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Abstract: Image steganalysis is a technique for detecting the presence of hidden information in
images, which has profound significance for maintaining cyberspace security. In recent years,
various deep steganalysis networks have been proposed in academia, and have achieved good
detection performance. Although convolutional neural networks (CNNs) can effectively extract
the features describing the image content, the difficulty lies in extracting the subtle features that
describe the existence of hidden information. Considering this concern, this paper introduces
separable convolution and adversarial mechanism, and proposes a new network structure that
effectively solves the problem. The separable convolution maximizes the residual information by
utilizing its channel correlation. The adversarial mechanism makes the generator extract more content
features to mislead the discriminator, thus separating more steganographic features. We conducted
experiments on BOSSBase1.01 and BOWS2 to detect various adaptive steganography algorithms. The
experimental results demonstrate that our method extracts the steganographic features effectively.
The separable convolution increases the signal-to-noise ratio, maximizes the channel correlation of
residuals, and improves efficiency. The adversarial mechanism can separate more steganographic
features, effectively improving the performance. Compared with the traditional steganalysis methods
based on deep learning, our method shows obvious improvements in both detection performance
and training efficiency.

Keywords: image steganalysis; deep learning; convolutional neural networks; adversarial training

1. Introduction

Image steganography is a technology that hides secret information in images. Due to
its simplicity, variability, and difficulty of detection and extraction [1,2], it can be easily used
by illegal organizations to engage in activities that will endanger both national and public
security. This situation makes steganalysis—an attack technology against steganography—a
research hotspot in the field of cyberspace security.

Traditional steganalysis methods include two categories: specific steganalysis, and
universal steganalysis. Specific steganalysis is an effective detection method for specific
steganography algorithms; its advantage is that its false alarm rate is low, and can accurately
reflect the steganographic facts, but it has the problem of small application scope in practical
use. Classical specific steganalysis algorithms include regular-sigular (RS) analysis [3],
based on the correlation between neighboring pixels, raw quick pair (RQP) analysis [4] to
observe changes in test statistics through active steganography, and blockiness analysis on
OutGuess [5]. Universal steganalysis regards steganographic detection as a classification
problem, extracting high-dimensional features for classification based on machine learning.
Classical methods include subtractive pixel adjacency matrix (SPAM) [6] feature analysis
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for steganography corrupting the correlation between neighboring pixels, steganalysis of
JPEG images based on Markov features [7], spatial rich model (SRM) [8] features extracted
by multiple submodels, and several of its variants [9–11]. These methods significantly
improve detection performance, but inevitably increase the training time due to the use of
high-dimensional features. Feature design is the core element in steganalysis. The features
involved in the model are often obtained by manual design. On the one hand, the features
require a substantial amount of manual intervention and professional knowledge; on the
other hand, the performance of the model directly depends on the quality of the manually
defined features.

In recent years, deep learning has flourished in various fields. Some researchers
have applied it to steganalysis, with remarkable achievements. Classical methods include
Gaussian-neuron convolutional neural network (GNCNN), based on convolutional neural
networks and a Gaussian activation function, as proposed by Qian et al. [12]. Xu et al. [13]
proposed a CNN structure called Xu-Net containing five convolutional layers, and its
detection performance exceeded the spatial rich model for the first time. Ye et al. [14]
designed a new truncated linear unit (TLU) as the activation function, based on which
the TLU–CNN was proposed. Fridrich et al. [15] designed SRNet on the basis of residual
networks, and You et al. [16] designed Ke-Net on the basis of Siamese network. Deep neural
networks automatically obtain the feature representations for steganographic detection
through sample training, avoiding the dependence on manually defined features. The
core problem shifts to the structural design of deep neural networks. In the spatial image
steganalysis tasks, what needs to be extracted is the very subtle steganography information
features hidden behind the image content and texture, which is significantly different
from the traditional computer vision task. Therefore, increasing the signal-to-noise ratio
and maximizing the residual information are usually necessary in order to improve the
steganographic detection performance.

In this paper, we propose a new end-to-end network to improve the performance
of steganalysis tasks, which balances the accuracy and efficiency of steganographic de-
tection. Given that steganographic detection utilizes weak signals hidden in the image
content, most previous approaches have introduced high-pass filters to enhance the signal-
to-noise ratio. In this paper, separable convolution and an adversarial mechanism are
introduced to separate the steganographic signal from the content signal in the spatial
image, thus enabling better extraction of steganographic embedding features and improv-
ing the performance of image steganographic detection, without the interference of image
content. The following steps were taken in the design of the network in order to improve
its performance:

A separable convolution module was introduced into the network, which not only
can enable it to obtain higher accuracy, but also makes the network converge quickly, and
improves efficiency. The module divides the normal convolution into two parts—pointwise
convolution, and depthwise convolution—separating the spatial feature learning from the
channel feature learning, maximizing the channel correlation of residuals, and effectively
enhancing the signal-to-noise ratio.

We introduced an adversarial mechanism into the network structure to suppress
image content information and highlight steganographic information as much as possible.
In the process of adversarial training, the generator extracts more image content features
to mislead the classifier and, thus, isolates the required steganographic features. The
introduction of a gradient reversal layer (GRL) allows the network to better extract the
steganographic embedding features and improve the performance of steganographic
detection, without the interference of image content.

To better train and evaluate the proposed method, we detected a variety of adap-
tive steganography algorithms on BOSSBase1.01 and BOWS2. The experimental results
demonstrate that the separable convolution and the adversarial mechanism have better
effects on the extraction of the existence features of hidden information. The introduced
separable convolution improves the signal-to-noise ratio, maximizes the channel correla-
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tion of the residuals, reduces the number of training parameters, and improves efficiency.
More steganographic embedding features can be separated via the adversarial mechanism,
which effectively improves the performance of steganalysis.

The rest of the paper is organized as follows: In Section 2, we briefly review classical
steganalysis network architectures. Section 3 focuses on the network model on the basis of
the separable convolution and the adversarial mechanism proposed in this paper. Section 4
provides and analyzes the experimental results on BOSSBase1.01 and BOWS2. Finally,
Section 5 presents the concluding remarks.

2. Related Works

The earliest use of deep learning for steganalysis can be traced back to 2014, when
Tan et al. [17] used a stacked convolutional autoencoder for steganographic detection;
they found that the network usually failed to converge after directly applying a randomly
initialized CNN to the steganalysis task, and that using a KV kernel to initialize the weights
of the first layer of the network could effectively improve the accuracy.

Qian et al. [12] proposed a customized GNCNN for steganographic detection; the
network structure contains three parts: a preprocessing layer with high-pass filters, a
convolutional layer for feature extraction, and a fully connected layer for classification.
This method is the first to apply CNNs to the task of steganalysis, achieving results that are
comparable to traditional methods using hand-crafted features.

Xu et al. [13] proposed a CNN structure with five convolutional layers, introducing
batch normalization (BN) and global average pooling, which are commonly used in image
classification tasks. The network uses various activation functions—including absolute
(ABS) activation, hyperbolic tangent (TanH) activation function, and rectified linear unit
(ReLU)—to improve the experimental results; its performance exceeds the SRM scheme [8],
and the improved Xu-Net achieves better results for steganalysis in the JPEG domain [18].

Ye et al. [14] proposed a new method in 2017, which uses a set of high-pass filters
in SRM to detect the steganographic signal in the image. The method of initializing the
preprocessing layer parameters is significantly better than random initialization. The
method uses TLU for the first time. On this basis, TLU–CNN was designed. The idea of
selection-channel-aware steganalysis was introduced, and a selection-channel-aware TLU–
CNN network was proposed. Experimental results show that the detection performance of
this network has obvious advantages over the traditional rich-model method.

Yedroudj et al. [19] proposed Yedroudj-Net in 2018. This method borrows excellent
results from Xu-Net and Ye-Net, uses 30 filters from SRM [8] as initialization values of
the preprocessing layer, and then adds batch normalization layers and truncating linear
units. The method still achieves good performance without the use of selection-channel
awareness.

Li et al. [20] designed a CNN network with a parallel subnet structure by using linear and
nonlinear filters, which further improved the performance of detection. Boroumand et al. [15]
proposed SRNet, which does not use high-pass filters in the traditional sense, but maximizes
the noise residuals introduced by the steganography algorithms, and is one of the current
methods that can achieve high accuracy. Zhu et al. [21] proposed a CNN on the basis of
separable convolution, multilevel pooling, and spatial pyramid pooling for steganalysis,
which achieved good performance in detecting arbitrary-sized images.

The main idea of the above approaches is to regard the image steganographic detection
task as an image binary classification problem, and then use the classical image classification
framework based on the CNN. Nevertheless, a significant difference clearly exists between
the steganalysis task and the image classification task. Image classification relies on content
information, whereas steganographic detection requires subtle noise signals hidden under
the image content. Consequently, directly adopting the CNN framework is difficult for
steganalysis tasks. The existing methods are generally solved by adding high-pass filters
in the preprocessing layer, but the manually defined filters are not always optimal, and
may suppress part of the steganographic signal. In view of the fact that the performance of
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image steganographic detection depends heavily on the signal-to-noise ratio, this paper
introduces separable convolution and adversarial mechanism to enhance the signal-to-noise
ratio and improve detection performance.

Introduction of separable convolution module: Separable convolution splits normal
convolution into pointwise convolution and depthwise convolution. The module first
separates the channels and performs independent spatial convolution for each channel; it
then concatenates the output channels via pointwise convolution to perform spatial feature
learning and channel feature learning, thereby maximizing the channel correlation of the
noise residuals to improve the signal-to-noise ratio in order to detect the subtle differences
between the cover signal and the steganographic signal.

Introduction of adversarial training: The image contains content information reflecting
the visual perception of the image, along with steganographic information reflecting the
embedding of steganographic messages. In this paper, we use the idea of transfer learning
for reference, and introduce adversarial training [22] to suppress content information
and highlight steganographic information as much as possible; doing so can better extract
steganographic embedding features and improve the detection performance of the network,
without the interference of content information.

By introducing the above two modules, the proposed network significantly improves
the accuracy of steganalysis.

3. Proposed Method

In this section, we elaborate on the proposed network structure, key modules, and im-
plementation details, and provide the training process of the network and parameter settings.

3.1. Architecture
3.1.1. General Structure

Figure 1 shows the structure of the CNN-based steganalysis network proposed in this
paper. The network is an end-to-end network where the input is an image of size 256 × 256
and the outputs are two class labels: cover image, and steganographic image. The network
consists of one image preprocessing layer, two separable convolutional (sepconv) modules,
one gradient reversal layer (GRL), four base convolutional modules, and multiple fully
connected layers.
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layer is abbreviated as FC.

The function of the preprocessing layer is to calculate the noise residuals. In recent
years, most methods perform residual calculation before feature extraction, and generally
use high-pass filters to filter out content information in order to enhance steganographic
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information. In this paper, the preprocessing layer is initialized using the 30 high-pass
filters in SRM [8], and these weights are not optimized during the training.

The separable convolution module and adversarial mechanism are introduced to the
network, enabling it to more effectively extract image steganographic embedding features,
and improving its detection performance. The next section provides detailed descriptions
of the separable convolution module and the generative adversarial module.

3.1.2. Separable Convolution Module

Separable convolution has recently made great progress in computer vision tasks,
such as Inception [23] and Xception [24]. Xception can be seen as the extreme version of
Inception, which reduces storage space and enhances the expressiveness of the model. The
general steganalysis approach is to extract attributes via direct normal convolution in 3D
space, which ignores the correlation between multiple channels of the image itself, and does
not fully utilize the channel correlation of the residual information. Based on the Xception
module, a separable convolution module is designed to maximize the channel correlation
of residual information, in order to better extract the steganographic embedding features.

Separable convolution includes pointwise convolution and depthwise convolution to
separate spatial feature learning from channel feature learning. As shown in Figure 2a, each
separable convolution module contains 1 × 1 pointwise convolution and 3 × 3 depthwise
convolution, where the 1 × 1 pointwise convolution extracts the channel correlation of the
residuals, and the 3 × 3 depthwise convolution extracts the spatial correlation. The spatial
correlation and channel correlation of residuals are independent. Thus, the introduction of
the separable convolution allows the attainment of channel correlations of the residuals,
and improves the performance of the network. The separable convolution module has the
following advantages:

1. It separates the normal convolution into pointwise convolution and depthwise convo-
lution, maximizing the channel correlation of the residual information;

2. It increases the signal-to-noise ratio and extracts more steganographic embedding
features, without the interference of image content information;

3. It adjusts the size and number of convolution kernels in order to reduce the num-
ber of parameters and the computation involved, shortening the training time and
improving efficiency.
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3.1.3. Generative Adversarial Mechanism

In recent years, generative adversarial networks (GANs) [25] have been widely used
in various fields. A GAN is essentially a generative model where the training process is in
a state of confrontation and its main structure consists of a generator and a discriminator.
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The generator generates samples that mislead the discriminator as much as possible,
whereas the discriminator needs to classify as accurately as possible. Adversarial training
is essentially a zero-sum game between the generator and the discriminator, which can
usually be implemented as a complex min–max problem. We simplify this problem to
a simple minimization problem by introducing GRL [22,26], which has no parameters
associated with it. During the forward propagation, GRL acts as an identity transformation.
During the backpropagation, GRL takes the gradient from the subsequent level, and then
changes its sign before passing it to the preceding layer.

In the application of image steganographic detection, considering that the image
contains both content information reflecting the visual perception of the image and stegano-
graphic information reflecting the embedding of secret messages, the steganographic
information is hidden in the content information. Thus, extracting the steganographic em-
bedding features that describe the existence of the steganographic information is extremely
difficult. This paper draws on the ideas of transfer learning [22] to introduce adversarial
training in steganographic detection, in order to suppress the content information of the
image as much as possible and highlight the steganographic information to extract the
steganographic embedding features more effectively. As shown in Figure 3, the adversarial
mechanism can be divided into three parts:
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Feature extractor: This part extracts features and decomposes them into image content
features and steganographic embedding features. For steganalysis tasks, image content
features are interference signals, and should be suppressed as much as possible, while
steganographic embedding features are useful features required by subsequent classifica-
tion tasks.

Label classifier: This part introduces GRL [22,26], which simplifies the adversarial
training between the feature extractor and the classifier; it will optimize the loss function
in the direction of negative gradient, and extract more image content features in order
to mislead the discriminator’s classification; thus, it is deemed more conducive to the
detection of the existence of steganographic information. Through adversarial training,
more steganographic embedding features can be isolated, and the accuracy of the network
can be improved.

Domain classifier: The domain classifier classifies the decomposed features into
two classes, distinguishing as much as possible between image content features and
steganographic embedding features.

The advantage of introducing adversarial mechanism into the network is that it can
fully suppress image content information, highlight useful steganographic information,
and extract more steganographic features from it, improving the detection performance
and generalization ability of the network.

The introduced separable convolution and adversarial mechanism are interrelated in
the network. The separable convolution module separates spatial feature learning from
channel feature learning, and further processes the results of the preprocessing layer in or-
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der to maximize the channel correlation of the noise residuals. The feature maps generated
by the separable convolution module retain less image content information, so that separa-
ble convolution blocks facilitate subsequent basic convolution blocks and the adversarial
module. The feature maps passed to the adversarial module ensure better extraction of
the steganographic embedding features, improving the accuracy of the steganalysis. The
separable convolution module and the adversarial mechanism work together to ensure
that the network can fully extract the steganographic embedding features and complete
the steganalysis task, without the interference of image content information.

3.2. Implementation Details

The training process of the network is as follows: an input image of 256 × 256 pixels,
after passing through high-pass filters in the preprocessing layer, is sent to the subsequent
separable convolution module and the basic convolution module for feature extraction;
after a fully connected layer, the feature decomposition is used to split the feature into two
parts, one of which needs to pass through the GRL [22,26], and is then sent to the subsequent
fully connected layer for classification in order to complete the task of image steganalysis.

The network can be divided into three parts: image preprocessing, feature extraction,
and classification. The implementation details of each part are described below.

The starting part of the network is the image preprocessing layer, and the parameters
of this layer are initialized using the 30 high-pass filters in the SRM [8]. The method
proposed in this paper resizes all of the original convolution kernels to 5 × 5, and pads the
inconsistently sized convolution kernels with zeros. The noise residuals of the input are
calculated using the optimized convolution kernels and stacked together as the input of
the subsequent feature extraction layer.

The feature extraction section consists of three types of modules: separable convolution
modules, basic convolution modules, and generative adversarial modules.

3.2.1. Separable Convolution Module

As shown in Figure 2b, the separable convolution module includes 1 × 1 convolution
and 3 × 3 convolution, and the input is the noise residual calculated by the preprocessing
layer. The module separates the multichannel feature maps from the previous layer into
the feature map of a single channel, performs independent spatial convolution for each
channel and, finally, concatenates the output channels by 1 × 1 pointwise convolution. All
convolutions in the module do not use bias, use ReLU activation function, and introduce
the absolute value function (ABS) to ensure sign symmetry.

3.2.2. Basic Convolution Module

Each basic convolution module consists of the following steps:

1. Convolution layer: In the basic convolution module, a 3 × 3 convolution kernel is
used. The optimized convolution kernel allows the network to have fewer parameters,
reducing the time required for training and increasing efficiency. The padding and
step size are set to 1, and no bias is used;

2. Batch normalization (BN) layer: Batch normalization can normalize the distribution
to a zero-mean and a unit variance during the training. The benefit of using a BN
layer is that it can recalibrate the value sent into the nonlinear activation function to
the appropriate position, and reduce the sensitivity of parameters in the initialization
process. Experiments show that adding a batch processing layer can effectively
accelerate training and improve the accuracy of detection;

3. Nonlinear activation function: The nonlinear activation functions commonly used
in spatial image steganalysis tasks are TanH, ReLU, and TLU. ReLU and TLU are
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used in the network structure proposed in this paper, and TLU is also used in the
preprocessing layer. The equation for TLU is expressed as shown below:

Trunc(x) =


−T, x < −T
x, −T ≤ x ≤ T
T, x > T

(1)

where the threshold T is set to 3. The basic convolution module uses ReLU as a
nonlinear activation function;

4. Average pooling layer: Average pooling is used in the basic convolution module,
which downsamples the feature maps and reduces the complexity of the features
by adjusting the size of the feature maps. Considering the ability to abstract image
features, the average pooling can meet the needs of the network for generalization
capability. The last basic convolution module uses global average pooling, allowing it
to be fed into the subsequent fully connected layers.

3.2.3. Generative Adversarial Module

The generative adversarial module includes a GRL [22,26] and several fully connected
layers. The introduction of the GRL simplifies the min–max problem of adversarial training
to a minimization problem, which is equivalent to a constant change in values when the
network is forward-propagated, whereas in backpropagation the layer changes the sign of
the acquired gradient and passes it to the preceding layer.

The fully connected layer in the generative adversarial module can be divided into
two parts: one as a label classifier, and the other as a domain classifier. The function of
the label classifier is to complete the image steganographic detection task and perform
accurate classification on the basis of the input features; the domain classifier is to classify
the image content information and steganographic information, keeping the two types of
features separated as much as possible in order to obtain better steganographic detection
features and improve the accuracy of steganalysis.

Given a training dataset {xi, yi}N
i=1, where xi is an input, yi is the corresponding

category vector. The feature extractor E, the label classifier C, and the domain classifier D
are parameterized by θe, θc, and θd, respectively. First, xi is fed into the feature extractor, and
the extracted feature vector is decomposed into the image content feature vector ci and the
steganographic embedding feature vector si, whose domain labels are represented by the
vectors bi and qi, respectively. Then, ci and si are simultaneously fed into the subsequent
label and domain classifiers. The label classifier obtains the output vectors ĥi and ŷi. The
domain classifier obtains the output vectors b̂i and q̂i. The network is trained to reduce the
loss function as follows:

Loss = Ls + Lc + Ld (2)

The loss function consists of three components:
Loss obtained by feeding the steganographic embedding feature vector into the label

classifier Ls. This section uses the cross-entropy (CE) loss function to calculate the sum of
the cross-entropy between yi and ŷi, where ŷi = C(si). Ls can be expressed as:

Ls(θe, θc) =
N

∑
i=1

CE(yi, ŷi) (3)

Loss obtained by feeding the image content feature vector into the label classifier Lc.
Generating adversarial training is usually implemented by a complex min–max problem,
as follows:

min
θc

max
θe

N

∑
i=1

CE(yi, ĥi) (4)
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where ĥi = C(ci). This paper introduces a GRL [22,26] into the steganalysis task in order to
simplify this complex problem into a minimization problem. Mathematically, we treat the
GRL as a pseudo-function R defined by two equations describing its forward propagation
and backpropagation behaviors:

R(x) = x (5)

dR
dx

= −I (6)

Therefore, adversarial training can be implemented by the minimization of the Lc:

Lc(θe, θc) =
N

∑
i=1

CE(yi, ĥi) (7)

where ĥi = C[R(si)], and R stands for the function implemented by the GRL layer, which
implements the constant transform in forward propagation and acquires the gradient from
the subsequent layer in backward propagation, changing the sign and then passing it to
the preceding layer.

Loss of domain classifier Ld. The function of the domain classifier is to distinguish as
much as possible between image content features and steganographic embedding features,
and this partial loss is defined as:

Ld(θe, θd) =
1
2

[
N

∑
i=1

CE(bi, b̂i) +
N

∑
i=1

CE(qi, q̂i)

]
(8)

where b̂i = D(ci), q̂i = D(si). By minimizing the loss function, the two types of features can
be further distinguished in order to separate other steganographic features and improve
the recognition performance of the network.

4. Experiments
4.1. Dataset and Software Platform

To obtain fair comparison results, all experiments used the same dataset, and the two
standard datasets were as follows:

BOSSBase1.01 [27]: This dataset contains 10,000 uncompressed grayscale images with
a size of 512 × 512 pixels, which are derived from 7 different brands of cameras.

BOWS2 [28]: This dataset also contains 10,000 uncompressed gray images with a size
of 512 × 512 pixels, and the image distribution in the dataset is very similar to that in
BOSSBase1.01.

Experiments on the steganographic detection of the spatial adaptive steganography
algorithms spatial-universal wavelet relative distortion (S-UNIWARD) [29], high-pass,
low-pass, low-pass (HILL) [30] and wavelet obtained weights (WOW) [31] were performed
on two image databases as above, using MATLAB for two steganographic embeddings
of the cover images at 0.2 bpp and 0.4 bpp, using a random embedding key during the
steganography process. The network was trained, validated, and tested in a PyTorch
environment. The method was compared with Ye-Net [14], SRNet [15], Yedroudj-Net [19],
and Zhu-Net [21].

4.2. Training, Validation, and Testing

Due to the limited GPU computing power, training the network using the original
512 × 512 images would be time consuming. Accordingly, we used MATLAB to change
the original images to 256 × 256 pixels, and all subsequent experiments were conducted
on the basis of the images of 256 × 256 pixels.

The designed experiment was divided into three parts:
The first part of the experiment focused on the effectiveness of the separable convo-

lution and the adversarial mechanism. The experiment used 10,000 modified images on
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the basis of BOSSBase1.01, with each cover image having its own corresponding stegano-
graphic image, for a total of 20,000 images. The training set contained 6000 pairs of images,
the validation set contained 2000 pairs of images, and the remaining 2000 pairs of images
were used as the test set, with no overlay in the three-part image set. This part of the
experiment verified the effectiveness of the separable convolution and the adversarial
mechanism by removing the separable convolution module and the GRL, respectively,
from the network structure.

The second part of the experiment compared our network with other steganalysis
methods based on CNNs. The size of the original cover images in the BOSSBase1.01 dataset
was modified, and then multiple adaptive steganography algorithms were performed
to obtain 10,000 pairs of images as the dataset. Similarly, 6000 pairs were used as the
training set, 2000 pairs as the validation set, and 2000 pairs as the test set. This part of the
experiment compared the detection performance of the method proposed in this paper
with various CNN-based steganalysis methods at 0.2 bpp and 0.4 bpp.

The third part of the experiment considered the impact of data expansion on network
performance. Considering that a larger training set is effective in avoiding overfitting for
experiments based on CNNs, 10,000 pairs of images from the BOWS2 dataset were added
to this part of the experiment; together with 6000 pairs of images from BOSSBase1.01, the
training set totaled 16,000 pairs of images; 20% of BOSSBase1.01 was used as the validation
set, and the remaining part was used as the test set for the experiments.

According to the above experimental design, the proposed method was trained and
tested with the same hyperparameters and settings as the previous method, and the test
results were taken as the final performance of the model.

4.3. Hyperparameters

The method proposed in this paper applies a mini-batch stochastic gradient descent
(SGD) to train the CNN network, with the momentum set to 0.9 and the weight decay set
to 0.0005. Due to the limited computing power, the batch size in the training was set to
16 (8 cover/stego pairs). All convolutional layers in this network structure were initialized
using the Kaiming method [32], and all linear layers were initialized by random numbers
generated from zero-mean Gaussian distribution with a standard deviation of 0.01. In
this paper, the parameters of the preprocessing layer were initialized using the values of
the high-pass filter in the SRM, and the threshold T of the TLU in this layer was set to 3.
The experiments used a cross-entropy loss function, and the cross-entropy loss decreased
continuously in the process of network training. The initial learning rate was 0.01, and
the number of epochs was set to 200. As the training process progressed, the learning rate
was changed to one-fifth of the original rate after a certain number of steps. The reduction
in learning rate ensured that the loss was still effectively reduced rather than repeatedly
oscillating in the later stage of training, thus further improving the accuracy.

4.4. Results
4.4.1. Verification of the Effectiveness of Separable Convolution and the
Adversarial Mechanism

To investigate whether the introduced separable convolution and adversarial training
can retain less information about the image content in the extracted features, we removed
the separable convolution module and the GRL from the network structure in order to
verify the performance of the network separately. We compared the networks without
the introduction of separable convolution (labelled as Our method/wosep) and with the
introduction of separable convolution (labelled as Our method/wisep); Table 1 shows the
experimental results.
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Table 1. Detection accuracy (%) for steganography at 0.2 bpp and 0.4 bpp on BOSSBase1.01 using
S-UNIWARD for networks without and with the introduction of the separable convolution module.

Payload Our Method/Wosep Our Method/Wisep

0.2 bpp 71.4 76.2
0.4 bpp 84.3 88.7

We compared the networks without the introduction of the adversarial mechanism
(labelled as Our method/woadv) and with the introduction of the adversarial mechanism
(labelled as Our method/wiadv) on the same dataset and with the same hyperparameters;
Table 2 shows the experimental results.

Table 2. Detection accuracy (%) for steganography at 0.2 bpp and 0.4 bpp on BOSSBase1.01 using
S-UNIWARD for networks without and with the introduction of the adversarial mechanism.

Payload Our Method/Woadv Our Method/Wiadv

0.2 bpp 72.7 76.2
0.4 bpp 85.9 88.7

For this subsection, we experimentally verified the effectiveness of the introduced
separable convolution and adversarial mechanism. Table 1 shows the performance compar-
ison between the networks without the introduction of separable convolution and with the
introduction of separable convolution. By observing the data in Table 1, the network with
the introduction of separable convolution can obtain higher accuracy in steganographic
detection at different payloads. Owing to the introduction of separable convolution, the
accuracy of the network improves by 4.8% and 4.4% for S-UNIWARD at 0.2 bpp and
0.4 bpp, respectively. This indicates that separable convolution can maximize the resid-
ual information and extract more steganographic embedding features, thus improving
the accuracy.

In addition, we also compared the results achieved by the networks without the
introduction of the adversarial mechanism and with the introduction of the adversarial
mechanism. As can be observed in Table 2, the network with the introduction of the
adversarial mechanism outperforms that without it, improving the accuracy by 3.5% and
2.8% for S-UNIWARD at 0.2 bpp and 0.4 bpp, respectively. The above experimental results
verify the effectiveness of introducing separable convolution and adversarial mechanism
into the network structure.

4.4.2. Performance Comparison between this Method and other CNN-Based
Steganalysis Methods

The experimental results reported in this section can be divided into two parts: The
first part visualizes the training process of the proposed method via an accuracy and loss
epoch chart. The second part compares the performance of the method proposed in this
paper with other popular steganalysis methods. All of the experimental results are from the
final iteration. When training and validating 256× 256 images sourced from BOSSBase1.01
for S-UNIWARD at 0.4 bpp, our proposed network is capable of fast convergence; the
detailed data are shown in Figure 4.

We trained the network on BOSSBase1.01 for 200 epochs—a process which took ~7 h.
From the chart, we can observe that the loss and accuracy tended to stabilize around
the 100th epoch. To prevent the network from overfitting, we stopped training at the
200th epoch. The loss curve drops obviously at the 50th epoch, which we believe is due to
the learning rate decay strategy, which effectively reduces the loss and improves accuracy.
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The proposed method was compared with several common steganalysis networks,
such as Ye-Net, Yedroudj-Net, SRNet, and Zhu-Net. Table 3 shows the experimental results.
The proposed method achieves good results regardless of the embedding method and
payload. Given that the network further introduces separable convolution and adversarial
mechanism based on the foundation of the high-pass filter, it can better extract the stegano-
graphic embedding features and, thus, improve the accuracy of steganographic detection.

Table 3. Detection accuracy (%) of multiple CNN-based steganalysis methods against HILL, S-
UNIWARD, and WOW at 0.2 bpp and 0.4 bpp.

Algorithms
HILL S-UNIWARD WOW

0.2 bpp 0.4 bpp 0.2 bpp 0.4 bpp 0.2 bpp 0.4 bpp

Ye-Net 58.5 66.9 59.3 68.4 67.1 76.9
Yedroudj-Net 61.8 72.2 63.7 77.2 72.6 85.8

SRNet 67.3 78.1 69.8 82.5 75.3 86.9
Zhu-Net 69.6 80.4 72.2 84.3 77.4 88.7

Our method 72.5 82.7 76.2 88.7 80.6 89.2

In Table 3, we further illustrate the detection accuracy of three common steganography
methods—HILL, S-UNIWARD, and WOW—at payloads of 0.2 bpp and 0.4 bpp. Based
on the data in Table 3, the network proposed in this paper obviously outperforms several
other CNN-based steganalysis methods; it is 12.3–20.3% better than YeNet, 3.4–12.5% better
than Yedroudj-Net, 2.3–6.4% better than SRNet, 0.5–4.4% better than Zhu-Net. For the
WOW algorithm, the proposed method achieves an accuracy of 89.2% at 0.4bpp.

Briefly, these experimental results demonstrate well that the method proposed in this
paper can extract the steganographic features more effectively, achieving higher accuracy
than other networks. According to the results of the first part of the experiment, it is
believed that the introduction of separable convolution and adversarial mechanism to
the network contribute greatly to the superior performance of CNN-based steganalyzers
over the other approaches. Note that the above experiments were operated without using
the knowledge of channel awareness, a larger database, or a virtual augmentation of
the database.

4.4.3. Impact of Data Expansion on Network Performance

In deep learning, it is significant to use a larger database to ensure a good performance,
but also to avoid overtraining. Academics are prone to using large datasets to improve the
performance of networks and to prevent overfitting. This part of the experiment expanded
the dataset by adding 10,000 pairs of images from BOWS2 to BOSSBase1.01, for a total of
16,000 pairs of training set images containing 6000 pairs of images from BOSSBase1.01 and
10,000 pairs of images from BOWS2. The remaining images in BOSSBase1.01 were used as
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the validation set and test set, and the enhanced dataset was noted as the extended BOSS.
The network was trained using the above dataset to verify whether the expansion of the
dataset could improve the accuracy of detecting steganographic images.

Table 4 shows the comparisons of Ye-Net, Yedroudj-Net, Zhu-Net, and our method
trained on the original BOSSBase1.01 and the extended BOSS, against the steganography
algorithm S-UNIWARD at payloads of 0.2 bpp and 0.4 bpp.

Table 4. Accuracy (%) of Ye-Net, Yedroudj-Net, Zhu-Net, and our proposed method for S-UNIWARD
at 0.2 bpp and 0.4 bpp on the original BOSS dataset and the extended BOSS dataset.

Algorithms
BOSS Extended BOSS BOSS Extended BOSS

0.2 bpp 0.4 bpp

Ye-Net 59.3 64.2 68.4 71.2
Yedroudj-Net 63.7 66.8 77.2 79.6

Zhu-Net 72.2 76.4 84.3 86.5
Our method 76.2 80.5 88.7 89.8

From the data in Table 4, we can observe that the detection performance of the
network gradually improves as the training set is incremented. For all of the steganalysis
algorithms involved in the experiments, better results were achieved using the extended
BOSS compared to training with only BOSSBase1.01. Ye-Net, Yedroudj-Net, Zhu-Net,
and our method improved accuracy by up to 4.9%, 3.1%, 4.2%, and 4.3%, respectively.
Especially for S-UNIWARD at 0.4 bpp, using the extended dataset for training, our method
achieved the best results in all of the experimental replicas, reaching 89.8%. Similarly,
when attempting to detect steganography at a lower payload, the network trained with
the extended BOSS also achieved the best performance. This prompted us to use larger
datasets for training the network; as opposed to using the BOSS training set only, the
extended BOSS can significantly improve the detection accuracy. During the experiments,
we also found that using a larger training set was effective in mitigating overfitting.

5. Conclusions

Benefiting from the application of CNNs in the field of image steganalysis, traditional
manually-defined features are slowly being replaced by features extracted automatically by
CNNs. In this paper, we introduced separable convolution and adversarial mechanism into
the traditional CNN structure, and proposed a new method for spatial image steganalysis,
which can detect steganographic images well. The algorithm shows significant improve-
ment over the current CNN-based methods. We attribute the improved performance of
steganographic detection to the following factors: a set of high-pass filters in the preprocess-
ing layer, a separable convolution module, and the introduction of adversarial mechanism.
The separable convolution module eliminates image content information from the features
and increases the signal-to-noise ratio; the introduced adversarial mechanism forces the
feature extractor to extract more content information features, and isolates more useful
steganographic embedding features. These mechanisms can extract more steganographic
embedding features and improve the accuracy of steganographic detection. We also experi-
mentally demonstrated that the network performance can be further improved by data
expansion. Extensive experiments demonstrate that the method proposed in this paper
significantly improves the detection accuracy compared with other steganalysis networks.

We hope that our method can provide some inspiration for future research in image
steganalysis. Our future work will focus on utilizing the current foundation in conjunc-
tion with the backbone of more advanced networks, which will extract more valuable
steganographic features for the steganalysis of color images.
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