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Abstract: As an integral part of the electromagnetic system, antennas are becoming more advanced
and versatile than ever before, thus making it necessary to adopt new techniques to enhance their
performance. Machine Learning (ML), a branch of artificial intelligence, is a method of data analysis
that automates analytical model building with minimal human intervention. The potential for
ML to solve unpredictable and non-linear complex challenges is attracting researchers in the field
of electromagnetics (EM), especially in antenna and antenna-based systems. Numerous antenna
simulations, synthesis, and pattern recognition of radiations as well as non-linear inverse scattering-
based object identifications are now leveraging ML techniques. Although the accuracy of ML
algorithms depends on the availability of sufficient data and expert handling of the model and
hyperparameters, it is gradually becoming the desired solution when researchers are aiming for a
cost-effective solution without excessive time consumption. In this context, this paper aims to present
an overview of machine learning, and its applications in Electromagnetics, including communication,
radar, and sensing. It extensively discusses recent research progress in the development and use of
intelligent algorithms for antenna design, synthesis and analysis, electromagnetic inverse scattering,
synthetic aperture radar target recognition, and fault detection systems. It also provides limitations
of this emerging field of study. The unique aspect of this work is that it surveys the state-of the art
and recent advances in ML techniques as applied to EM.

Keywords: electromagnetics; antenna; machine-learning; DoA; object detection; 5G technology

1. Introduction

Recent development in the field of electromagnetics (EM) and its diverse applica-
tion have attracted a wider community of researchers [1]. Among the different aspects
of EM, antenna research has evolved and transformed in totality from the design to
end-use application [2–6]. Advanced network systems [7,8], implantable devices [9,10],
wearables [11], flexible devices [12,13], textile products [14], and modern control system
development [15,16] necessitate futuristic antenna technology and performance require-
ments. For example, with the advent of the 5G spectrum, antenna design is by far the
most challenging part of the implementation as it is entirely dependent on the end device
form factor. This inevitably pushes antenna design for 5G devices to fit the ever-increasing
requirements for greater bandwidth, more frequency bands, and superior interference
immunity [17,18]. Furthermore, fault detection in antenna arrays and inverse scattering-
based non-linear problems need sophisticated yet cost-effective solutions, where Machine
Learning (ML) can provide an edge over other techniques [19,20].
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ML techniques have been extensively used in engineering and medical fields. They
have the ability to discover specific trends and patterns within large volumes of complex
datasets that would not be apparent to humans. As ML algorithms gain experience,
they continue improving in accuracy and efficiency. In addition, ML algorithms are
good at handling data that are multi-dimensional and multi-variety. Due to these unique
features, ML is being used in classification and optimization problems in the EM domain,
specifically antennas.

As modern discoveries in the field of wireless devices are in the upswing, versatile
and complex designs of antennas have been surfacing. With the increased complexities,
it is important to minimize design time and overhead costs to achieve optimized an-
tenna implementation. ML has contributed to parameter optimization and evolutionary
algorithm development in antenna research [21,22]. For instance, the usual synthesis
mechanism utilizing a full-wave electromagnetic simulator is gradually being replaced
by faster and more cost-effective ML algorithms. For its unparalleled performance in
unforeseen situations encompassing non-linear environments, researchers are utilizing it
to solve complex and modern conundrums with ease. ML has simplified the maintenance
and control of fabrication systems to achieve significant miniaturization [23]. Various
automated and cost-effective design procedures using ML techniques have been used to
develop complex antenna technologies [24,25]. Moreover, different fault detection in large
antenna-array-based knotty systems have also been resolved by ML.

This paper explores different ML applications from the perspective of EM, especially
antenna design, synthesis, manufacturing, development, and the detection of anomalies.
Moreover, this article describes different ML algorithms, optimization procedures, usability,
and selection of the best-suited model for the specific application. Moreover, the ML appli-
cations in different domains of antennae are clustered for ease in comprehension. Finally,
the challenges and limitations of ML applications in EM have been discussed. This review is
divided into six sections. Section 1 provides the introduction, Section 2 includes necessary
background information to understand ML, Section 3 describes different ML applications in
the EM field, Section 4 discusses the limitations of ML algorithms, Section 5 suggests future
scopes, and Section 6 concludes the article with necessary explanations supporting this
innovative research area.

2. Familiarization with ML

During the past few decades, researchers have been aiming at making machines
intelligent by providing them the capacity to make decisions or classify objects without
being programmed or without the use of predefined functions, rather using raw data from
the environment. Termed Artificial Intelligence (AI), the field has made breakthroughs
in the past few years. Mimicking the brain to solve an unknown problem, AI is widely
used in the fields of engineering, science, medicine, and technology [26]. ML is a branch
of AI that can be used to train algorithms to learn from and act on data without being
explicitly programmed [27], and the learned model can be used for future designs. Cur-
rently, ML is used in interpreting and analyzing data more efficiently and effectively
than the human brain. Incorporating the statistical modeling-based prediction and opti-
mization techniques, ML has various models and approaches as different problems need
different approximations to provide optimized solutions [28]. Common ML algorithms
include artificial neural networks (ANNs), support vector machines (SVMs), k-nearest
neighbors (KNNs), random forest, and gradient boosting trees [29–31]. From a method-
ological standpoint, ML can be classified into three main types: Supervised, unsupervised,
and reinforcement learning [32–34].
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2.1. Supervised Learning

In supervised learning, the algorithm learns from a training dataset (i.e., predefined
inputs and known outputs) to make predictions about the unforeseen data. A dataset
is designed using empirical data from a system in different configurations. This dataset
is then divided into training and testing sub-datasets. The training dataset is used to
train a model that infers a mathematical relationship between the input and output.
A trained model can then be used as a standard function for the system. Figure 1 shows
the methodological workflow of supervised learning.
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Different algorithms have been developed under supervised learning to solve a variety
of problems. Some of the known algorithms are mentioned below:

i. K-Nearest Neighbor (KNN): The concept behind the nearest-neighbor algorithm is to
find a predefined number of training samples nearest in distance to the new value
and predict the label from them. KNN depends on the surrounding limited samples,
rather than relying on the method of discriminating the class domain to determine the
value, and the KNN algorithm is more suitable for datasets with crossover or overlap.

ii. Support Vector Machine (SVM): Support Vector Machines (SVMs) are paradigms
based on statistical learning theory. They incorporate the structural risk minimization
principle, which has been shown to be better than the traditional empirical risk
minimization principle used by ANNs. Thus, they have a greater generalization
capability. SVMs can solve classification and regression problems and perform well
in a high-dimensional feature space. They handle a nonlinear classification efficiently
using the kernel trick that implicitly transforms the input space into another high-
dimensional feature space.

iii. Gradient Boosting (GB) Tree: The GB tree is an ensemble method that builds one
decision tree learner at a time by fitting the gradients of the residuals of the previously
constructed tree learners. To build a tree, the method starts from a single node and
iteratively adds branches to the tree until a criterion is met. For each leaf, branches
are added to maximize the loss reduction after the split (gain function).

iv. Random Forest (RF): The forest operates by forming a multitude of decision trees
at training time, and it is mostly trained using the bagging method, which adopts
randomly selected training data and then constructs the regressor. Finally, it combines
the multiple decision trees to obtain more accurate and stable predictions.

v. Naive Bayes (NB): This generally works as a classifier by utilizing the clustering tech-
nique. Clustering occurs considering the conditional probability of the components.
Based on the Bayes theorem, it independently predicts the probability of one feature
existing over others.
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2.2. Unsupervised Learning

In unsupervised learning, there are no training data, and the algorithm finds patterns
in data without any reference to labeled outcomes. The model itself discovers important
features existing in a raw dataset. In most cases, unsupervised learning is used for classifi-
cation problems or feature reduction. One of the simplest forms of unsupervised learning
is K-means clustering. It is a classification method that determines a center and the samples
neighboring the cluster. This determination of K-centers follows a pattern of choosing the
farthest samples from each other. Moreover, Principal Component Analysis (PCA) and
Independent Component Analysis (ICA) are used to cluster a set of data with similar char-
acteristics and distinguish unrelatable data from a given dataset without any supervision of
the system or dataset. Figure 2 illustrates a simple block diagram of unsupervised learning.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 25 
 

 

2.2. Unsupervised Learning 

In unsupervised learning, there are no training data, and the algorithm finds patterns 

in data without any reference to labeled outcomes. The model itself discovers important 

features existing in a raw dataset. In most cases, unsupervised learning is used for classi-

fication problems or feature reduction. One of the simplest forms of unsupervised learn-

ing is K-means clustering. It is a classification method that determines a center and the 

samples neighboring the cluster. This determination of K-centers follows a pattern of 

choosing the farthest samples from each other. Moreover, Principal Component Analysis 

(PCA) and Independent Component Analysis (ICA) are used to cluster a set of data with 

similar characteristics and distinguish unrelatable data from a given dataset without any 

supervision of the system or dataset. Figure 2 illustrates a simple block diagram of unsu-

pervised learning. 

 

Figure 2. Workflow diagram of unsupervised learning. 

2.3. Reinforcement Learning 

This learning method is more like a humanoid approach than an isolated machine. A 

model designed by reinforcement learning decides by utilizing negative and positive 

feedbacks, also known as penalties and rewards, respectively, provided by the environ-

ment. These two reagents determine a string of actions named a policy. The individual 

action of any policy may be inappropriate, but the cumulative outcome will always show 

the highest reward for any specific task. Figure 3 is a simple algorithmic view of a rein-

forcement learning technique. 

Figure 2. Workflow diagram of unsupervised learning.

2.3. Reinforcement Learning

This learning method is more like a humanoid approach than an isolated machine.
A model designed by reinforcement learning decides by utilizing negative and positive
feedbacks, also known as penalties and rewards, respectively, provided by the environment.
These two reagents determine a string of actions named a policy. The individual action of
any policy may be inappropriate, but the cumulative outcome will always show the highest
reward for any specific task. Figure 3 is a simple algorithmic view of a reinforcement
learning technique.
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Besides the above methods, new approaches such as Artificial Neural Networks
(ANN) and Deep Learning (DL) algorithms are found to be handy in the case of complex
problems. ANNs are bio-inspired algorithms for data processing, designed to model the
way in which the human brain operates. ANNs are typically structured in layers i.e.,
the input layer, the hidden layer, and the output layer. Each layer contains many neurons.
Recently, ANNs with multiple hidden layers, which are usually referred to as Deep Neural
Networks (DNNs) or Deep Learning (DL), have been introduced to solve EM problems.
Specially, DL has a vast variety of network architectures such as the multilayer perceptron
(MLP), convolutional neural network (CNN) (with many variants, including the U-Net,
which is an encoder-decoder CNN with skip connections), recurrent neural network (RNN),
and generative adversarial network (GAN).

3. ML and EM

In the era of advanced communication characterized by high speed and high band-
width network topologies, the need for EM systems to offer reconfigurability, compactness,
directivity, and energy efficiency has become a necessity. Furthermore, the detection and
identification of remote objects and faulty components in systems as well as pattern recog-
nition of radiating signals in electrical systems are the latest trends in EM. On the other
hand, the optimization of EM systems for superior performance given the constraints
has been a recurrent challenge. ML-based approaches have the potential to address such
complex and multifaceted challenges. The EM scientific community has leveraged ML for
various applications. In the next few subsections, a few of the applications of ML in EM
will be discussed.

3.1. Design Optimization and Synthesis

Antennae are an integral part of the EM system, which starts with the design, im-
plementation, and testing [35]. Traditionally, full wave (FW) EM simulation, such as
finite-difference time-domain (FDTD) or finite-element modeling (FEM) methods, is used
for antenna design and optimization. These methods require large computational resources
and time [36]. In fact, optimizing antenna arrays may involve significant repetitions of
EM simulations to fine-tune the geometric and/or material parameters for performance
improvement. Thus, applying ML models in the design of compact antenna or antenna
arrays with high gain, transmission efficiency, and directivity, including suitable material
selection, can enrich the effectiveness of the design.

ML has been used in different applications of antenna design and optimization [37–39].
Lecci et al. [40] proposed an ML framework that enabled a simulation-based optimization
of thinned arrays, considering network-level metrics such as signal to interference plus
noise ratio statistics, based on a Monte Carlo approach. Koziel et al. [41] proposed a multi-
objective optimization-based sequential mode algorithm that provided optimized design
characteristics of antennas using a few hundred full-wave EM simulations. Surrogate-
modeling-based antenna optimization is one of the most important methods in antenna
design [42]. Its purpose is to replace computationally expensive EM simulation with compu-
tationally cheap estimation models. Surrogate models are formed using statistical learning
techniques [43]. A multistage collaborative ML platform (MS-CoML) was introduced in
another study [44], which reported almost double speed in antenna modelling without com-
promising the accuracy via single-output Gaussian process regression (SOGPR). By jointly
applying three ML methods i.e., SOGPR and symmetric and asymmetric multioutput GPR
methods, the surrogate antenna models for different design objectives were constructed
based on a limited number of high-fidelity responses, while achieving high prediction
accuracy. Three antenna examples, i.e., single-band, broadband, and multiband designs
operating at the Q, V, and S/C bands, were chosen to validate the proposed method.
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Simulation results showed that the MS-CoML method can greatly minimize the total
optimization time without compromising modeling accuracy or performance. An advanced
study of a modified parallel simulation surrogate model-assisted system (PSADEA) was
proposed previously [45] that showed 1.8 times faster performance in optimization than the
conventional surrogate modelling method with higher antenna quality. Another approach,
which claimed 90% more time saved in antenna optimization compared to other surrogate
models, is the single-fidelity, EM-model-based, training cost-reduced, surrogate model-
assisted hybrid differential evolution for complex antenna optimization (TR-SADEA) [46].
It is a self-adaptive hybrid surrogate modeling framework that facilitates better perfor-
mance for complex antenna design with increased design variables and specifications.
More than 80% computational expense reduction was made possible by [47] implementing
a Gaussian process regression (GPR) model when the training data contain high fidelity.

A semi-supervised approach-based process was proposed in another study [48] where
a GP model and an SVM model were concurrently trained using a small amount of
pre-labeled samples. The system was controllable by selecting the required accuracy,
which optimizes design time. It offered high-precision predictive ability with respect to
conventional supervised learning-based surrogate modeling using less labeled data and
provided quality antenna designs utilizing only 10 to 15 EM simulations. Xue et al. [49]
developed a hybrid ML model where ten different models were initially trained using
a small set of data, which worked as a base learner. The initial predictions were then
inserted into a K-nearest neighbors (KNN) model, which reported the final prediction of
0.00456 mean squared error in the case of a triangular-shaped pin-fed patch antenna. To
increase the transmission efficiency of antennas used in wireless power transmission, ML
has become a reliable assistive technology [50].

Antenna synthesis involves the determination of a geometrical or physical form from
the knowledge of the electrical parameters. ML models can be fully used to enhance
antenna synthesis efficiency. Gaussian Boosting Tree (GBT) was applied in a previous
study [51] to synthesize a phase array antenna by estimating the phase angle for different
amplitudes. To predict the phase shift in a reflect array antenna, another study [52]
showed significant accuracy using a deep CNN-based AlexNet. The model takes the
radiation pattern and beam direction as inputs and predicts the phase shift with less
than 0.4% prediction error. Another ML approach was introduced in [53] where the
coupling coefficient between pantograph arcing and a GSM-R antenna is determined
utilizing multiple neural network (NN) regressors. The study showed significantly faster
performance (almost three times faster via ML) while conserving the accuracy of the
coupling coefficient. NN has provided over 99% accuracy towards [54] synthesizing an
H-shaped rectangular microstrip antenna (RMSA). However, studies have shown that the
Radial Basis Functions (RBF) of ANN are best suitable for evaluating the resonant frequency
of rectangular microstrip patch antennae [55]. Radiation field estimation utilizing the near-
field focusing technique offered by an earlier report [56] showed faster performance of
the SVM model with a smaller training dataset. Investigators [57] developed an inverse
NN (INN) model that could determine the VSWR, gain, radiation pattern, and radiation
efficiency of different planes with greater accuracy using a small dataset for training,
with only 36 samples. INN has also shown usability in transmit array antenna synthesis
from a given transmission co-efficient [58].

Sharma et al. [59] showed how modern ML algorithms such as least absolute shrinkage
and selection operator (lasso), KNN, and ANN improved the design optimization and
synthesis of antennae based on a specific bandwidth selection. The performance table
and the frequency response curve for the above study are shown in Figure 4, which
suggests the KNN algorithm as being the fastest among all. Again, in a different study [60],
a modified KNN showed the lowest S11 parameter compared to GPR, ANN, and a conjugate
gradient (CG) with a small dataset of 36 samples. CNN was used earlier [61] to estimate
the phase angle from an input (two-dimensional radiation pattern). The network was able
to accurately calculate phases to synthesize the desired pattern.
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An adaptive chaotic particle swarm optimization (PSO) algorithm was used to avoid
trapping in the local optimum, resulting in premature convergence of the antenna synthesis.
A prior article [62] provided a DL methodology that determined the amplitude and phase
of the antenna elements in response to the input radiation patterns, but for 0◦ and 360◦,
it will show less accuracy.

DL-based optimizers also provide significant improvements in DL models [63].
A combined GP CNN model was proposed by Zhang et al. [64] as a tool for the rapid
optimization of EM problems such as antenna design. PSO was also used to optimize
the model parameter, which elevated the performance, reduced convergence time, and in-
creased the design accuracy. For higher bandwidth and gain, PSO was used prior [65] for
optimizing a dielectric resonator antenna. For the combination of linear and non-linear
natures of geometrical parameters and design specifications of antennae, deep CNN was
used for the fast and accurate design of the antenna [66]. In an earlier study [67], modeling
multiband antennae using three ML algorithms with increased accuracy and performance
was reported. Kazemian et al. [68] described a directional antenna design scheme using
multi-objective GA to reduce the number of the antenna side lobes and lobe levels, which
eventually aids directivity and security in wireless communication. Rudant et al. [69]
proposed a Dual-Band Global Navigation Satellite System (GNSS) micro-array antenna
design optimization method to achieve higher Right-Hand Circular Polarized (RHCP) gain
and lower Left-Hand Circular Polarized (LHCP) gain.

3.2. Antenna Selection Applications

Antenna selection is key for efficient transmission with enhanced communication
and resource utilization. ML has the potential to play significant roles in the automa-
tion of selecting antennas for an application-specific need. Especially in multiple-input
multiple-output (MIMO) technology, several developments utilizing ML in efficient trans-
mit antennae selection are visible. To select a suitable antenna subset for large-scale MIMO
systems, a study [70] proposed a dynamic generalized spatial modulation framework
with Euclidean distance-optimized antenna selection (EDAS) and a Multi-layer percep-
tion (MLP) model, which enabled higher diversity gain. Another article [71] proposed a
CNN-based transmit antenna selection for a nonorthogonal multiple-access MIMO system
for 5G applications, where the proposed algorithm showed a performance 10,000 times
faster than the exhaustive search and 2 times faster than the hyper region proposal net-
work (HRPN) with an 89% validation accuracy. However, SVM, Naive bayes, and KNN
showed increased performance in selecting transmit antennas in untrusted relay networks
conserving standard channel-state information (CSI) secrecy with decreased computational
complexity compared to the exhaustive search in MIMO systems (Figure 5) [72,73].

A multilevel CNN was used in a MIMO Internet of Things (IoT) system to select
transmit antennae [74]. For modern MIMO communication transmit antennae selection, a
learn-to-select (L2S) approach was implemented by Diamantaras et al. [75] where achieving
the optimal uniform linear array of antennas was expensive, both from the design and cost
of materials perspectives. A DNN-based approach was implemented by Zhong et al. [76],
which seems to outperform the conventional norm-based approach for antenna selection
in MIMO software-defined radio systems by 53%. Aside from MIMO technology, ML was
used previously [77], where the Gaussian Mixture Model was adopted to sort the features
of an RF fingerprinting dataset, and later, an SVM was used to classify the antenna for
the classification and wireless identification of different RF devices. This study showed
above 75% accuracy in the case of heavily noise-affected RF signals and better feature
extraction performance than conventional algorithms. A prior study [78] proposed a
deep-learning-based approach rather than SVM for joint antenna selection, as well as
a precoding design algorithm to select the suitable group of antennas for base stations,
with an increased system sum rate and quality of service. The reason for selecting DNN
is to improve performance by using more elaborate functions compared to SVM-based
hyperplane models.
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3.3. Antenna Position, Direction, and Radiation Estimation

ML techniques have been significantly applied in estimating antenna position and
direction to achieve the maximum gain in transmission and receiver systems. It assists in
the detection and control of beam phasing of antennas based on signal patterns, strength,
and target location [79,80]. The direction of arrival (DoA) estimation has become a popular
application in military–civil research for remote object detection [81–83]. The fixed-antenna
method for DoA estimation has limitations, hence antenna arrays have been used as an
alternative in practice. The selection of suitable antennas for an antenna array and their
positioning for multiple-input single-output (MISO) applications using ML [84] is gaining
popularity due to its optimized computational time and performance.

Barthelme et al. [81] studied an NN-enabled algorithm to estimate DoA with lower
computational complexity. A modified genetic algorithm (GA) was implemented in an-
other study [85] to predict the optimal position of the antenna in an RF-based advanced
driving assistance system. A previous article [79] described a rotating, elevated antenna
technique assisted by ML to estimate the angle for a better field of view and cost-effective
automation. In another study [86], ANN was used to estimate beam alignment and distri-
bution without prior knowledge of user location information. Hong et al. [87] described
a directional antenna design scheme using multi-objective GA to reduce the number of
antenna side lobes and the lobe level, which eventually aided directivity and security in
wireless communication. In a prior report [88], GPR was used for computing the resonant
frequency of a square microstrip patch antenna. ML algorithms perform better in both
linear and complex problems [89], where different scattering parameters are estimated in
the UHF band of an antenna operating at a resonance frequency. An earlier study [90]
provided a predictive model using ANN, which can predict the resonant frequency of
a flexible microstrip patch antenna considering an inserted airgap. In a past investiga-
tion [91], the Support Vector Regressor (SVR) method was introduced to predict the EM
response of complex reflect-array antenna elements with complex shapes. SVR enabled
reliable, accurate, and fast EM response estimation (15% more time was saved compared
with the FW simulation). Furthermore, a recurrent neural network (RNN) was used to
suppress harmonics in wireless communication [92]. Deep neural networks (DNN) aid
in reduced computational complexity while predicting the optimized direction of arrival
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(DoA) [93]. The study also showed how a hybrid multilayered network can both detect
the optimum antenna from an antenna array and estimate DoA at the same time. Figure 6
shows the model architecture for the complex algorithm to estimate DoA reported in
that study [93].
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Another study [94] proposed a deep learning model to accurately track mobile stations
and point to the satellite antenna to obtain an interference-free communication link. To
obtain the desired radiation pattern, Lutati and Wolf [95] used a composite ANN approach
of a hypernetwork. Recurrent learning was shown to have the scope for advancing the
control of antenna such as safe antenna tilting at a remote distance [96].

Reconfigurability in antenna can be achieved through different mechanisms such as
electrical, optical, physical, and/or material changes [97–101]. ML has become popular with
reconfigurable antennas, specifically frequency-reconfigurable ones [102,103]. For example,
an intelligent surrogate model-assisted differential evolution to synthesize an antenna
array [24] with reconfigurable frequency was reported earlier. ML has been shown to be
more robust in complex environments compared to most other signal processing techniques
and offered an increased signal-to-noise ratio and efficient beamforming architectures.
Different types of fractal antennas, star antennas, and pattern reconfigurable antennas
are now utilizing ML algorithms to provide automatic reconfigurability features to serve
modern applications [104,105].

3.4. Remote Object Detection and Recognition

ML has been applied in the analysis and prediction of information from radar signals.
Synthetic Aperture Radar (SAR) is a microwave tool for the detection and recognition of
targets as well as for the analysis of natural and man-made scenes. It has the benefits of
all-weather, day-and-night operation with high-resolution imaging capability. Recently,
CNNs have been used for SAR target recognition (TR) and could achieve high precision in
image recognition and classification. However, the shortage of data still makes SAR-based
target recognition difficult. An earlier report [106] utilized CNN with three types of data
augmentation for issues in SAR-TR, such as the translation of a target, the randomness of
speckle noise in different observations, and the lack of pose images in training data. To
overcome the over-fitting problem of CNN for SAR-TR, Chen et al. [107] proposed a new
all-convolutional network (A-ConvNets) based on sparsely connected layers. The experi-
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mental results showed that, using data-driven features the model learned automatically
from SAR image pixels, A-ConvNets achieves excellent classification accuracy.

Mufti et al. [108] used a transfer learning approach where a pre-trained CNN, namely
AlexNet, was used as a feature extractor. Moreover, Pei et al. [109] proposed a Multiview
deep convolutional neural network (DCNN), which is an implementation of deep learning
architecture, to recognize targets using multiple viewing angles. The framework was
seen to effectively learn and extract classification information from the Multiview and
requires only a small number of SAR images to train the network model. Experimental
results have shown the superiority of the proposed framework based on the moving
and stationary target acquisition and recognition datasets. By analyzing multiple images
from different viewpoints (Figure 7a,b), the proposed algorithm showed an improved
recognition rate using the targets’ four input views compared to when using two or three
input views, in the case of an extended operating condition (Figure 7c). CNNs require a
massive amount of parameters and operations to generate a single inference, making them
unsuitable for latency- and energy-constrained applications such as SAR-TR. To reduce
the cost of implementing these networks, Dbouk et al. [110] developed a set of compact
network architectures, which achieves an overall 984 times reduction in terms of storage
requirements and 71 times reduction in terms of computational complexity compared to
state-of-the-art CNNs for automatic target recognition. To achieve good performance with
a small number of parameters, Huang et al. [111] proposed a lightweight two-stream CNN
to extract multilevel features. Experimental results demonstrate that the proposed method
achieved higher recognition accuracy compared to other CNN-based methods. Another
method for determining the characteristics of the unknown reflective object is analyzing
the signals from inverse scattering problems of EM.
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3.5. Inverse Scattering Problem

The electromagnetic inverse scattering problems (ISPs) seek to determine the nature of
the unknown (i.e., location, shape, and constitutive parameters) from the knowledge of mea-
sured scattered fields. The imaging techniques based on ISPs are instrumental in numerous
areas, such as remote sensing, biomedical imaging, through-wall imaging, geophysics,
and non-destructive evaluation. ISPs are challenging to solve due to their intrinsic nonlin-
earity. This has led to the development of many various EM inverse scattering methods,
which can be categorized into two groups: (1) Deterministic optimization methods includ-
ing the subspace optimization method (SOM) [112], distorted born iterative method [113],
and contrast source inversion (CSI) [114], and (2) stochastic methods [115] including ge-
netic algorithms, evolutionary optimization, and PSO algorithms. Compressive-sensing
(CS)-based methods are used as effective regularization tools to mitigate the ISP-related
challenges, especially for high-contrast and large objects, due to the high complexity and
long computing time. DNNs have been successfully used to solve inverse problems. More-
over, the learning-by-examples (LBEs) methods have been proposed to devise various ML
approaches to resolve the ISPs [116]. Wei et al. [20] developed DL schemes for ISP that
were able to produce good quantitative results by training a U-Net [117]; a unique CNNs
architecture originally designed for bio-medical segmentation.

To exploit the relationship between the DNNs architecture and the iterative methods
of nonlinear EM inverse scattering, the author [20] proposed three inversion schemes based
on a U-Net CNN.

Li et al. [118] investigated a Deep Neural Network for Nonlinear Inverse Electromag-
netic Scattering (Deep-NIS), which was based on a cascade of three CNN modules, in which
the inputs from the scene were processed by the backpropagation (BP) method and the out-
put was the reconstruction images of the unknown scatterers. Deep-learning schemes could
achieve excellent performance, but they are too difficult to implement using the physical
knowledge of electromagnetic inverse scattering. Thus, to bridge the gap between physical
knowledge and learning approaches, Wei et al. [119] proposed an induced current-learning
method by integrating benefits in the iterative algorithm architecture of CNN. To solve the
ISPs with high contrast, a contrast source network (CS-Net) combined with a traditional
subspace-based optimization method was investigated [120] and CNNs were developed
with three stages [121]. Furthermore, Yao et al. [122] proposed a two-step deep-learning
approach that can reproduce high-contrast objects using a cascade of CNNs and another
complex-valued deep residual CNN. In another study [123], a gradient learning approach
was used to invert transient electromagnetic data. Thus, the inversion methods using
only phase-less data (e.g., only amplitude data) are preferred for engineering applications.
Xu et al. [124] proposed three inversion schemes based on U-net CNNs to solve phase-
less ISPs.

3.6. Fault Detection Systems

The failure of elements in an antenna array causes sharp field variations across the
array aperture, thus degrading the radiation pattern of the antenna system. Therefore,
identifying defective elements is vital for correcting array failures. The Woodward–Lawson
method [125], Case-Based Reasoning systems [126], GA [127], and ML techniques have
been used earlier to locate the fault element(s) in an antenna array [128]. Patnaik et al. [129]
used an ANN to locate a maximum of three defective elements in a 16-element array,
from its distorted radiation pattern. The results were in excellent agreement with the
simulation results. In another study [130], the SVM classifier was used to detect defective
elements in a four-element array, using a different SVM for each combination of defective
elements. However, this approach was not feasible with moderate or large arrays, as the
number of possible combinations increased. The training and detection of the SVM were
conducted on measured radiation data with a signal-to-noise ratio (SNR) in the range
of 0–25 dB. In shipborne antennas, it is arduous to detect faults due to the unfriendly
working environment and loud background noises, so DL can play an important role by



Electronics 2021, 10, 2752 14 of 23

using multiscale analysis with a multi-layered network [131]. EM can be used in power
transmission anchor rods to detect faults. The procedure is noninvasive and nondestructive
due to the absence of physical human touch. However, the acquired signal is complex
and ML techniques must be used to recognize the pattern of the radiation and thus detect
anomalies [132]. The uncertainty of sudden antenna failure in textile applications was char-
acterized using a Bayesian optimization-adopted possibility theory in a prior article [133].
A defect in the base station often creates sleeping cells resulting in network failures that are
hard to detect. The naive bayes method provided excellent results in detecting this kind of
failure with precision [134].

3.7. Miscellaneous Applications

ML has been found to be useful in versatile EM applications. Tang et al. [135]
described a dual-antenna approach by optimizing the antenna parameters using GA,
to avoid the pathloss and increase the signal power effectively. A dual-band Planar In-
verted F-Antennas (PIFA) antenna for 5G mobile communications was proposed utilizing
a GA and Bayesian convolution incorporated hybrid algorithm in an earlier study [136].
ANN was used to optimize the dual-band antenna with the desired return loss and fre-
quencies of operation [137], which are ideal for 5G communication.

For better configuration of the number of subcarriers and the size of constellation
symbols in the case of mm-Wave communications, KNN was used in another study [138]
to maximize the system throughput. The system was evaluated using four antenna config-
urations resulting in a uniform cylindrical array with the highest data rate. A KNN-based
power allocation algorithm was proposed in [139] for a distributed antenna system. Thir-
teen ML algorithms including GP, SVM, KNN, Naive bayes, and ANN were adopted in
another study [140] for performance testing of fingerprint-based mobile terminal localiza-
tion, which improved the efficiency of KNN over other algorithms, producing the least
mean squared error.

Jiang and Schotten [141] studied a deep RNN-based approach including the long-
short-term memory (LSTM) and the gated recurrent unit to estimate the channel condition.
ML has been utilized in different antenna-related Internet of Things (IoT) applications [142].
The single-input multiple-output (SIMO) system is a great example of a modern IoT
application where ANN enabled significant improvements in learning the modulation–
demodulation schemes for multipath channels [143]. To achieve energy efficiency while
reserving the quality of service in the case of a shared wireless medium, base stations
must choose the best subset of antennae to utilize the spatial diversity of multiple users.
Deep Learning is also used in distributed antenna systems for optimal power allocation
to achieve spectral and energy efficiency with reduced computational complexity [144].
ML has also been used to perform different medical applications, such as breast cancer
detection by EM radiation [145]. Moreover, ML is used to generate models for the experi-
mentation of antenna performance of wireless devices adjacent to the human body, such as
radiation patterns, return loss, impedance, etc. [146]. It has been utilized to predict breast
cancer by estimating the S-parameter of an ultra-MIMO sensor antenna using PCA [147].
Figure 8 illustrates the versatility of ML in EM applications involving the design, synthesis,
recognition, and optimization of various EM-based systems.
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4. Limitations

It is undeniably noticeable from prior sections that the advent of ML has revolutionized
the progress in EM. However, machine-learning-based approaches have limitations. As
ML approaches are data driven, major limitations arise due to inadequate data to train
the model effectively. Moreover, as ML facilitates predictions, accuracy can decrease in
new cases and needs continuous evaluation and training of the model. Even the best-
performing CNN is found to be quite inaccurate outside of its known environment [148].
Although surrogate modeling provides great opportunities, it requires sufficient empirical
data from experiments and sophisticated tuning of the hyperparameters to achieve the
expected results. It often lacks efficiency in the case of higher dimensionality and highly
non-linear problems. Although different unsupervised algorithms are used to solve the
feature reduction and classification problems, almost all require expertise in handling
the design and in-depth programming of the required model of interest. Although it is
important to provide an abundance of data during training as the accuracy of the model
mostly depends on it [149], additional characteristics such as the learning rate, batch size,
and others are also essential for optimized and improved outcomes [150].

Although PCA and GA have shown significant optimization of ML algorithms using
an intelligent search-based mechanism [151,152], further improvement is necessary to
achieve better results. Even in antenna arrays, the performance of ML techniques is
not satisfactory due to the increased possibilities of antenna combinations. Sometimes,
even larger datasets for fault detection results in low accuracy, which makes the selection
of the appropriate ML algorithm difficult [153].
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5. Future Scope

Table 1 summarizes the comparisons of different ML algorithms (their pros and cons)
when applied in various aspects of EM. Since the emergence of 5G technology, antenna
arrays have received unprecedented attention and will continue to play a dominant role in
next-generation wireless communications systems. Small cell clustering, MIMO channel
estimation, bandwidth sharing automation, and different fault detections in 5G technology
are gradually adopting ML to obtain automation and success [154]. The use of ML improves
energy efficiency, allows for more signal-path diversity, and helps to mitigate multi-path
fading. Electromagnetic radiation-based detection can be a prominent solution [155,156]
where deep learning can play an important role in analyzing the radiation pattern and
facilitating a fast response. ML classifiers displayed significant accuracy in providing
information beyond the line of sight. These have now been used in the Global Navigation
Satellite System (GNSS) to eradicate the disputes caused by multipath and non-line-of-
sight signal propagation between the earth and satellites [157]. Another study [158] has
shown the feasibility of ML in the state recognition of satellite antennas by accumulating
minimal data. In addition, published literature [159,160] proved the viability of using
ML algorithms in the detection of spoofing attacks in multiantenna snapshot receivers by
tracking the antenna positions by satellite. ML can also automate the design procedure in
different computational EM methods of intelligent CAD and CAE applications [161]. ML
is becoming popular in the design of complex antennas for advanced and new applications
involving 5G technology and IoT [162]. To represent the path loss in complex environments
of future wireless sensors, ML can contribute significantly via advanced feature selection
and modeling tools [163]. Again, determining the signal condition is an important aspect of
modern wireless networks, in which ML algorithms can play a significant role [164]. AI and
the subset ML approaches are better than conventional algorithms in the implementation
of reconfigurable antenna arrays with greater robustness in the case of noisy and multipath
environments [104], even for the protection of the devices [165].

Table 1. Qualitative comparison of different ML algorithms based on EM applications.

EM Applications Algorithms & Optimizers Advantages Shortcomings References

Design optimization,
synthesis & modeling

Surrogate modeling (single-stage,
multi-stage, single- and multi-output GP

modeling and differential evolution)

Inexpensive computation techniques, fast optimization
with significant accuracy, self-adaptive feature for

complex designs

Long models needed for better accuracy,
computational complexity can be increased

due to parallel simulation and
hybrid structures

[21–25,37,39,42,44–49,51–69]

SVM, GBT, KNN
Fast design can be achieved, conditional designing

with less dataset for specific accuracy, easy controlling,
and modeling

Less effective in case of
complex designs

Neural networks (ANN, RBF, CNN, INN and
other Deep learning variants)

Higher accuracy, complex designing capability, high
adaptability, fast estimation, and classification, efficient

in handling large feature space

Large dataset required for optimal accuracy,
may increase computational complexity for

higher order deep models

Particle swarm optimization Reduced convergence time, optimal model
parameter determination

Assisting technology for other ML
algorithms, performance depends on the

selection of accurate models,
computationally complex techniques

of optimization.

Antenna selection applications

Neural networks (MLP, CNN, DL variants) Higher diversity handling capability, higher accuracy
in complex environments

Computationally complex, large dataset
needed for significant accuracy

with confidence

[70–78]

SVM, NB, KNN, L2S

Low computational complexity compared to
exhaustive search methods and neural network

variants, compatible to maintain CSI secrecy in MIMO,
less affected by random noise in a dataset

Low Quality of Service (QoS) in large
systems, where more elaborative

functionality required

Antenna position, direction, and
radiation estimation

Neural network (ANN,
RNN, DNN)

Lower computational complexity with higher accuracy
and reduced computational expense than other

algorithms in this field, effective for DoA estimation.

Requires large dataset, may be
computationally costly and complex with
hybrid compound structures of the model

[24,79–105]Genetic algorithm Effective for complex analysis, network estimation and
diversified fields of applications

Computationally complex, effective
parameter handling is needed.

GPR, SVR,
evolutionary algorithms

Easy to implement, significantly accurate and faster
than all the other algorithms. Effective for

reconfigurability estimation of antenna

Not suitable for complex problems and more
prompt to be affected by dataset noise.

Remote object detection
and recognition CNN, DCNN

Model compatible data availability is high. Different
variants such as Multiview, deep CNN,

and dual-stream method provide higher accuracy with
reduced computational complexity.

Not suitable for real-time object detection
for high latency to deal with

massive parameters.
[106–111]
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Table 1. Cont.

EM Applications Algorithms & Optimizers Advantages Shortcomings References

Inverse Scattering Problems

Deterministic optimization methods (SOM,
DBIM, CSI) and stochastic methods (GA,

evolutionary optimization and PSO).

Mitigation of the challenges related to high contrast
and large objects.

Less effective in solving
intrinsic nonlinearity

[18,110–122]
DNN Able to reconstruct images of the unknown scatterers. Failure to bridge the gap between physical

knowledge and learning approaches

CS-Net, residual CNN Reproduction of high-contrast objects. Inversion of transient electromagnetic
data only.

Gradient learning, U-net CNNs Capable of producing good quantitative results
(e.g., amplitude data)

Unable to predict
phase measurement

Fault Detection Systems

ANN Display of excellent agreement with the simulation
results found from its distorted radiation pattern.

Locating maximum of three defective
elements in a 16-element array.

[123–132]SVM Able to detect defective elements in a 4-element array,
using a different SVM for each defective element. Not feasible with moderate or large arrays.

Bayesian optimization, Naive bayes method
Characterizing of the uncertainty of sudden antenna

failure and precise detection of network failure that are
hard to detect.

-

Miscellaneous applications &
future scopes (5G, IoT, healthcare

and distributed networks)

GA and Bayesian convolution Optimization of the antenna parameters avoiding the
pathloss and not increasing signal power effectively

Not suitable for optimizing all the
parameters of a given system.

[133–145,154,157,162,165]

ANN

Optimization of dual-band antenna with desired
return loss, Significant improvements in learning the

modulation demodulation schemes for multipath
channels in IoT applications.

Less effective for MIMO system

KNN
Maximization of the system throughput in mm-Wave
communications due to ensuring the highest data rate

and least mean squared error.
Unable to reduce computational complexity.

PCA
Different medical applications (e.g., prediction of

breast cancer by estimating S-parameter of an
ultra-MIMO sensor antenna)

Complexity to generate models for
experimentation of antenna performance of

wireless devices adjacent to the human body
such as radiation pattern, return loss,

impedance etc.

6. Conclusions

This paper presents a survey of the state-of-the art investigations in the application of
machine-learning techniques in EM. The available literature proves the effectiveness and
efficiency of these ML methods in solving EM problems. The advantages of ML models
include their accuracy and ease of implementation for highly non-linear EM problems.
A primary disadvantage of ML techniques is the high number of parameters and hyper-
parameters to set, which makes the process complex and consumes time. Nonetheless,
it can be envisioned that ML techniques will play a dominant role in next-generation
wireless technology via faster solutions in the EM domain.
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