. A PDC receives and time-synchronizes phasor data from multiple PMUs to
produce a real-time, time-aligned output data stream. These data are then transmitted to a
regional monitoring system (central control network), which is operated by the local grid
operator. Due to the precise synchronization of the measurements, this power grid monitor-
ing allows controlling power flow from multiple energy generation sources, implementing
demand response mechanisms (load shedding) and event detection and classification for
black-out event prevention [107].
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2.2.4. International Standards

Power quality in smart grids is defined by international standards and their local
derivatives, adopted by various countries and electricity suppliers. Specifically, there
are two international organizations that set forth power quality standards, which are
the International Electrotechnical Commission (IEC) and the Institute of Electrical and
Electronics Engineers (IEEE). Main power quality standards are as follows:

• IEC/IEEE 60255-118-1:2018 is used for synchrophasor measurement systems in power
systems. It defines PMU, synchrophasor, frequency, and ROCOF measurements. Even
though it does not provide hardware and software for computing these quantities, it
specifies methods for evaluating the compliance of these measurements with standard
requirements under both static and dynamic conditions.

• EN50160 is the European standard for power quality measurement, defining the
acceptable limits of voltages and currents RMS values with respect to nominal values
and the disturbance duration in AC power.

• IEEE-519 is the North American guideline for power systems. It is intended as
“recommended practice” and refers to both current and voltage distortion.

• IEC 61000-4-30 is the standard defining methods for power quality monitoring. Specif-
ically, it provides a description of measurement methods and PQ parameters interpre-
tation [17]. Unlike earlier editions, the 2015 Edition 3 includes current measurements
as well as voltage measurement.

Regarding PMU, the standard IEEE C37.118-2005 deals with issues related to PMUs in-
tegration into electric power systems. This standard is mainly describing the measurement
accuracy testing and certification requirements, data transmission format and communica-
tion protocol. To handle power system dynamic behavior, the standard has been updated
and split into two parts in 2011 (and its amendment C37.118-2014): C37.118-1 dealing with
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the phasor estimation and C37.118-2 describing the communications protocol. Moreover,
two PMU classes have been introduced: M class to use in steady state measurement and P
class to track power system dynamic activity. The phasor measurement unit is intended for
accurate phasor estimation under both steady state and dynamic conditions. To be compli-
ant with the IEEE C37.118-2014 standard, the PMU measurement and estimation accuracy
is measured through several parameters such as total vector error (TVE), frequency error,
and rate of change of frequency error.

3. Grid Frequency and Phasor Estimation

In transmission and distribution grids, current and voltage waveform can be mathe-
matically expressed as follows:

x[n] = a[n] cos[Φ[n]] + b[n] (1)

where:

• a[n] is the instantaneous amplitude,
• Φ[n] = 2π f0[n]n + ϕ[n] is the instantaneous phase. f0[n] denotes the normalized

instantaenous fundamental frequency and ϕ[n] corresponds to the initial phase.
• b[n] includes all possible disturbances, such as harmonics, inter-harmonics, and

wideband noise.

In the following, commonly used approaches for PQ monitoring in PMUs are pre-
sented. Specifically, the focus is made on conventional approaches for static and dynamic
conditions and power spectral density estimation for stationary signals analysis. Then,
demodulation techniques and time–frequency representations are discussed and critically
reviewed. These methods allow fault feature extraction based on PMU measurements.
The challenge, then, is accurately estimating fundamental frequency f0[n], ROCOF using
the first- and second-order backward Euler differences over subsequent data records, and
synchrophasor defined as p(t) = a[n] exp(jϕ[n]) with minimum latency in order to ensure
compliance with standards requirements in terms of reporting rate.

3.1. Conventional Approaches

The most popular algorithms for PMUs are presented herein, with special focus on low
computational complexity and good accuracy algorithms in various operating conditions.

3.1.1. Zero-Crossing and Root Mean Square

The zero-crossing technique is the approach proposed in the standard IEC 61000-4-30
for frequency estimation. It allows estimating the electrical signal frequency based on
consecutive zero-crossing in the same direction (from positive to negative value or vice
versa) of the electrical signal (currents or voltages). Let us note Tzc as the time between Nzc
consecutive zero-crossings in the same direction. In this case, the frequency estimate is
given by:

f̂g =
Nzc

Tzc
(2)

Unfortunately, this method is very sensitive to noise, harmonics, distorted signals,
and many other PQ disturbances.

Root mean square (RMS) allows obtaining the amplitude of a signal based on the
measurement of multiple of one half-cycle of the power system frequency. It is defined
as the square root of the arithmetic mean of the squares of a set of signal samples and is
mathematically given by:

XRMS =

√√√√ 1
N

N

∑
k=1

x[k]2 (3)
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This technique is very simple to implement but it is sensitive to noise and many PQ
disturbances (spiking, flicker, etc.). Moreover, it does not provide an estimate of the phase
angle parameter, which is mandatory to estimate the electrical phasor.

3.1.2. Taylor Weighted Least-Squares Algorithm

The Taylor Weighted Least-Squares (TWLS) algorithm is based on the Taylor Fourier
transform (TFT) of a dynamic phasor model of an electrical waveform at nominal frequency.
TWLS approximates the signal samples issued from PMUs using the Taylor series [110,111].
Indeed, in order to track phasor variations over time, phasor p(t) defined at time distance
∆t = t− tr from the reference time tr can be approximated by its complex Taylor’s series
expansion around tr as follows:

p(t) = p(tr) + p
′
(tr)∆t +

p
′′
(tr)

2!
∆2t + . . . +

pK(tr)

K!
∆Kt, |∆t| ≤ T

2
(4)

where pk(tr), k = 1, . . . , K is the kth order derivative of p(t) computed at a reference time,
which is assumed to be at the center of an acquisition duration T.

Based on signal acquisitions, coefficients of the Taylor series related to the rth reference
time can be estimated by the weighted least-squares (WLS) method [111]. WLS assumes the
fundamental frequency to be equal to the nominal frequency. The theoretical background
behind this approach can be found in [35,110]. Note that improvements of TWLS have been
proposed, which allow dealing with the issue of off-nominal fundamental frequency [82].
Moreover, a real-valued TWLS has been proposed and demonstrated to be efficient for
phasor estimation in [35]. TWLS is effective in dynamic conditions since it shows shorter
synchrophasor and ROCOF estimate response times. However, this technique suffers from
a poor ability to suppress harmonics, inter-harmonics, and wideband noise in a short data
acquisition length.

3.1.3. Kalman Filtering

A Kalman filter is a recursive estimator that only requires the estimated state from the
previous time step and the current measurement to compute the estimate for the current
state. For synchronized phasor and frequency measurements, state variables are obtained
from Taylor expansions of amplitudes and phase angles. Consequently, a dynamic model
can be established, which allows estimating frequency and synchrophasors based on the
Kalman filter theory, also known as linear quadratic estimation (LQE) [112].

Estimation of a synchronized phasor, frequency and ROCOF in time-varying condi-
tions using Kalman filtering has been introduced in several works [37,113]. Harmonics are
challenging when dealing with dynamic phasor estimation. Hence, many investigations
have been conducted to include harmonics in the state space, and the Taylor–Kalman filter
has been extended and enhanced to estimate both fundamental and harmonic phasors
under dynamic conditions [112,114].

3.2. Power Spectral Density Estimation Techniques

Techniques presented herein can be classified into two main categories: the non-
parametric techniques (precisely the periodogram and its extensions) and high
resolution techniques.

3.2.1. Periodogram and Its Extensions

The power spectral density (PSD) Px( f ) of a discrete-time signal is defined as the
Fourier transform of its auto-correlation function [115]. The periodogram is a PSD estimate
of a complex discrete-time wide sense stationary signal x[n] and it is expressed as follows:

P̂x(ω) =
1
N

∣∣∣∣∣N−1

∑
n=0

x[n]e
−jωn

Fs

∣∣∣∣∣
2

(5)
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where Fs is the sampling frequency and N is the number of samples.
The periodogram and its extensions are non-parametric methods, i.e., they do not

require any a priori knowledge about the signal. The periodogram is often implemented
using a Fast Fourier Transform (FFT) algorithm since it swiftly calculates the Discrete Time
Fourier transform (DTFT) [116]. The DTFT phasor estimator is given by

X̂ =
1√
N

N−1

∑
n=0

x[n]e
−jω̂on

Fs (6)

where the angular frequency estimate ω̂o is computed as follows:

ω̂o = arg max
ω

P̂x(ω) (7)

Since the DTFT is computed for a finite length signal, the frequency resolution of
the periodogram is low as it is equal to the inverse of the signal acquisition duration.
Moreover, the accuracy of the periodogram is limited under frequency, amplitude, and
phase variations. It should be noted that the periodogram is a biased (the distance between
the single parameter being estimated and the average of the estimates is not equal to zero)
and inconsistent estimator (when the data record length goes to infinity, the estimates
variance does not decrease to zero) of the PSD [117]. This limitation can be overcome if
several realizations xm[n] of the same random process x[n] are available. This is performed
using the Welch periodogram, which is defined as:

P̂w( f ) =
1
L

k=L

∑
k=1

P̂(k)
xw ( f ) (8)

where, P̂(k)
xw represents the periodogram of the windowed signal x[n]w[n− τk], where w[.]

is a time window (Hanning, Hamming, etc.) and τ is a time delay.
The Welch periodogram allows increasing the estimation performance [118]. However,

it decreases the spectral precision and resolution due to segmentation. Interpolated Discrete
Fourier Transform (IpDFT) and its improvements, mainly the enhanced IpDFT [119] and the
corrected IpDFT [120], are the most popular synchrophasor, frequency, and ROCOF estima-
tion algorithms that use the DTFT for PMU measurements due to their low computational
costs and the possibility to compensate for off-nominal frequency deviations [35,121].

3.2.2. High-Resolution Techniques

Parametric methods allow for higher resolutions than non-parametric methods in the
case where the signal acquisition duration is short [122]. Indeed, if an a priori signal model
can be assumed, parametric methods can be used to enhance the frequency resolution.
These techniques are generally called high-resolution methods and include three categories:
AutoRegressive Moving Average methods (ARMA), the subspace techniques, and the
maximum likelihood estimation.

Subspace Techniques

Subspace methods for PSD estimation include: MUltiple SIgnal Characterization (MU-
SIC) and Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT)
approaches [122]. These approaches assume the noise to be a white Gaussian noise with
zero mean and variance σ2 and use Singular Value Decomposition (SVD) of covariance
matrix of signal samples. Knowing the model order, it is possible to separate the signal
and noise subspaces and consequently estimate the PSD.

MUSIC is based on the EigenValues Decomposition (EVD) of the covariance matrix
Rxx of measurement data x[n] = [x[n], x[n + 1], . . . , x[n + M− 1]]T and the derivation of
the associated eigenvectors. The MUSIC algorithm is provided by Algorithm 1.
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Algorithm 1 MUSIC [123].

Require: N observations of the signal x[n].
1: Estimate the covariance matrix R̂x = 1

G ∑G−1
n=0 x[n]x[n]H . Where, N observations of x[n]

are used to construct G = N −M + 1 different subvectors, M is the length of the signal
x[n] and (.)H refers to Hermitian matrix transpose.

2: Perform the eigenvalues decomposition of the covariance matrix R̂x as follows

R̂x = VΣVH (9)

where, V is composed of the M orthonormal eigenvectors of R̂x, and Σ is a diagonal
matrix of the corresponding eigenvalues σk sorted in decreasing order.

3: Estimate the model order L using model order selection techniques [124].
4: Compute the cost function

J ( f ) =
1∥∥∥vH( f )N̂

∥∥∥2

F

(10)

where, ‖.‖F denotes the Frobenius norm and the column vector v( f ) is given by

v( f )H = [1, e
j2π f

Fs , e
2j2π f

Fs , . . . , e
(M−1)j2π f

Fs ] (11)

N̂ is composed of the M− L less significant eigenvalues σk spanning the noise sub-
space [125].

5: Frequency estimates f̂k correspond to the L largest peaks of J ( f ).
6: return Frequency estimates f̂k with 1 ≤ k ≤ L.

MUSIC gives the pseudo-spectrum. Indeed, unlike the periodogram, MUSIC com-
putes the signal frequency content without providing their amplitudes [126]. To overcome
this issue, RootMUSIC has been investigated. It allows estimating the discrete frequency
spectrum, along with the corresponding signal power estimates. Unfortunately, the com-
putational burden of MUSIC is higher compared with classical approaches. Moreover, its
performance depends on the covariance matrix estimate and the signal to noise ratio (SNR).
To reduce the computational cost of MUSIC, the ESPRIT algorithm has been presented.
Indeed, this technique is based on matrix eigenvalues calculation, which allows directly
computing the signal spectrum, rather than leading to an optimization problem, which is
the case for MUSIC [127]. The ESPRIT method is given by Algorithm 2. Since the ESPRIT
approach gives only the frequency content, least square estimation is usually used for the
frequency bin’s amplitude estimation [115].

These approaches are more appropriate for discrete spectra and provide high-resolution
frequency estimates. However, both techniques require the knowledge of the number of
the frequency components, and their performances degrade under low SNR.
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Algorithm 2 ESPRIT [123].

Require: N observations the signal x[n].
1: Estimate the covariance matrix R̂x = 1

G ∑G−1
n=0 x[n]x[n]H . Where N observations of x[n]

are used to construct G = N −M + 1 different subvectors, M is the length of the signal
x[n] and (.)H refers to Hermitian matrix transpose.

2: Perform the eigenvalues decomposition of the covariance matrix R̂x as follows

R̂x = VΣVH (12)

where V is composed of the M orthonormal eigenvectors of R̂x, and Σ is a diagonal
matrix of the corresponding eigenvalues σk sorted in decreasing order.

3: Estimate the model order L using model order selection approaches [124].

4: Estimate the signal subspace Ŝv composed of eigenvectors corresponding to the L
largest eigenvalues.

Ŝv1 = [IM−1 0]Ŝv
Ŝv2 = [0 IM−1]Ŝv

(13)

5: Perform the eigendecomposition of Ŝv12 = [Ŝv1 Ŝv2]

Ŝv12 = PΛPH (14)

and partition P into L× L submatrices as follows

P =

[
P11 P12
P21 P22

]
(15)

6: Compute Ψk the eigenvalues of Φ = −P12P22
−1

7: Frequency estimates are given by

f̂k =
∠(Ψk)

2π
(16)

where, ∠(.) corresponds to phase angle.
8: return Frequency estimates f̂k with 1 ≤ k ≤ L.

Maximum Likelihood Estimation

Statistical performance of the previously presented frequency estimation methods are
inherently suboptimal and critically degrade under off-nominal conditions. To overcome
this issue, the maximum likelihood estimation has been proposed. Indeed, the MLE has
the distinct advantage of being asymptotically optimal for large enough data records [128].
Under white Gaussian noise assumption, the MLE for the fundamental frequency and the
complex phasor is given by [129,130]

{ω̂0, Ŝ} = arg max
ω0,S
‖X−G(ω)S‖2

F (17)

where:

• X is a N × 3 matrix containing the measured three-phase samples and is given by

X =

 x1[0] x2[0] x3[0]
...

...
...

x1[N − 1] x2[N − 1] x3[N − 1]

 (18)
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• G(ω) is a N × 2 real-valued matrix and is given by

G(ω) =

 1 0
...

...
cos[(N − 1)ω0] sin[(N − 1)ω0]

 (19)

• S is a 2× 3 real-valued matrix given by

S =

[
a1 cos(Φ1) a2 cos(Φ2) a3 cos(Φ3)
−a1 sin(Φ1) −a2 sin(Φ2) −a3 sin(Φ3)]

]
(20)

• ‖.‖2
F is the Frobenius norm.

It is worth noticing that this optimization problem can be divided into two steps,
which are: (1) estimation of ω0 by maximizing a one-dimensional function that can be
easily optimized based on the Newton–Raphson algorithm, for instance [129], and (2)
estimation of S, which is computed by replacing ω0 with its estimate ω̂0. This approach
allows taking the benefits of the multi-dimensional nature of electrical signals. Moreover, it
gives a high performance under noisy environments, harmonics, interharmonics, and off-
nominal operating conditions, which meet the requirement of the IEEE std. C37.118.2011
standard [129].

3.3. Demodulation Techniques

Demodulation techniques rely on the estimation of the analytic signal z[n] of a
real-valued signal x[n]. These techniques can be classified into two categories: mono-
dimensional and multi-dimensional techniques [131].

Let us denote x[n] = a[n] cos[Φ[n]] a real-valued signal corresponding to a single-phase
electrical signal (voltage or current). The corresponding analytic signal is given by

z[n] = a[n]ejΦ[n] (21)

Based on the analytic signal, the instantaneous amplitude (IAm) a[n] > 0 and the
instantaneous frequency (IF) f [n] > 0 can be simply be estimated as

â[n] = |z[n]| (22a)

f̂ [n] =
1

2π
(∠(z[n + 1])−∠(z[n]))× Fs (22b)

where Fs is the sampling rate and |.| and ∠(.) are the modulus and argument of a complex-
valued signal z[n], respectively.

3.3.1. Mono-Dimensional Techniques

The mono-dimensional techniques require a 1-D signal in order to compute the IA
and IF.

Synchronous Demodulator

To detect the modulation introduced by PQ disturbances in power systems, a syn-
chronous demodulation can be performed to estimate IA and ROCOF. A synchronous
demodulator is also known as a Frequency Down-Conversion and Low-Pass Filtering
(DCF) technique [38], which is described in the IEEE/IEC Standard 60255− 118− 1 : 2018.
Let us consider that the instantaneous phase is given by: Φ[n] = 2π f0n + ϕ[n] and assume
that the fundamental frequency f0 is known, which is usually the case for power grid
signals (50 or 60 Hz) [122]. The synchronous demodulation is based on multiplying the
signal x[n] by two conjugate reference signals cos(2π f0n/Fs) and sin(2π f0n/Fs). Low-pass
filtering of the output gives two low-frequency signals that correspond to IA and IF. A
Butterworth low-pass filter with cut-off frequency around the nominal frequency can be
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used to compute the direct or quadrature components. The SD scheme is illustrated in
Figure 6 [132].
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The discrete time analytic signal can be computed as follows

zs[n] = xs
1[n] + jxs

2[n] = a[n]ejϕ[n] (23)

One of the drawbacks of the SD, i.e., DCF, approach is the filtering stage tuning and a
slow convergence [133]. Moreover, IA and ROCOF estimation performance depends upon
the chosen low-pass filter and assumes preliminary fundamental frequency measurement,
mainly using IpDFT.

Hilbert Transform

Hilbert transform (HT) is a widely used technique in the signal processing community
for the computation of the analytic signal. The Hilbert transform for a discrete signal x[n]
is given by [134]

xh[n] =
∞

∑
−∞

h[n−m]x[n], (24)

where h[n] is an impulse response, which is defined as

h[n] =

{
2
π

sin2( πn
2 )

n , n 6= 0,
0, n = 0.

(25)

Figure 7 shows how a discrete-time Hilbert transformer system can be used to form a
complex analytic signal, which is simply a pair of real signals [135].
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The Bedrosian theorem states that the uniqueness of the IF and the IA is satisfied if
and only if the spectra of the IA and the sinus of the instantaneous phase are disjoint as
depicted by Figure 8 [136]. Assuming Bedrosian conditions are satisfied, the analytic signal
zh[n] associated with the real valued signal x[n] is defined as [137].
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zh[n] = x[n] + jxh[n] = a[n]ejΦ[n] (26)

It is worth mentioning that the Hilbert transform can be efficiently calculated for a
real valued N-observations discrete time signal using the FFT algorithm [138]. One of the
drawbacks of HT is the border effect [73].

Teager Energy Operator

The discrete-time Teager energy operator (TEO) is given by [139]

Ψ(x[n]) = x2[n]− x[n + 1]x[n− 1] (27)

TEO allows computing the IF and IA of a modulated signal without computing the
analytic signal [140]. From the previous equation, it can be seen that the TEO is a local
operator, which allows capturing the energy fluctuations with good time resolution since it
requires only three samples (x[n− 1], x[n], and x[n + 1]). The Energy Separation Algorithm
(ESA) allows estimating the IA and IF of a signal based on the TEO and is given by:

a[n] ≈
√√√√ Ψ[x[n]]

1−
(

1− Ψ[x[n]−x[n−1]]
2Ψ[x[n]]

)2 (28a)

f [n] ≈ 1
2π

arcos
(

1− Ψ[x[n]− x[n− 1]]
2Ψ[x[n]]

)
(28b)

The ESA offers interesting properties since it has less computational burden and has
better time resolution than other demodulation techniques. The main disadvantage of this
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operator is its sensitivity to noise and model mismatch. Moreover, it assumes that the esti-
mated IF does not vary too fast or too greatly compared to the nominal frequency [141,142].

3.3.2. Multi-Dimensional Techniques

The multi-dimensional techniques exploit the three-dimensional nature of electrical
signals in power systems.

Let us denote: x[n] = [x1[n], x2[n](t), x3[n]]T the 3× 1 vector composed of the three
phase electric signals measurements, which can be expressed as follows:

x1[n] = d1 × a[n] cos[Φ[n]]
x2[n] = d2 × a[n] cos[Φ[n]− 2π

3 ]

x3[n] = d3 × a[n] cos[Φ[n]− 4π
3 ]

(29)

where d1, d2 and d3 correspond to the phase unbalance parameters.

Concordia Transform

Concordia transform (CT) is a multi-dimensional linear transform, which allows
extracting two orthogonal components from three-phase voltages or currents assuming
a balanced three-phase system. Let us denote xc[n] =

[
xc

1[n], xc
2[n]

]T the two Concordia
components, CT can be expressed as follows:

xc[n] =
[

xc
1[n]

xc
2[n]

]
=

√
2
3

[√
2√
3
− 1√

6
− 1√

6
0 1√

2
− 1√

2

]
x[n] (30)

Under the assumption of a balanced three-phase system, the analytic signal zc[n] is
given by [143]

zc[n] = xc
1[n] + jxc

2[n] = a[n]ejΦ[n] (31)

The main drawback of CT relies on the assumption of a balanced power system,
which makes it unsuitable for most PQ disturbance analyses. Indeed, this assumption is
not applicable for three-phase power systems under abnormal operating conditions [144].

Principal Component Analysis

Principal Component Analysis (PCA) is a statistical approach for reducing the di-
mensionality of dataset. Indeed, PCA transforms a number of correlated signals into a
small number of uncorrelated components, called the principal components and denoted

xp[n] =
[

xp
1 [n], xp

2 [n]
]T

. PCA of a discrete signal x[n] can be mathematically expressed
as follows:

xp[n] =
[

xp
1 [n]

xp
2 [n]

]
= βΛ

−1
2 STx[n] (32)

where β is a scaling term given by

β =

√
Tr[Rx]

3
(33)

where, Tr[.] corresponds to the sum of elements of the main diagonal. The covariance
matrix Rx of x[n] can be expressed as follows:

Rx = E[x[n]xT [n]] = UΛUT (34)

with, Λ and U = [S G] are matrices composed of the eigenvalues and eigenvectors of
Rx, respectively.
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Under the assumptions that Φ[n] is uniformly distributed in [0; 2π] and that a[n] and
Φ[n] are statistically independent, the analytic signal zp[n] can be estimated up to a phase
indetermination as follows:

zp[n] = xp
1 [n] + jxp

2 [n] = a[n]ejΦ[n]e−jθ . (35)

where, θ is an unknown phase.
As opposed to the Concordia transform, PCA is applicable for three-phase systems

analysis regardless of the balance assumption [145]. Consequently, PCA is less restrictive
and is interesting for unbalanced power systems analysis and PQ disturbances detection.

3.4. Time-Frequency, Time-Scale Analysis

Spectral estimation techniques are badly suited for PQ monitoring under nonstationary
environments due to transient or faulty operating conditions. In nonstationary conditions,
disturbance detection is usually performed based on time-frequency and time-scale repre-
sentations. These approaches include and are not limited to: Short-Time Fourier Transform
(STFT), Continuous Wavelet Transform (CWT), Wigner–Ville Distribution (WVD) and
other quadratic distributions, and the Hilbert–Huang Transform (HHT). For more details
regarding time-frequency representations, readers can refer to [146–148].

3.4.1. Spectrogram

The spectrogram is based on the computation of the Short Time Fourier Transform
(STFT), Sx[m, l], of a signal x[n] and is defined as the squared absolute value of the STFT,
i.e., |Sx[m, l]|2. It assumes the electrical signals to be quasi-stationary over a short time
duration and is derived by computing the Fourier transform of consecutive time-frames,
which may be overlapping. STFT is performed based on three stages as follows:

• The electric signal xk[n] is divided into time segments,
• A time window h[.] is applied to each segment to reduce side-lobe effects. Classical

choices for h[n] is the rectangular, Hanning, Hamming or Gaussian windows.
• PSD estimation of each windowed time segment is calculated based on the

Fourier transform.

STFT leads to a 3-D representation, which allows determining the sinusoidal frequency
and phase content of local sections of an electric signal as it changes over time. Let us
consider discrete signals of period N and a time window h[n] (symmetric discrete signal
of period N) with norm ‖h‖ = 1. The discrete STFT is mathematically expressed as
follows [149]:

Sx[m, l] =
N−1

∑
n=0

x[n]h[n−m] exp
(
−j2πln

N

)
(36)

For each 0 ≤ m ≤ N, Sx[m, l] is calculated for 0 ≤ l ≤ N with N fast Fourier
transform (FFT) procedures of size N. The STFT is a linear, transform i.e., Sx+y[m, l] =
Sx[m, l] + Sy[m, l]. The length of the window h[n] determines the time and frequency
resolution of the time–frequency representation. STFT is a mono-resolution approach
(Figure 9a), i.e., the resolution remains the same in the time–frequency plane. In fact,
a short time window leads to a representation, which is fine in time but coarse in the
frequency domain. Contrariwise, a long window leads to a representation, which is coarse
in time but fine in the frequency domain regardless of the frequency range [150]. This
trade-off is known as the Heisenberg–Gabor uncertainty space [146].

3.4.2. Scalogram

The Scalogram is based on the computation of the Discrete Wavelet Transform (DWT).
DWT is performed by breaking up the signal into shifted and scaled versions of a mother
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wavelet (Haar, Daubechies, Mexican Hat, etc.) and is mathematically expressed as fol-
lows [149]:

Tx[n, al ] =
N−1

∑
m=0

x[m]ξ∗l [m− n] (37)

where (.)∗ denotes the complex conjugate, al is the scale, and ξl [n] is the mother wavelet.
A discrete wavelet scaled by al is defined by

ξl [n] =
1√
al

ξ
( n

al

)
(38)

The DWT is a linear transform, i.e., Tx+y[n, al ] = Tx[n, al ] + Ty[n, al ]. DWT leads to a
time-scale representation as it gives the signal time-evolution at different scales. However,
there is a direct link between the scale and frequency. Indeed, if the central frequency of the
mother wavelet ξ(t) is f0, the scale al focuses on the frequency content at f = f0/al . Unlike
STFT, DWT is a multi-resolution technique, which provides high time resolution at high-
frequencies and high frequency resolution at low frequencies (Figure 9b). Unfortunately,
the wavelet transform is also limited by the Heisenberg–Gabor principle. Note that the

scalogram is defined as the squared absolute value of the DWT, i.e.,
∣∣∣Tx[n, al ]

∣∣∣2 [75,151].

∆ f

∆t

Time (sec.)

Fr
eq

ue
nc

y
(H

z)

(a)

Time (sec.)

Fr
eq

ue
nc

y
(H

z)

(b)

Figure 9. Time-frequency resolution. (a) Short Time Foutier Transform based mono-resolution
approach. (b) Discrete Wavelet Transform-based multi-resolution approach.

3.4.3. Wigner–Ville and Other Quadratic Distributions

The STFT and DWT are linear transforms, which focus on the decomposition of the
electrical signal samples. The Wigner–Ville distribution (WVD) allows the decomposition
of the electrical signal energy in the time-frequency plane [152]. The WVD of a discrete
signal x[n] is defined by [149]:

Wx,x[n, k] =
N−1

∑
p=−N

x
[
n +

p
2

]
x∗
[
n− p

2

]
exp

(
−j2πkp

N

)
(39)

One of the major advantages of WVD is that the time–frequency resolution of the
representation is not limited by the Heisenberg Gabor inequality. However, the WVD is a
nonlinear transform, i.e., W(x+y),(x+y)[n, k] 6= Wx,x[n, k] + Wy,y[n, k], which introduces in-
terference terms (artefacts) that may lead to misleading interpretations. In order to remove
these cross-terms, a smoothed version of the Wigner–Ville distribution has been proposed.
Moreover, the analytic signal is often used instead of the signal itself for interference terms
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mitigation. Furthermore, several extensions of the WVD for interference reduction have
been introduced at the expense of reduced resolution [152,153]. These extensions have
been unified by the Cohen’s class of time–frequency distributions [154]. The Cohen’s
class includes the Pseudo Wigner–Ville, the Choi–Williams, and the Zhao–Atlas–Marks
Distributions [155].

3.4.4. Hilbert–Huang Transform

The Hilbert–Huang Transform (HHT) is well suited for nonstationary and nonlinear
signals. It is the result of the Empirical Mode Decomposition (EMD) and the Hilbert
spectral analysis (HSA) of signal measurements [85,156,157]. It is composed of three stages,
as follows:

• The electrical signal is decomposed into a sum of amplitude- and frequency- modu-
lated mono-component sine waves using an EMD algorithm. EMD has been proposed
by Huang and is described by the following algorithm [158]:

– Identification of all extrema of x[n]
– Interpolation between minima (resp. maxima) ending up with some envelope

emin[n] (resp. emax[n]).
– Computation of the mean:

m[n] =
emin[n] + emax[n]

2
(40)

– Extraction of the detail:
d[n] = x[n]−m[n] (41)

– Iteration on the residual m[n].

In practice, this algorithm has to be refined by a shifting process until d[n] can be
considered as zero-mean. After this procedure, the detail d[n] corresponds to an amplitude-
and frequency-modulated (AM/FM) sine wave called Intrinsic Mode Function (IMF). By
iterating the algorithm on the residual m[n], the EMD extracts several IMFs until a stopping
criterion is reached.

• Instantaneous amplitude and instantaneous frequency of each IMF are extracted
using a demodulation technique described in Section 3.3. In general, to achieve IA
and IF calculation, the Hilbert transform is used. In this case, the transformation is
called HHT.

• The time-frequency representation is obtained by displaying the time evolution of the
instantaneous amplitude and frequency for each sine wave in the time-frequency plane.

3.5. Discussion

The characterization of power system disturbances requires frequency and phasor
estimation. This can be achieved based on PSD estimation techniques and time–frequency
representation as previously discussed. PSD estimation techniques include two categories,
which are the non-parametric and parametric approaches and are more adequate for steady
state and stationary signals analysis. In the case of nonstationary signals, time–frequency is
used to exhibit the varying behavior of the fundamental frequency, phasor, and harmonics.
Figure 10 provides a classification of the PSD estimation methods and time–frequency
analysis techniques for power quality monitoring [123].

Demodulation approaches for PQ monitoring present the advantage of being able to
track the evolution of instantaneous amplitude and instantaneous frequency of the power
system. These two parameters are of huge interest for PQ disturbances detection. Figure 11
provides an overview of the demodulation technique to use for PQ monitoring based
on electrical signals analysis [131]. Especially, in the case of multi-component signals, a
filtering step is required in order to separate modes. In the case where the modes cannot
be separated using filtering, more sophisticated techniques are required such as Empirical
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Mode Decomposition (EMD), Ensemble EMD (EEMD) [159,160] and Variational Mode
Decomposition (VMD) [161,162].
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Figure 10. PQ features extraction based on power spectral density estimation and time-frequency
representation.
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Figure 11. Demodulation techniques for PQ monitoring.

The Empirical Mode Decomposition (EMD) has been originally proposed by Huang [158]
and Variational EMD (VMD) has been proposed by Dragomiretskiy and Zosso [163]. Both
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EMD and VMD decompose a signal x[n] into a small numer L of narrowband components
as follows:

x[n] =
L

∑
k=1

uk[n] (42)

where, uk[n] = ak[n] cos(Φk[n]) is an amplitude and frequency modulated signal, termed
as Intrinsic Mode Function (IMF). Each IMF has a positive and slowly varying envelope
an instantaneous frequency fk[n] =

dΦk [n]
dt that is nondecreasing, varies slowly, and is

concentrated around a central value.
Using the EMD method, any nonstationary and nonlinear signal can be decomposed

into a finite and often small number of components (IMFs). These IMFS form a complete
and nearly orthogonal basis for the original signal. Unlike EMD, the variational mode
decomposition technique simultaneously computes all the mode waveforms and their
central frequencies [164,165]. The process consists of finding a set of uk[n] and fk[n] that
minimizes the constrained variational problem [163]. EMD suffers from mode mixing, end
effects, and best IMF selection and uniqueness. The mode mixing issue has been dealt with
by introducing Ensemble EMD (EEMD) [166].

After IMFs computation and performing the demodulation based on the classical
approaches (SD, HT, CT, PCA, etc.), the analytic signal and the corresponding IA and IF
must be appropriately analyzed to assess the PQ disturbance. Several papers have proposed
to monitor the deviation of the analytic signal from a circle in the complex plane [167]. This
approach is appropriate for amplitude modulated electrical signals but is not convenient
for frequency modulated signals as the disturbance only affects the rotational speed of
the phasor in the complex plane. Hence, in order to perform a disturbance detection, the
variance of the IA, a[n] and the IF, f [n] can be used for disturbance analysis.

4. Disturbances Classification Techniques

Disturbance characterization requires two steps, which are event detection by de-
termining the starting and ending time of the event, and event classification. Power
quality disturbance classification is of paramount importance as it allows identifying
and classifying power system abnormal operating conditions. Several approaches have
been investigated in the literature for power quality monitoring and behavior analysis.
These techniques can be classified into two classes: Conventional approaches and machine
learning approaches.

4.1. Conventional Approaches for Quality Monitoring

Power quality disturbances such as voltage sags and swells are generally characterized
based on the amplitude and duration. Almost all classical approaches do not require phasor
(phase angle) and other parameters for fault characterization. In this subsection, three
classical approaches are briefly discussed, which are ABC classifier, symmetrical component
classifier and model order selection method.

4.1.1. ABC Classifier

ABC classification is used to characterize voltage sag types [99,168]. It was developed
to analyze the propagation of a voltage sag from transmission to distribution networks
when a disturbance propagates through a transformer. Voltage sags classification is derived
based on the combination of the three following factors [83]:

• Fault type, which includes single-line-to-ground fault, line-to-line fault, double-line-
to-ground fault, three-phase fault,

• Transformer winding connection,
• Load connection.

There are seven basic voltage sag types according to the ABC classification, as depicted
by Figure 12.
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4.1.2. Symmetrical Component Classifier

Symmetrical component classification is more general than the ABC classifier. It gives
a direct relationship with measured voltages but is harder to understand. Consequently, a
translation to the ABC classification may be more adequate for many applications. It mainly
allows classifying the six possible sub-types of voltage sag of type C and type D [84]. Sym-
metrical components have been introduced by Fortescue in order to analyze three-phase
systems under both normal and abnormal (disturbances presence) operating conditions.
This transform allows obtaining a sparse mathematical representation of the three-phase
system, namely the space vector and homopolar component. To define these two quantities,
let us consider the following three-phase signals (voltages or currents) model:

xk[n] =
H

∑
h=1

akh cos(h×ω0n + φkh) + bk[n] (43)

where ω0 is the angular fundamental frequency, akh and φkh are the amplitude and the
initial phase of the kth phase (k = 0, 1, 2) and hth harmonic (h = 1, 2, . . . , H), and bk[n] is the
additive noise.
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Figure 12. Voltage sag types according to [81] (Sold line circle corresponds to nominal amplitude before fault).
Figure 12. Voltage sag types according to [99] (solid line circle corresponds to the nominal amplitude
before fault).
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Applying the Fortescue transform (symmetrical components analysis) allows obtain-
ing the following electrical quantities of interest:

[
x[n]
xz[n]

]
=

2
3

[
1 ej 2π

3 ej 4π
3

1
2

1
2

1
2

]x0[n]
x1[n]
x2[n]

 (44)

where, x[n] is termed the space vector and xz[n] corresponds to the hompolar com-
ponent (zero-sequence), which is null for balanced and non-connected neutral point
three-phase systems.

Fundamental Frequency Deviation

In Europe, the power grid fundamental frequency value is equal to 50 Hz, with
acceptable frequency deviation equal to ±1 Hz [16,169]. Power grid frequency variations
are totally unpredictable and are mainly due to the mismatch between electricity production
and consumption. Indeed, electricity storage, in any significant quantity, is very limited
so it must be consumed at the instant it is generated. Measurement and evaluation of
fundamental frequency deviation from its nominal value can be assessed through the
ROCOF, which is defined as follows:

ROCOF =
1

2π

dω0

dt
(45)

Fundamental Amplitude and Phase Shift Related Disturbances

A power grid is a three-phase system that has a mutual coupling between phases. A
balanced three-phase system is composed of three sinusoidal waveforms characterized
by the same fundamental frequency that is equal to the nominal value, amplitudes equal
to 1 pu, and phase shift between phases equal to ±120◦. If one of these conditions is
not satisfied, the system is considered as unbalanced. Unbalance is generally due to
asymmetrical loads: active loads cause amplitude deviations and reactive loads cause
phase shifts to vary from the normal value of ±120◦. The unbalance is estimated based on
the computation of symmetrical components as follows:

U f =

∣∣∣∣∣ x0[n] + x1[n]ej 4π
3 + x2[n]ej 2π

3

x0[n] + x1[n]ej 2π
3 + x2[n]ej 4π

3

∣∣∣∣∣× 100 (46)

Voltage sags are the most frequent disturbances in a power grid and therefore the most
troublesome for the industry. Indeed, this disturbance can lead to production losses and
even degradation of product quality. In most cases, voltage sags are caused by short circuits.
Depending on the type and location of the short-circuit, as well as the transformer’s neutral
regime and the measurement method (between phases or between phases and ground),
different types of voltage dips can be distinguished (signatures). Specifically, a distinction
can be made between the single-phase, two-phase and three-phase voltage dips. The single
and two-phase voltage sags are also called unbalanced. The unbalance depends on phase
angle shifts and amplitudes of the phases affected by the voltage dip.

Overvoltages (voltage swell) and overcurrents can also affect the power quality in a
power grid. Overvoltages are caused by large load triggering, voltage regulator abnormal
operation, resonance and maneuvers. Overcurrents are mainly due to short-circuits and
can lead to voltage sag. In some circumstances, voltage sags and swells can appear at the
same time. In this case, they are characterized by voltage drops on one or two phases and
overvoltages on the other phases. This power quality disturbance type is mainly caused
by short-circuits affecting three-phase systems with non-connected neutral point or high
impedance earthed systems. In this case, only the homopolar component is affected by the
fault due to abnormal displacement voltage of a neutral point.
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Considering the particular case where only the fundamental frequency component
exists, three-phase systems are composed of sinusoidal waveforms (H = 1) at the same
fundamental frequency. In this case, the space vector is expressed as follows:

x[n] = xp[n]ejω0n + xn[n]e−jω0n (47)

where, xp[n] =
∣∣xp[n]

∣∣ejφp and xn[n] = |xn[n]|ejφn are phasors rotating in the complex
plane counterclockwise and clockwise directions, respectively.

In the case where one of the two phasors is null, the space vector describes a circle in
the complex plane. In this case, if the homopolar component is zero, the three-phase system
is considered as balanced and corresponds to the normal operating conditions. However,
in case of fundamental frequency related disturbances, the space vector takes the form of
an ellipse in the complex plane with parameters as follows

rmax = xp[n] + xn[n]
rmin = xp[n]− xn[n]
φtilt =

1
2
(
φp + φn

) (48)

Harmonics Disturbances

Harmonic disturbances are due to the integration into the power grid of nonlinear
loads such as power electronics equipment (motor drives, inverters, static converters,
etc.). Harmonics cause heating, which increases power system losses and reduces the life
span of the equipment. They can also cause equipment malfunctioning (synchronization,
switching) and measurements errors. In the case of harmonics disturbances, the space
vector can be expressed as follows:

x[n] =
H

∑
h=1

[
xp[n]ejhω0n + xn[n]e−jhω0n

]
(49)

Harmonic disturbances can be analyzed based on the spectral analysis of the space
vector and homopolar component. Harmonics can be localized in the space vector or
homopolar component spectrum depending on the harmonics order. Indeed, when har-
monics are distributed in a way that is uniform in all three phases, they form three-phase
systems, namely, direct, inverse or homopolar depending on harmonics order. Thus, har-
monics of rank 3× n + 1 with n ∈ N form the direct system and appear only for positive
frequencies in the space vector spectrum. Harmonics of rank 3× n− 1 with n ∈ N form
the inverse system and consequently appear only on the negative frequencies of the space
vector spectrum. The harmonics of rank 3× n with n ∈ N form the homopolar system and
therefore only appear in the homopolar component spectrum. In addition, the amplitude
of the detected harmonics in the spectrum of the space vector or that of the homopolar
component is equal to the amplitude of the harmonics in the original three-phase system.
However, if harmonics are no longer evenly distributed over the three phases, they no
longer purely form direct, inverse or homopolar systems. Consequently, harmonic compo-
nents of the same rank appear both on the positive and negative frequency side of the space
vector spectrum, as well as on the spectrum of the homopolar component. The analysis of
the frequency content of the space vector and the homopolar component allows directly
obtaining the average amplitude and the level of unbalance of each harmonic in the actual
three-phase power system.

4.1.3. Information Criteria Rules

In [97], the authors proposed a novel approach for power quality disturbance classi-
fication based on the analysis of the three-phase signals. The focus is placed on voltage
sags and swells, which are pre-classified into four classes that depend upon the non-zero
symmetrical components under quasi-stationary conditions as follows:
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• C1: Zero and negative sequences are null,
• C2: Zero sequence is null,
• C3: Negative sequence is null,
• C4: All sequences are not null.

This pre-classification stage is formulated as a model order selection problem and
solved using information criteria rules [124]. The proposed approach has been evaluated
for various signal acquisition durations, signal to noise ratios (SNR), quasi-stationary con-
ditions and total harmonic distortion values. For more detail regarding the mathematical
development, the readers are encouraged to refer to the following paper [97]. Note that the
proposed classification is related to the commonly used ABC classification, as depicted by
Table 3.

Table 3. Link between classes and ABC classification.

Type Balanced or A C, D, F and G H and I B and E

Proposed class C1 C2 C3 C4

4.2. Machine Learning Techniques

Power quality monitoring systems allow continuous tracking of voltage and current in
the transmission and distribution grid, and then intelligent systems analyze and interpret
raw data with minimum human intervention. Moreover, Internet of Things (IoT) provides
a platform for deploying a network of PQ monitoring devices for accurate and reliable
data acquisition. Artificial intelligence (AI) techniques have been proposed and proven
to be useful tools that allow providing real-time information for diagnostics and problem
isolation, mainly during the decision process [170]. The AI techniques include several
sophisticated approaches such as Fuzzy expert systems, artificial neural networks, support
vector machines, and many others. These approaches have been widely investigated in
power system monitoring for PQ disturbance classification, protection and consumption
profile identification.

4.2.1. Artificial Neural Networks Technique

An artificial neural network (ANN) is the component of artificial intelligence that is
meant to behave like interconnected human brain cells. Indeed, its design is schemati-
cally inspired by the operation of biological neurons of the human brain. The multilayer
perceptron (MLP) is a class of feedforward artificial neural networks that is illustrated by
Figure 13. An MLP is composed of at least three layers of nodes: an input layer, a hidden
layer and an output layer. Each node of the hidden layers and output layer is a neuron that
uses a nonlinear activation function. One neuron is the result of applying the nonlinear
transformations of linear combinations of inputs xi, weights wi and biases b, as depicted by
Figure 14. MLP is a supervised machine learning approach that uses a learning technique
called backpropagation for training and allows distinguishing data that is not linearly
separable by linear perceptron. Indeed, ANNs require a learning database composed of
actual case examples that are used for the training stage [171]. The learning database must
be sufficiently large depending on the structure and complexity of the problem under study.
However, a large learning database can lead to an overfitting problem and thus degrad-
ing the neural networks performance (the neural network loses its ability to generalize).
Indeed, there is a trade-off between generalization and over-training.
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Figure 13. Multilayer perceptron (MLP) with 4 inputs, 2 hidden layers and 2 outputs.
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PQ disturbance detection and classification, for both single and multiple disturbances
under nonstationary and noisy environments, have been dealt with in several papers
in the literature. Indeed, in [85,162,165], empirical mode decomposition and variational
mode decomposition associated with Hilbert transform has been proposed for PQ fea-
tures processing. Then, an online-sequential extreme learning machine is implemented
to recognize the single as well as multiple power quality events. The proposed approach
has been proven to have high anti-noise performance, less computational burden and
high classification accuracy. Monedero et al. [88] and Valtierra-Rodriguez et al. [87] have
investigated a challenging task related to the use of ANNs for real-time detection and
classification of single and combined power quality disturbances.

4.2.2. Support Vector Machines Technique

In machine learning, support vector machines (SVM) are a set of supervised learning
approaches with associated learning algorithms that are used for input data clustering,
pattern recognition, and regression analysis [171]. For classification, let us suppose a given
data point belonging to two separate classes. In support vector machine theory, each data
point is considered as a p-dimensional vector and a (p− 1)-dimensional hyperplane is
used to separate such data points. Since there are many hyperplanes that allow classifying
the data, the best choice is the one maximizing the distance from it to the nearest data
point on each side (largest margin) as depicted by Figure 15. Similarly to ANNs, the SVM
requires a training stage and actual labeled examples to set the model. SVM is based on
statistical learning theory and consists of two steps. First, a nonlinear transform (φ) of
input data to high dimensional space is performed. Then, an optimal hyperplane or set of
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hyperplanes in a high- or infinite-dimensional space allowing to linearly classify the input
data in this high-dimensional space is determined.

Many papers in the literature have proven that SVMs are well suited to deal with
power system disturbances classification. In [172,173], the authors proposed the combina-
tion of a non-dominated sorting genetic algorithm for an effective features extraction from
power signals and a directed acyclic graph support vector machine compared with several
other machine learning techniques for disturbance classification. In [174], an adaptive
chirp mode pursuit has been performed to extract useful features, and a grasshopper
optimization algorithm is used to optimize the parameters of the SVM that are used for
power quality disturbance classification. Moreover, in [175], the authors have compared
SVM and MLP for voltage sag detection and classification under various PQ disturbance
conditions for both synthetic and real data. Feature engineering stages have been per-
formed using independent component analysis and high order statistics. Both approaches
have showed good results for low acquisition duration (less than on half the cycle of the
fundamental frequency). The support vector machine-based approach has been proposed
in [176], which allow discriminating between islanding and grid fault events for a real-life
practical photovoltaic plant.
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4.2.3. Fuzzy Expert Systems

Unlike binary logic, fuzzy logic is a form of probabilistic logic, which is used to imitate
human reasoning and cognition. Indeed, fuzzy logic variables may have truth values that
ranges in degree from 0 to 1. Fuzzy logic is inspired by human reasoning to generalize
the traditional combinatory logic under uncertainty. The greater generality of fuzzy logic
is needed to deal with complex problems in the realms of search, question–answering
decision and control. An illustration of a rule-based expert system architecture is provided
in Figure 16. The fuzzy expert system uses fuzzy sets and fuzzy rules as a base rather than
boolean sets. A fuzzy set is fully defined by the corresponding membership functions and
fuzzy rules consist of human-like reasoning capabilities [177].
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The application of fuzzy expert systems for automatic power system fault detection
and classification was carried out by various authors in previous studies [178–181]. Fuzzy
expert systems for PQ monitoring purposes to classify events related to PQ disturbances
via fuzzy if-then rules [182]. Adaptive fuzzy logic systems use the learning capabilities
of ANNs or genetic algorithms to adjust model parameters and afterwards enhance the
global PQ disturbances monitoring system performance [180,183,184].

4.2.4. Deep Learning Approaches

Deep learning (DL) is a class of machine learning algorithms that is based on artificial
neural networks, specifically convolutional neural networks (CNN)s. CNNs consist of
convolution layers followed by fully connected neural networks. DL uses multiple layers
that allow to progressively extract higher level features from raw data. Indeed, signal
analysis and the feature selection requires an expert and can be inaccurate, which leads
to a low classification accuracy of multiple disturbances and a poor noise immunity. DL
architectures include deep neural networks, deep belief networks, graph neural networks,
recurrent neural networks and convolutional neural networks. Deep learning approaches
have the in-built capability to automatically learn optimal features from original input
signal [185]. Therefore, the time consumed by the feature extraction process in other feature
engineering is canceled. Most DL systems rely on training and verification data sets that
are annotated by humans.

The potential offered by DL in power system analysis is still under investigation.
Indeed, the automatic features extraction and the high pattern recognition capability of
these approaches pave the way for an extensive use for power system issue prediction,
detection and estimation. Hence, the last years have witnessed a big interest of researchers
in the field of power system monitoring for deep learning as a medium for power quality
enhancement and disturbancesmitigation [145,186–190]. Hence, in [191], an unsupervised
deep learning technique has been investigated for load profile management and classifica-
tion. In [192], a convolutional neural network has been proposed for direct load control of
a heterogeneous cluster of residential load. Moreover, in [193], authors have proposed a
voltage sag estimation approach based on a deep convolutional neural network. Specifi-
cally, the paper presents an approach that allowed to estimate voltage sag parameters for
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unmonitored buses in a grid regardless of the power system operating conditions, fault
characteristics and location.

4.3. Critical Analysis and Future Research Topics and Challenges

The choice of an appropriate machine learning approach for decision making is not
an easy task. Indeed, the application of machine learning for PQ monitoring requires
experts both in electrical engineering and machine learning technology. Experts will allow
addressing issues related to the complexity of the PQ disturbances to deal with the choice
of adequate measurement devices and the machine learning technique benchmarking and
tuning. Even though these technologies offer many opportunities that allow enhancing
the diagnosis reliability and effectiveness, it suffers from several drawbacks. Indeed,
the main drawback of machine learning techniques is the initial training stage, which
requires a large set of measurement databases for different PQ disturbances and various
operating conditions. This stage is critical for optimal operation and requires relatively
high computational effort. The black-box behavior of such approaches may be misleading
or produce results limited to a set of systems. Moreover, the performance of the machine
learning approaches depends on the selection of appropriate feature extraction techniques.

Dealing with PQ disturbance detection and classification is a topic of great interest
for both academia and industry. Some issues are still open and worth further investiga-
tions, such as the high-performance data processing technologies and analysis techniques
for intelligent decision-making in large-scale complex multi-energy systems, lightweight
machine learning-based solutions for fast classification, and so forth. It has been recently
suggested that quality of service (QoS) application requirements could be met considering
emerging new sensing technologies and embedded computing [61]. Moreover, in a smart
grid context, where hybrid energy systems interact with other system architectures at
different application levels, the use of advanced computing and communication technolo-
gies, e.g., edge computing, ubiquitous Internet of Things and 5G wireless networks, will
obviously improve the monitoring of smart grid conditions.

5. Conclusions and Prospects

This paper has reviewed the main approaches used for power quality monitoring
in smart grids. Two aspects have been taken into consideration, which are the feature
extraction techniques and classification and decision making approaches. Attempts have
been made to highlight current trends for PQ analysis based on advanced signal processing
and machine learning. An accurate choice of signal processing techniques for fault detection
and characteristic determination is a challenging issue. In fact, in transient, off-nominal
conditions, and under nonstationary operating conditions (flicker, spikes, notching, etc.),
a short data acquisition time is required, which affects the frequency estimate resolution
and amplitude estimate accuracy. Moreover, in a three-phase power grid, the electrical
signals (voltages and currents) are multi-dimensional in nature, which should be exploited
to enhance the statistical performance of fault feature extraction. It is highlighted that
despite the rich literature, the choice of a particular technique is not an easy task since
several parameters must be taken into account, which requires an expert of PQ monitoring
for appropriate analysis.

PQ disturbance monitoring requires post-processing algorithms to determine fault
characteristics (starting and ending time, duration, etc.), fault types, causes and potential
action that could be taken. Machine learning techniques have been widely investigated
in the last ten years for PQ monitoring and event classification. These include several
sophisticated algorithms such as support vector machine, artificial neural networks, fuzzy
expert systems, and many others. It is demonstrated that these approaches can effectively
deal with a huge amount of data issued from all sensors and PMUs on the power grid and
consequently improve the diagnosis procedure while taking benefits from previous power
grid events and disturbances.
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Abbreviations
The following abbreviations are used in this manuscript:

PQ Power Quality
PMU Phasor Measurement Unit
DSP Digital Signal Processing
IoT Internet of Things
MLE Maximum Likelihood Estimation
MUSIC Multiple Signal Classification
ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques
ARMA AutoRegressive Moving Average
EMD Empirical Mode Decomposition
DWT Discrete Wavelet transform
ANN Artificial Neural Network
SVM Support Vector Machine
CNN Convolution Neural Network
RNN Recurrent Neural Network
I-RNN Identity-Recurrent Neural Network
LSTM Long Short-Term Memory
GRU Gated Recurrent Units
CNN-LSTM Convolutional Neural Network-Long Short-Term Memory
AI Artificial Intelligence
SCADA Supervisory Control and Data Acquisition
GPS Global Positioning System
PDC Phasor Data Concentrator
CCN Central Control Network
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
TVE Total Vector Error
RMS Root Mean Square
PSD Power Spectral Density
FFT Fast Fourier Transform
DTFT Discrete Time Fourier transform
SVD Singular Value Decomposition
EVD EigenValues Decomposition
SNR Signal to Noise Ratio
IF Instantaneous Frequency
IAm Instantaneous Amplitude
TEO Teager energy operator
ESA Energy Separation Algorithm
CT Concordia Transform
PCA Principal Component Analysis
STFT Short-Time Fourier Transform
CWT Continuous Wavelet Transform
WVD Wigner–Ville Distribution
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HHT Hilbert–Huang Transform
HAS Hilbert Spectral Analysis
IMF Intrinsic Mode Function
VMD Variational Mode Decomposition
EEMD Ensemble EMD
SD Synchronous Demodulator
ROCOF Rate Of Change Of Frequency
MLP Multilayer Perceptron
DL Deep Learning
QoS Quality of Service
SCADA Supervisory Control And Data Acquisition
WAMS Wide Area Measurement System
IpDFT Interpolated Discrete Fourier Transform
DCF Down-Conversion and low-pass Filtering
TFT Taylor Fourier Transform
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54. Zečević, Ž.; Jokić, I.; Popović, T.; Krstajić, B. An efficient phasor and frequency estimation algorithm for wide frequency range.
Electr. Power Syst. Res. 2020, 180, 106124. [CrossRef]

55. Song, J.; Zhang, J.; Wen, H. Accurate Dynamic Phasor Estimation by Matrix Pencil and Taylor Weighted Least Squares Method.
IEEE Trans. Instrum. Meas. 2021, 70, 1–11.

56. Xu, S.; Liu, H.; Bi, T.; Martin, K. An improved Taylor weighted least squares method for estimating synchrophasor. Int. J. Electr.
Power Energy Syst. 2020, 120, 105987. [CrossRef]

57. Mahela, O.P.; Shaik, A.G.; Gupta, N. A critical review of detection and classification of power quality events. Renew. Sustain.
Energy Rev. 2015, 41, 495–505. [CrossRef]

58. Tu, C.; He, X.; Shuai, Z.; Jiang, F. Big data issues in smart grid—A review. Renew. Sustain. Energy Rev. 2017, 79, 1099–1107.
[CrossRef]

59. Mishra, M. Power quality disturbance detection and classification using signal processing and soft computing techniques: A
comprehensive review. Int. Trans. Electr. Energy Syst. 2019, 29, e12008. [CrossRef]

60. Hossain, E.; Khan, I.; Un-Noor, F.; Sikander, S.S.; Sunny, M.S.H. Application of big data and machine learning in smart grid, and
associated security concerns: A review. IEEE Access 2019, 7, 13960–13988. [CrossRef]

61. Rivas, A.E.L.; Abrão, T. Faults in smart grid systems: Monitoring, detection and classification. Electr. Power Syst. Res. 2020,
189, 106602. [CrossRef]

62. Khetarpal, P.; Tripathi, M.M. A critical and comprehensive review on power quality disturbance detection and classification.
Sustain. Comput. Inform. Syst. 2020, 28, 100417.

63. Ibrahim, M.S.; Dong, W.; Yang, Q. Machine learning driven smart electric power systems: Current trends and new perspectives.
Appl. Energy 2020, 272, 115237. [CrossRef]

64. Chawda, G.S.; Shaik, A.G.; Shaik, M.; Padmanaban, S.; Holm-Nielsen, J.B.; Mahela, O.P.; Kaliannan, P. Comprehensive review on
detection and classification of power quality disturbances in utility grid with renewable energy penetration. IEEE Access 2020,
8, 146807–146830. [CrossRef]

65. Gargoom, A.M.; Ertugrul, N.; Soong, W. A comparative study on effective signal processing tools for power quality
monitoring. In Proceedings of the 2005 European Conference on Power Electronics and Applications, Dresden, Germany,
11–14 September 2005. [CrossRef]

66. Karasu, S.; Saraç, Z. Classification of power quality disturbances by 2D-Riesz Transform, multi-objective grey wolf optimizer and
machine learning methods. Digit. Signal Process. 2020, 101, 102711. [CrossRef]

67. Khokhar, S.; Zin, A.A.B.M.; Mokhtar, A.S.B.; Pesaran, M. A comprehensive overview on signal processing and artificial intelligence
techniques applications in classification of power quality disturbances. Renew. Sustain. Energy Rev. 2015, 51, 1650–1663. [CrossRef]

68. Yilmaz, A.S.; Alkan, A.; Asyali, M.H. Applications of parametric spectral estimation methods on detection of power system
harmonics. Electr. Power Syst. Res. 2008, 78, 683–693. [CrossRef]

69. Zolfaghari, R.; Shrivastava, Y.; Agelidis, V.G.; Chu, G.L. Using windowed ESPRIT spectral estimation for measuring power
quality indices. In Proceedings of the 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe),
Gothenburg, Sweden, 11–13 October 2010; pp. 1–8.

70. Zygarlicki, J.; Mroczka, J. Variable-frequency Prony method in the analysis of electrical power quality. Metrol. Meas. Syst. 2012,
19, 39–48. [CrossRef]

71. Liu, X.; Liu, C.; Wang, J.; Xing, J. Inter-harmonic parameter estimation based on FFT and MUSIC. Power Syst. Prot. Control 2009, 5,
12–15.

72. Kapoor, R.; Saini, M.K. Hybrid demodulation concept and harmonic analysis for single/multiple power quality events detection
and classification. Int. J. Electr. Power Energy Syst. 2011, 33, 1608–1622. [CrossRef]

73. Jayasree, T.; Devaraj, D.; Sukanesh, R. Power quality disturbance classification using Hilbert transform and RBF networks.
Neurocomputing 2010, 73, 1451–1456. [CrossRef]

74. Senroy, N.; Suryanarayanan, S.; Ribeiro, P.F. An improved Hilbert–Huang method for analysis of time-varying waveforms in
power quality. IEEE Trans. Power Syst. 2007, 22, 1843–1850. [CrossRef]

75. Liu, J.; Song, H.; Sun, H.; Zhao, H. High-Precision Identification of Power Quality Disturbances Under Strong Noise Environment
Based on FastICA and Random Forest. IEEE Trans. Ind. Inform. 2020, 17, 377–387. [CrossRef]

76. Ucar, F.; Alcin, O.F.; Dandil, B.; Ata, F. Power quality event detection using a fast extreme learning machine. Energies 2018, 11, 145.
[CrossRef]

77. Masoum, M.; Jamali, S.; Ghaffarzadeh, N. Detection and classification of power quality disturbances using discrete wavelet
transform and wavelet networks. IET Sci. Meas. Technol. 2010, 4, 193–205. [CrossRef]

78. Jiang, H.; Zhang, J.J.; Gao, W.; Wu, Z. Fault detection, identification, and location in smart grid based on data-driven computational
methods. IEEE Trans. Smart Grid 2014, 5, 2947–2956. [CrossRef]

79. Thirumala, K.; Umarikar, A.C.; Jain, T. Estimation of single-phase and three-phase power-quality indices using empirical wavelet
transform. IEEE Trans. Power Deliv. 2014, 30, 445–454. [CrossRef]

80. Adamo, F.; Attivissimo, F.; Di Nisio, A.; Savino, M.; Spadavecchia, M. A spectral estimation method for nonstationary signals
analysis with application to power systems. Measurement 2015, 73, 247–261. [CrossRef]

http://dx.doi.org/10.1109/TIM.2018.2876074
http://dx.doi.org/10.1016/j.epsr.2019.106124
http://dx.doi.org/10.1016/j.ijepes.2020.105987
http://dx.doi.org/10.1016/j.rser.2014.08.070
http://dx.doi.org/10.1016/j.rser.2017.05.134
http://dx.doi.org/10.1002/2050-7038.12008
http://dx.doi.org/10.1109/ACCESS.2019.2894819
http://dx.doi.org/10.1016/j.epsr.2020.106602
http://dx.doi.org/10.1016/j.apenergy.2020.115237
http://dx.doi.org/10.1109/ACCESS.2020.3014732
http://dx.doi.org/10.1109/EPE.2005.219743
http://dx.doi.org/10.1016/j.dsp.2020.102711
http://dx.doi.org/10.1016/j.rser.2015.07.068
http://dx.doi.org/10.1016/j.epsr.2007.05.011
http://dx.doi.org/10.2478/v10178-012-0003-1
http://dx.doi.org/10.1016/j.ijepes.2011.06.006
http://dx.doi.org/10.1016/j.neucom.2009.11.008
http://dx.doi.org/10.1109/TPWRS.2007.907542
http://dx.doi.org/10.1109/TII.2020.2966223
http://dx.doi.org/10.3390/en11010145
http://dx.doi.org/10.1049/iet-smt.2009.0006
http://dx.doi.org/10.1109/TSG.2014.2330624
http://dx.doi.org/10.1109/TPWRD.2014.2355296
http://dx.doi.org/10.1016/j.measurement.2015.04.023


Electronics 2021, 10, 2725 37 of 40

81. Xu, S.; Liu, H.; Bi, T. A novel frequency estimation method based on complex Bandpass filters for P-class PMUs with short
reporting latency. IEEE Trans. Power Deliv. 2020. [CrossRef]

82. Tosato, P.; Macii, D.; Luiso, M.; Brunelli, D.; Gallo, D.; Landi, C. A tuned lightweight estimation algorithm for low-cost phasor
measurement units. IEEE Trans. Instrum. Meas. 2018, 67, 1047–1057. [CrossRef]

83. Bollen, M.H.; Zhang, L. Different methods for classification of three-phase unbalanced voltage dips due to faults. Electr. Power
Syst. Res. 2003, 66, 59–69. [CrossRef]

84. Bollen, M.H. Algorithms for characterizing measured three-phase unbalanced voltage dips. IEEE Trans. Power Deliv. 2003,
18, 937–944. [CrossRef]

85. Sahani, M.; Dash, P.K. Automatic power quality events recognition based on Hilbert Huang transform and weighted bidirectional
extreme learning machine. IEEE Trans. Ind. Inform. 2018, 14, 3849–3858. [CrossRef]

86. Lee, C.; Nam, S. Efficient feature vector extraction for automatic classification of power quality disturbances. Electron. Lett. 1998,
34, 1059–1061. [CrossRef]

87. Monedero, I.; Leon, C.; Ropero, J.; Garcia, A.; Elena, J.M.; Montano, J.C. Classification of electrical disturbances in real time using
neural networks. IEEE Trans. Power Deliv. 2007, 22, 1288–1296. [CrossRef]

88. Valtierra-Rodriguez, M.; de Jesus Romero-Troncoso, R.; Osornio-Rios, R.A.; Garcia-Perez, A. Detection and classification of single
and combined power quality disturbances using neural networks. IEEE Trans. Ind. Electron. 2013, 61, 2473–2482. [CrossRef]

89. Bhende, C.; Mishra, S.; Panigrahi, B. Detection and classification of power quality disturbances using S-transform and modular
neural network. Electr. Power Syst. Res. 2008, 78, 122–128. [CrossRef]

90. Ekici, S. Classification of power system disturbances using support vector machines. Expert Syst. Appl. 2009, 36, 9859–9868.
[CrossRef]

91. Lin, W.M.; Wu, C.H.; Lin, C.H.; Cheng, F.S. Detection and classification of multiple power-quality disturbances with wavelet
multiclass SVM. IEEE Trans. Power Deliv. 2008, 23, 2575–2582. [CrossRef]

92. Liu, Z.; Cui, Y.; Li, W. A classification method for complex power quality disturbances using EEMD and rank wavelet SVM. IEEE
Trans. Smart Grid 2015, 6, 1678–1685. [CrossRef]
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