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Abstract: The purpose of this study is to highlight approaches for predicting a system’s future
behavior and estimating its remaining useful life (RUL) to define an effective maintenance schedule.
Indeed, prognosis and health management (PHM) strategies for renewable energy systems, with
a focus on wind turbine generators, are given, as well as publications published in the recent ten
years. As a result, some prognostic applications in renewable energy systems are emphasized, such
as power converter devices, battery capacity degradation, and damage in wind turbine high-speed
shaft bearings. The paper not only focuses on the methodologies adopted during the early research
in the area of PHM but also investigates more current challenges and trends in this domain

Keywords: data acquisition; health indicator; machine learning; power converter; prognostics and
health management; prognostic approach; remaining useful life prediction; wind turbine generators

1. Introduction

RAMS (reliability, availability, maintainability, and safety) services are now widely
applied in industrial applications to perform in-depth assessments and interventions. As a
result, industrial maintenance is proving to be one of the goals of industrial revolutions
and research in this field, which translates into “industry-research” alliances or even major
projects, such as the IMS (intelligent maintenance systems) center [1–4].

The detection and diagnosis of faults are critical in the industrial world [5]. Indeed,
they help to improve availability, productivity, and the safety of people and equipment
by detecting problems quickly and early. New industrial constraints are gradually af-
fecting traditional ways for monitoring the health state of industrial equipment, such as
preventative and corrective maintenance [2,4–6].

The “modern” and smart industries, which integrate physical manufacturing and
operations with smart digital technologies, machine learning, big data, and cloud com-
puting, have adopted a variety of advanced and sophisticated and signal processing and
machine learning techniques to fulfill their needs. These traditional measures (preventive
and corrective maintenance) are strengthened by proactive actions of degrading events on
an industrial scale [1–6].

Figure 1 reports the main components of a horizontal wind turbine and their corre-
sponding fault. A good classification of electromechanical system faults and their diagnosis
methods is given in [7]. Several innovative signal processing and machine learning ap-
proaches have been developed. Manufacturers are working to improve their capacity to
forecast failures before they happen, as well as to prepare the appropriate preventative

Electronics 2021, 10, 2732. https://doi.org/10.3390/electronics10222732 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3419-8583
https://orcid.org/0000-0002-4844-508X
https://doi.org/10.3390/electronics10222732
https://doi.org/10.3390/electronics10222732
https://doi.org/10.3390/electronics10222732
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10222732
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10222732?type=check_update&version=2


Electronics 2021, 10, 2732 2 of 18

procedures as fairly and quickly as feasible (maintenance planning and scheduling). In ad-
dition, the use of PHM solutions to improve a product’s effective reliability and availability
throughout its life cycle is gradually becoming more important, and the PHM process is
now critical in Industry 4.0 or smart industry, for many reasons, as detailed in [3].

Figure 1. Main components of a horizontal wind turbine, and their corresponding fault.

Since then, PHM technology has revolutionized the amount of product reliability and
has led in a wide range of applications, as well as a significant development in several areas,
including the fundamental study of failure physics, sensor technologies, feature extraction,
fault diagnostics, and classification, and prognostics for failure estimation. These methods
have been investigated and used in a variety of sectors. As technologies are deployed and
developed in the industry, the number of papers addressing effective applications in many
aspects is increasing [5–8].

This clearly shows the rise of this theme and research work in the field is also in a
strong trend, as shown in Figures 2 and 3, the PHM citation report for renewable energy,
and by incorporating machine learning techniques, respectively. Technical institutions were
launched a few years ago to collect and promote experience in many research areas. Since
its inception in 2009, the PHM society has organized an annual conference and published
the International Journal of Prognostics and Health Management (IJPHM) [9]. Since 2011, the
IEEE reliability society has sponsored an annual PHM conference (Prognostics) [10]. A
minimum of three international conferences is organized each year.

Dedicated to the PHM concept, two of which benefit from the sponsorship of major
publishers in the world, including IEEE.

PHM research is now being led by a lot of institutes, some of which are discussed
briefly here. The PHM concept is certainly becoming an increasingly visible framework for
research work within the scientific and industrial community. Many research laboratories
are focused there today; namely, NASA, Prognostics Center of Excellence (PCoE) [11],
IMS Center, Army Research Laboratory in the USA, University of Toronto—Canada,
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CityU-PHM Center University of Hong Kong, FEMTO-ST Institute, Integrated Vehicle
Health Management (IVHM) Center, and Green Power Monitoring Systems (GPMS) in the
USA, etc.).

Figure 2. PHM citation report for renewable energy systems results from the web of science core
collection between 2002 and 2021. (a) Total publication per year; (b) Sum of times cited by year.

Figure 3. PHM citation report for renewable energy systems using machine learning results from the
web of science core collection between 2002 and 2021. (a) Total publication per year; (b) Sum of times
cited by year.

Recently, there has also been a movement to set standards by professional associations.
In the IEEE, PHM standards are discussed by the reliability division and published in
related articles [12,13]. In industry, the National Institute of Standards and Technology of
the USA has taken similar actions and published a report [14].

PHM has been applied to aerospace and military systems for more than 20 years.
PHM could have huge benefits for power generation systems, smart grids, and renewable
energy systems such as wind turbine generators, solar panel devices in terms of production,
reliability, and maintenance.

Over the last decade, several review papers focusing on the PHM concept from
different angles have been published. Sun et al. (2009) investigated some PHM applications
in [5], which covered a wide range of applications including defense, aerospace, wind
energy, and power electronics. Yin et al. (2016) released a special section in [8] that collects
PHM applications in industrial electronics.

Do et al. (2021) proposed integrated PHM control systems for optimal wind turbine
and wind farm condition monitoring, to decrease wind energy costs. The focus of the review
is on the application of real-time PHM and sophisticated control in wind turbines. The
proposed techniques are discussed in terms of their most recent advances, generalization,
classification, and comparison.

Various monitoring technologies can be deployed on wind turbines, including vibra-
tion analysis, acoustic measurement, lubrication oil monitoring, infrared thermography,
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and visual inspection. These technologies can be classified into two categories: (i) continu-
ous monitoring techniques and (ii) periodic monitoring.

PHM-based techniques for continuous monitoring of the “health” of wind turbines
are widely recognized by the industry as beneficial but economically expensive, especially
for onshore turbines. For marine (offshore) and recently installed wind turbines, the de-
ployment of continuous monitoring technology has become almost obvious. The increasing
level of deployment of wind turbine continuous monitoring technologies offers an impor-
tant opportunity for the industry to harness the benefits of PHM to its full potential and
reduce operating and maintenance costs. A description of a continuous monitoring system
is shown in Figure 4.

Figure 4. Description of a wind turbine condition monitoring system.

The remainder of the paper is organized as follows: In Section 2, we start by investi-
gating the PHM. In Section 3, PHM approaches are discussed. PHM challenges are given
in Section 4. Some PHM applications are presented in Section 5. The final section gives
the conclusion.

2. Prognostics and Health Management
2.1. PHM Cycle

Different business procedures are used in industrial monitoring and maintenance
to increase availability at a lower cost. Thus, we typically speak about fault detection,
failure diagnosis, and the selection of preventative or corrective activities, as well as the
scheduling of these actions throughout time.

As shown in Figure 5 [15–17], these steps correspond to; first, to “observe” certain
phenomena, then to “analyze” them, and, finally, to “act” accordingly. As previously stated,
this being the mind is another strategy that implies attempting to predict the appearance
of a phenomenon that has just established itself (failure) rather than understanding it once
it has occurred (failure). This is the objective of the prognosis. The PHM cycle is given in
Figure 5. The articulation of PHM components can be explained as follows [4,18]:

The purpose of detection is to identify the state of health of the system (in good or
defective condition). When a failure is detected, the diagnosis makes it possible to isolate
and identify the damaged component; the prognosis then aims to project the state of the
system into the future. Then the PHM cycle includes 7 layers [4,15–18]; (1) data acquisition,
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(2) data processing, (3) status detection, (4) diagnosis, (5) prognosis, (6) decision, and
(7) human-machine interface. More details on this topic can be found in [1–4].

Figure 5. PHM cycle. Reproduced from [15], Elsevier, and from [16], IEEE.

The main goal of prognosis is to provide useful information to make good decisions.
As a result, the first set of metrics is the one that allows the monitored system’s risks to be
quantified. This metric corresponds to prognostic metrics, the most important of which is
the residual time until failure, commonly known as the RUL. A confidence measurement
should also be associated to indicate the degree of certainty of the RUL [1–4,15,19]. By way
of illustration, let us consider Figures 6 and 7, which show respectively the evolution of
the degrading health indicator (HI) and its prognosis, and the RUL as a function of time.
The RUL can be defined as the time interval between the current time tp (after detection of
degradation; tD), and the time when the degradation will reach a failure threshold (tEoF):
RUL = tEoL − tp, It is also necessary to be able to judge the quality of the prognosis to
decide on appropriate actions. Generally speaking, HIs indicate the level of damage at any
given time.

Figure 6. Illustration of the prognostics process.

2.2. Prognostic Metrics

The PHM uncertainties, given in Section 4, can induce dubious prognostic results.
The development of methodologies for describing these uncertainties’ boundaries and
confidence levels for prognosis is a critical step. Building and defining the confidence level
of a prognostics system requires a method for assessing prognostic accuracy. As illustrated
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in Figure 7, the prognosis model is expressed as a probability distribution. Even though
there is no common consensus on what metrics should be used to evaluate prognostic
efficacy, in open literature some PHM evaluation metrics have been proposed [2,4,19–21].
Prognostics hit rate, false detection alarm rate, missed estimation rate, correct rejection rate,
prognostics effectiveness, and other metrics were introduced by Leo et al. (2008) [20] to
assess the accuracy of prognostics algorithms. In addition, Saxena et al. (2009) [2] proposed
a set of new metrics dedicated for PHM purposes including the prognostic horizon, α-λ
performance, relative accuracy, cumulative relative accuracy, and convergence, which were
shown in Figure 8. These metrics were applied to a combination of different algorithms
and different datasets.

Figure 7. RUL and associated performance metrics.

Figure 8. Prognostics metrics. Reproduced from [2], PHM Society and from [4], Springer.

An important step in developing predictive algorithms is to identify HIs, features in
the system’s data that will behave predictably as the system deteriorates. The HI can be
any feature that is useful to distinguish healthy from faulty state or to predict the RUL.

The choice of a method for HI extraction depends mainly on the type of data collected,
and the considered application [1–5,18–24]. As highlighted in Figure 9, the HI can be
found using signal-based and model-based methods. Degradation models estimate RUL
by predicting when the HI will cross a certain threshold. These models are most useful
when there is a known value of the used HI that indicates failure. The two commonly
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available degradation model types are the linear degradation model and the Exponential
degradation model.

Figure 9. Designing HIs using signal-based and model-based methods. Reproduced from [25].

The linear degradation model describes the degradation behavior as a linear random
process with an offset term. When the system does not experience cumulative degradation,
the linear degradation model is useful [25].

The exponential degradation model describes the degradation behavior as an expo-
nential stochastic process with offset terms. The exponential degradation model is useful
when the test component undergoes cumulative degradation.

Degradation models work with a single HI. However, we can use principal component
analysis or other fusion techniques to generate a fused HI that incorporates information
from more than one HI [2,4,18,19,26–28].

In this regard, Saxena et al. (2009, 2010) [2,18] proposed a set of metrics for eval-
uating key elements of RUL predictions, including “prognostic horizon (PH)”, “timeli-
ness”, “precision” and “accuracy”, etc. These metrics are detailed in [1,2,4]. In all cases,
these are measures of difference between the estimated RUL and the actual RUL (see
Figures 6 and 7).

3. Review of Prognostics Approaches

This section explores the methods of prognostics as part of PHM. Prognostic estimates
future damage/degradation and the RUL of systems based on the collected data.

Over the last decade, many methods of prognosis failure have been provided to
characterize prognostic approaches [2,4–9]. The instruments used for prognosis are based
on the nature of the data obtained and previous knowledge of the system being monitored,
while the methods of prognosis are based on the type of intended application.

The PHM process can be classified into two categories: physics-based and data-driven
approaches, as well as a hybrid approach, termed hybrid prognosis, as reported in [4]. This
classification tends to make consent within the scientific community for the PHM.

3.1. Prognosis Based on Physical Models

Model-based prognostic methods necessitate the development of a physical model
that fully describes the degradation process and dynamic behavior of the global system or
a subsystem, as well as the integration of degradation phenomena (primarily fatigue and
discharge models) whose evolution is modeled by a deterministic statistical physical law
or a stochastic process [1,2,4–10,15–19,29,30].

These strategies are more accurate than the other two approaches in most cases (data-
driven and hybrid). The models’ applications are limited, however, because they are
typically constructed under ideal conditions with numerous assumptions. Furthermore,
obtaining the best appropriate dynamic model in an analytical form incorporating the
phenomenon of real degradation is difficult, if not impossible, at times; yet, numerous
simplifying hypotheses are imposed to obtain a model that is close to reality. Furthermore,
a model created for a well-defined application may not always translate to another phys-
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ical system, even if it is of the same type (capitalization by feedback). The application
framework of this method is still limited.

3.2. Data-Driven Prognosis

These approaches are based on the exploitation of monitoring data from the various
sensors installed around the system to be monitored, which are pre-processed to extract
information on the dynamic system behavior as well as its degradation. These data are
subsequently used as a database of training dataset for prediction models based mainly
on artificial intelligence, present and future states of the system, and thus provide a priori
an estimate of the RUL with confidence bounds. Moreover, it is the most used and most
developed approach, with research based on the use of neural networks and their variants,
support vector machine [1–9,20–24], probabilistic methods (Bayesian networks, Markov
models and their derivatives) [1,4,31–36], stochastic models [21,33,35,37–43], state and
filtering models (Kalman filter and their variants, particle filter, etc.) [4,15,43–54], regression
tools (support vector regression and their variants) [45–49,54], or combinations of different
methods [4]. In addition, the Gaussian process (GP) regression [4,17,49–54] is a commonly
used method among regression-based data-driven approaches, etc. A comprehensive
review of various data-driven algorithms has been carried out by Nam-Ho et al. (2017)
in [4].

These approaches do not require an analytical model and their implementation is
relatively simple. However, they lose precision depending on the quality of the data
collected. They thus represent a certain compromise between applicability and precision.

3.3. Hybrid Prognosis

A hybrid prognosis method is the combination of a physical degradation model and
a data-driven approach to improve the prediction capability. Hybrid approaches have
good estimation and prediction performance. They allow good modeling of uncertainties.
On the other hand, they can be very consumption in algorithmic complexity and are also
limited by the need for physical modeling of degradation phenomena.

A review paper by Nam-Ho et al. (2017) [4] contains more information regarding
hybrid techniques.

Although not frequently specified in the literature, the prognosis can be assimilated
with the combination of two fundamental processes: a prediction process (the RUL es-
timation) and a clustering process (specifying whether the system belongs to one state
or another), these two processes are illustrated by Figure 10. In a nutshell, data-driven
prognostic approaches aim to:

- Either to predict the evolution of a situation’s HI and then to identify the system’s
state through classification.

- Either to identify the current state, by classification, and then to estimate its future state.
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The techniques used in these two prediction and clustering methods try to approxi-
mate a function that can explain an output vector based on the available measures (input
vector). This role is unknown in data-driven prognosis and will need to be identified.

Table 1 summarizes the main advantages and disadvantages of the three prognostics
approaches reported in this subsection.

Table 1. Prognostics approaches.

Prognostics Approaches

Advantages Disadvantages

Data-driven approaches

- Relatively simple and rapid to deploy.
- Aids in the assessment of massive amounts of
data to acquire a better knowledge of bodily
dynamic system behavior.

- There are no physical cause and effect
relationships used.
- It is difficult to strike the right balance
between generalization and learning specific
data trends.
- Requires large amounts of data.

Physics-based approaches

- Based on modeled cause-effect correlations,
the prediction results are intuitive.
- Only calibration may be required for different
cases once a model has been built.
- Drives sensing requirements.

- Developing models is not trivial.
- High-fidelity models can be computationally
costly to run, making them unsuitable for
real-time applications.

Hybrid approaches

- No necessity for high-fidelity models or
big data.
- Maintains the model’s intuitiveness while
explaining observed data.
- Assists in the handling of uncertainty.

- Requires both data and the models.
- A faulty model or noisy data can lead each
other’s approaches to be biased.

4. Challenges in Prognostics

While the PHM has numerous benefits, it also has several challenges that need to be
addressed in future research [2,4–8,53,54]. The classification of prognostic techniques is not
a goal in and of itself, and the distinctions across tool types are not often clear. A Bayesian
network, for example, can be used to create a dynamic model of a system (model-based
approach). It is possible to achieve this by using a series of algorithms to train the network’s
topology and parameters (data-driven approach). Particle filters are, once again, based on
the expression of a hidden state model that is updated based on sensor observations; as a
result, they are sometimes referred to as a data-oriented or model-based tool.

Given the constraints imposed by the availability of measurements and/or models, the
dynamics of systems, etc. It appears that no prognosis approach is universal and that the
choice of an appropriate technique depends on these constraints limiting the applicability
of the tools, we can mention for example:

- Modeling uncertainties (numerical errors, unmodeled phenomenon, dynamics, and
complexity of real systems): unknown level of uncertainties arising due to lack of
knowledge or information.

- Input data uncertainties (initial state (damage) estimate): experiments can be used to
characterize the process’s inherent statistical variability.

- Measurement uncertainties (sensor noise, loss of information during preprocessing,
approximations, and simplifications): unknown number of uncertainties stemming
from the collection or processing of data. Feature extraction: to have meaningful
prognostics, it is important to collect data that is directly related to damage.

- Operating environment uncertainties (unforeseen future loads, unforeseen future
environments, variability in the usage history data).
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In terms of technical approaches, physical-based models, data-driven approaches,
or the combination of them (hybrid approach) can be used. However, when the physical
approach is used, the developing models is not always trivial, and the high-fidelity models
may be computationally expensive to run, i.e., impractical for real-time applications.

While data-driven approaches are easier to implement, we have fewer simplifying
assumptions, almost used in many applications with relatively low costs. Therefore, it is
important to collect meaningful data that are directly related to damage. Although not
frequently specified in the literature, the prognosis can be equated with the association of
two fundamental processes: a prediction process (estimation of the RUL) and a classification
process (specifying whether the system belongs to one state or another), these two processes
are explained in detail in [2,4].

The effectiveness of a prognostic tool depends on the accuracy with which the uncer-
tainty immanent to this process is assessed [1,3–5]. Thus, particular interest was focused on
the robustness and reliability of the prognosis. Indeed, the confidence that can be allocated
to the “prognosis” is an aspect that is still largely open. Moreover, in practical applications,
the choice of a suitable technique depends on several constraints thus reducing the applica-
bility of the tools applied, including the availability of measurements, knowledge, system
dynamics, implementation constraints (hardware and software architecture), measurement
possibilities (sensors, SCADA, etc.), etc. Thus, the prognosis is a task that poses real locks of
implementation and validation of the results. These points are the challenge of the research
carried out.

There are many different ways to view the challenges of PHM which are outlined in
Table 2 [2,4,18]. While there are so many challenges in the PHM (Table 2), there are also
many benefits, which are also outlined in Table 2. The main benefit may be the reduction
of total life-cycle cost, as is addressed in Table 2.

Table 2. Benefits and challenges for PHM. Reproduced from [15], Elsevier.

Benefits of PHM

Benefits in life-cycle cost - Lower operational costs
- Increased revenue

Advantages in system design
and implementation

- Perfect system design
- Improved reliability prediction
- Improved logistics support system

Benefits in production - Better process quality control
- Integrated maintenance development by OEMs 1

Benefits in system operation - Reinforcing system safety
- Enhanced operational reliability

Benefits in logistics support
and maintenance

- Condition-based maintenance
- Improved fleet-wide decision support
- Optimized logistics supply chain
- Decreased maintenance-induced fault

Challenges in PHM

Requirements specifications:
- How might a necessity for prognostics be presented in light of uncertainty?
- How to identify and attain the prognostic fidelity you want?
Uncertainty in prognostics:
- To what extent does a prediction’s probability distribution reflect reality?
Validation and verification:
- How can a system be evaluated to see if it meets the requirements?
- Is it possible to evaluate the success of prognostics both offline and online?

1 Original equipment manufacturer.



Electronics 2021, 10, 2732 11 of 18

5. Prognostics Applications
5.1. PHM of High-Speed Shaft Bearing Wind Turbine (HSSB)

The experimental setup is described in Figure 11. The vibrations were collected by
“GPMS” in the USA. For 50 days, vibration data from a 2.2 MW Suzlon wind turbine were
recorded at a 100 kHz sampling frequency (i.e., one acquisition every 6 s). Figure 12 shows
the vibration trend over 50 and the variation of the kurtosis values as a HI as a function of
the number of days, it is obvious that the spectral kurtosis (KS) is a useful indicator for the
process of prognosis (monotonous and trendable). The estimation result using the SVR is
given in Figure 13. This result shows that we fall on the correct RUL on the 50th day, with
a margin of uncertainty.

Figure 11. Experimental setup for HSSB wind turbine prognosis.
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5.2. PHM of High-Speed Shaft Bearing Wind Turbine (HSSB) Based on Physics-Based Approaches

Physics-based approaches consider that a physical model describing the degradation
behavior is accessible with usage conditions such as loading information. In this subsection,
we introduce a prognosis method based on the hybrid approach (physical model and
collected data) with confidence bounds. As we have seen previously, the severity of the
degradation exponentially increases with time, and suddenly this evolution is similar to
the prediction model. We give in this PHM application the Paris model (Paris and Erdogan
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1963) and the smoothed Kalman filter for the RUL estimation of the HSSB described in the
previous subsection, this RUL is predicted with confidence intervals.

Figure 13. Bearing degradation RUL prediction results. Reproduced from [15], Elsevier.

More details about the application of application the Paris model can be found in our
previous paper [15].

The obtained results given in Figure 14 show that the Kalman smoother is an effective
way to improve trending and RUL estimation.

Figure 14. Estimated RUL every five days from initial low to the last high confidence prognostic with error bounds.
Reproduced from [15].

5.3. PHM of Wind Turbine Electronic Power Converters
5.3.1. RUL Estimation for Thermally Aged Power IGBT Based on a Modified Maximum
Likelihood Estimator

The main objective of this application is to use the combination of the statistical and
machine learning approaches to predict abnormal functioning of electronic devices [47]:

Thermally aging the insulated gate bipolar transistor (IGBT) platforms and data are
available in [52]. The results of the deterioration level estimation for three IGBT examples
with varied measurements are shown in Figure 15. The anticipated RUL across cycles is
depicted in Figure 16, where the predicted RUL for the three IGBTs scenarios remains in the
accuracy zone throughout all prediction cycles and until the EoL of the IGBT component.
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Figure 15. Degradation level with a different number of data points. Reproduced from [51], Wiley.

Figure 16. Actual and estimated RUL. Reproduced from [51], Wiley.

5.3.2. RUL Prediction of Thermally Aged Power IGBT Based on Gaussian Process Regression

An effective IGBT failure prognostics approach for predicting the RUL and EoL with
high prediction performances was proposed in this application [17]. The proposed failure
prognostics method is based on a study of the collector-emitter voltage (Vce) signal’s
behavior. The time-domain analysis is used in the suggested failure prognostics method,
which converts the precursor signal Vce into a HI. It also looks into how to predict the RUL
using the Gaussian process regression (GPR) approach.

Figure 17 presents the estimation results of the degradation level for three IGBT cases.
Four examples of available measures are considered in this figure. In each scenario, the
predicted damage level, based on the three IGBTs available data, is updated. After the
last acquired measurement, the prediction stage begins. Failure can be predicted using
data-driven methodologies and the proposed prognostic strategy, as shown in Figure 17.
The predicted RUL of the three IGBT components’ failure is depicted in Figure 18, which
is realized using the proposed GPR method. Because it represents remaining life, the
convention for RUL plots is that the graph begins with the initial x-axis at 15 cycles and
progresses to the remaining cycles, which equals 90 [45,51].

5.4. Power Storage Systems: Predicting Battery Discharge

The lithium-ion battery degradation experiment data used in this application are
from the NASA Ames PCoE [1,11]. In this work, Battery #5 from the NASA dataset
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was used. The capacity degradation experimental results of Battery #5 based on linear
regression, polynomial regression are shown in Figure 19 (left) and (right), respectively [51].
Real capacity degradation varies from the linear regression estimates. This reinforces
the requirement for a more capable regression model to determine a more precise state
of health. Then, as illustrated in Figure 20, the particle swarm optimization-based SVR
(PSO-SVR) technique is used to estimate the capacity degradation of Battery #5. To improve
prediction accuracy, the PSO method is used to optimize SVR parameters in this study [53].
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Figure 20. Capacity degradation and RUL prediction of Li-ion Battery #5 based on PSO-SVR
([C, ε, γ] = [0.3, 2.0359, 19.8 × 10−6]). Reproduced from [12], InderScience.

6. Conclusions

In this review paper, the basics of PHM are presented along with historical back-
grounds, industrial applications, reviews of recent publications, and benefits and challenges
of PHM.

Some applications of prognostics in industry applications are highlighted, including
damage in bearing, power converter devices, and batteries capacity degradation.

Based on the review of different results and analysis given in this paper, it can be
concluded that the RUL presented thoroughly the PHM applications part are satisfactory
compared to the current level of prediction capability in the open literature. However, there
are still several challenges to be resolved. First of all, the HI trend decreases exponentially,
which can make a large difference in EoL prediction with a small perturbation of threshold.
Second, the presented results are principally based on the vibration data. So, since bearings
under real operating conditions may last a very long time, massive data should be acquired
and stored. Lastly, the presented results are based on the vibration signal. Physical model
behavior and explanations of the observed features are not available yet.

Future studies on the current topic are therefore required to deal with uncertainties
and their effects on the prognosis results for complex systems.
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32. Bosnić, Z.; Kononenko, I. An overview of advances in reliability estimation of individual predictions in machine learning. Intell.
Data Anal. 2009, 13, 385–401. [CrossRef]

33. Saidi, L.; Benbouzid, M.; Diallo, D.; Amirat, Y.; Elbouchikhi, E.; Wang, T. Higher-Order Spectra Analysis-Based Diagnosis Method
of Blades Biofouling in a PMSG driven Tidal Stream Turbine. Energies 2020, 13, 2888. [CrossRef]

34. Camci, F.; Chinnam, R.B. Health-state estimation and prognostics in machining processes. IEEE Trans. Autom. Sci. Eng. 2010,
7, 581–597. [CrossRef]

35. Cheng, C.T.; Xie, J.X.; Chau, K.W.; Layeghifard, M. A new indirect multi-step-ahead prediction model for a long-term hydrologic
prediction. J. Hydrol. 2008, 361, 118–130. [CrossRef]

36. Cheng, S.; Pecht, M. A fusion prognostics method for remaining useful life prediction of electronic products. In Proceedings of
the CASE 2009: IEEE International Conference on Automation Science and Engineering, Bangalore, India, 22–25 August 2009;
pp. 102–107.

37. Berghout, T.; Mouss, L.-H.; Kadri, O.; Saidi, L.; Benbouzid, M. Aircraft engines remaining useful life prediction using an improved
online sequential extreme learning machine approach. Appl. Sci. 2020, 10, 1062. [CrossRef]

38. Chiu, S.L. Fuzzy model identification based on cluster estimation. J. Intellig. Fuzzy Syst. 1994, 2, 267–278. [CrossRef]
39. Aka, R.; Lia, Y.-F.; Vitellia, V.; Zio, E. A genetic algorithm and neural network technique for predicting wind power under

uncertainty. Chem. Eng. 2013, 33, 1–6.
40. An, D.; Choi, J.-H.; Kim, N.H. Prognostics 101: A tutorial for particle filter-based prognostics algorithm using Matlab. Reliab. Eng.

Syst. Saf. 2013, 115, 161–169. [CrossRef]
41. Angelov, P.; Filev, D. An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern. Part B

Cybern. 2004, 34, 484–498. [CrossRef] [PubMed]
42. Baraldi, P.; Mangili, F.; Zio, E. A Kalman filter-based ensemble approach with application to turbine creep prognostics. IEEE

Trans. Reliab. 2012, 61, 966–977. [CrossRef]
43. Zheng, X.; Fang, H. An integrated unscented Kalman filter and RVR approach for lithium-ion battery remaining useful life and

short-term capacity prediction. Reliab. Eng. Syst. Safe 2015, 144, 74–82. [CrossRef]
44. Araldi, B.P.; Compare, M.; Sauco, S.; Zio, E. Ensemble neural network-based particle filtering for prognostics. Mech. Syst. Signal

Proc. 2013, 41, 288–300. [CrossRef]
45. Li, Z.; Zheng, Z.; Outbib, R. A prognostic methodology for power MOSFETs under thermal stress using echo state network and

particle filter. Microelectron. Reliab. 2018, 88, 350–354. [CrossRef]
46. Fan, L.; Jiuping, X. A new prognostics method for state of health estimation of lithium-ion batteries based on a mixture of

Gaussian process models and particle filter. Microl. Reliab. 2015, 55, 1035–1045.
47. Saidi, L.; Ben Ali, J.; Benbouzid, M.; Bechhofer, E. Wind turbine high-speed shaft bearings health prognosis through a spectral

Kurtosis-derived indices and SVR. Appl. Acoust. 2017, 120, 1–8. [CrossRef]
48. Ben Ali, J.; Khelif, R.; Saidi, L.; Chebel-Morello, B.; Fnaiech, F. The use of nonlinear future reduction techniques as a trend

parameter for state of health estimation of lithium-ion batteries. In Proceedings of the IEEE 2015 16th International Conference on
STA, Västerås, Sweden, 21–23 December 2015; pp. 246–251.

49. Saidi, L.; Benbouzid, M. Renewable Energy Systems Prognostics and Health Management: A Review of Recent Advances. In
Proceedings of the 47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13–16 October 2021.

50. Liu, D.; Pang, J.; Zhou, J. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process
functional regression. Microelectr. Reliab. 2013, 53, 832–839. [CrossRef]

51. Ismail, A.; Saidi, L.; Sayadi, M.; Benbouzid, M. Remaining useful life estimation for thermally aged power IGBTs Based on a
Modified Maximum Likelihood Estimator. Int. Trans. Electr. Energy Syst. 2020, 30, e12358. [CrossRef]

52. Ben Ali, J.; Azizi, C.; Saidi, L.; Bechhoefer, E.; Benbouzid, M. Reliable state of health condition monitoring of Li-ion batteries
based on incremental support vector regression with parameters optimization. Proceedings of the Institution of Mechanical
Engineers, Part I: Journal of Systems and Control Engineering. SAGE J. 2020, 0959651820950849. [CrossRef]

http://doi.org/10.1016/j.rser.2019.109405
http://doi.org/10.1016/j.ress.2018.06.021
http://doi.org/10.1002/qre.1396
http://doi.org/10.3233/IDA-2009-0371
http://doi.org/10.3390/en13112888
http://doi.org/10.1109/TASE.2009.2038170
http://doi.org/10.1016/j.jhydrol.2008.07.040
http://doi.org/10.3390/app10031062
http://doi.org/10.3233/IFS-1994-2306
http://doi.org/10.1016/j.ress.2013.02.019
http://doi.org/10.1109/TSMCB.2003.817053
http://www.ncbi.nlm.nih.gov/pubmed/15369087
http://doi.org/10.1109/TR.2012.2221037
http://doi.org/10.1016/j.ress.2015.07.013
http://doi.org/10.1016/j.ymssp.2013.07.010
http://doi.org/10.1016/j.microrel.2018.07.137
http://doi.org/10.1016/j.apacoust.2017.01.005
http://doi.org/10.1016/j.microrel.2013.03.010
http://doi.org/10.1002/2050-7038.12358
http://doi.org/10.1177/0959651820950849


Electronics 2021, 10, 2732 18 of 18

53. Lee, C.-J.; Kim, B.-K.; Kwon, M.-K.; Nam, K.; Kang, S.-W. Real-Time Prediction of Capacity Fade and Remaining Useful Life of
Lithium-Ion Batteries Based on Charge/Discharge Characteristics. Electronics 2021, 10, 846.

54. Benbouzid, M. Signal Processing for Fault Detection and Diagnosis in Electric Machines and Systems; IET: London, UK, 2020; p. 284.


	Introduction 
	Prognostics and Health Management 
	PHM Cycle 
	Prognostic Metrics 

	Review of Prognostics Approaches 
	Prognosis Based on Physical Models 
	Data-Driven Prognosis 
	Hybrid Prognosis 

	Challenges in Prognostics 
	Prognostics Applications 
	PHM of High-Speed Shaft Bearing Wind Turbine (HSSB) 
	PHM of High-Speed Shaft Bearing Wind Turbine (HSSB) Based on Physics-Based Approaches 
	PHM of Wind Turbine Electronic Power Converters 
	RUL Estimation for Thermally Aged Power IGBT Based on a Modified Maximum Likelihood Estimator 
	RUL Prediction of Thermally Aged Power IGBT Based on Gaussian Process Regression 

	Power Storage Systems: Predicting Battery Discharge 

	Conclusions 
	References

