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Abstract: In this paper, we present a handwritten character recognition (HCR) system that aims
to recognize first-order logic handwritten formulas and create editable text files of the recognized
formulas. Dense feedforward neural networks (NNs) are utilized, and their performance is examined
under various training conditions and methods. More specifically, after three training algorithms
(backpropagation, resilient propagation and stochastic gradient descent) had been tested, we created
and trained an NN with the stochastic gradient descent algorithm, optimized by the Adam update
rule, which was proved to be the best, using a trainset of 16,750 handwritten image samples of 28× 28
each and a testset of 7947 samples. The final accuracy achieved is 90.13%. The general methodology
followed consists of two stages: the image processing and the NN design and training. Finally,
an application has been created that implements the methodology and automatically recognizes
handwritten logic formulas. An interesting feature of the application is that it allows for creating
new, user-oriented training sets and parameter settings, and thus new NN models.

Keywords: optical character recognition; logic formulas; neural networks; resilient propagation;
OpenCV; Encog

1. Introduction

Optical character recognition (OCR) aims to formulate methods that deal with the
efficient recognition of written text. Initially, OCR was used for the identification of postal
codes, license plates, bank checks, and later, for converting images of text into editable
digital files. These days, it assists in more and more human tasks such as automated
validation of private documents (passports, identities, official forms), making images
of printed text searchable by engines, helping blind people recognize text by reading it,
extracting information from image text and adding to calendars and contacts.

Handwritten character recognition (HCR) is the most challenging subfield of the OCR
field (the other being typed character recognition—TCR), given that many, sometimes
diverse, case-based parameters should be considered [1]; these include the surrounding
context of the target text (e.g., text in nature scenes, text within shapes or drawings), the
hugely variant handwriting styles, the way that characters are written (e.g., different pen
stroke widths, interconnected and skewed characters), the quality of the image (e.g., poor
resolution, bad lighting conditions) [2,3]. Even if we assume all those challenges are solved,
there can be cases of isolated characters that can be misidentified even by humans, although
we are able to identify letters in formed words based on context.

Many of the approaches that tackle the HCR problem use some type of artificial neural
network (NN) [4]. The most common architecture of NN, called feedforward multilayer
network, consists of neurons that are connected to each other and are organized in layers:
input layer (every neuron receives a value from an input vector), output layer (every
neuron produces a final output) and hidden layers (transfer output of the previous layer
to the next one). Each neuron, to propagate its input to its output (or the next neuron’s
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input), has a filter defined by an activation function, which is usually non-linear. An NN is
trained via a training data set, which we call ‘trainset’, to specify a character recognition
model. In our case, the size of the input layer is defined by the resolution size of each
character, whereas the output layer’s size by the total characters to be recognized. Initially,
the number of hidden layers is chosen arbitrarily and afterward is updated by trial and
error. During the training process, every connection has a weight that is changed according
to the calculation of an error function. Performance of the NN is tested via a test data set,
which we call ‘testset’.

In recent years, quite sophisticated deep learning NNs, such as convolution neural
networks (CNNs), have been used for HCR [5,6]. However, it may still be challenging to
use simpler networks that achieve comparable or adequate accuracy levels for the problem
at hand. Our problem is that of converting handwritten logical formulas into typed ones
for educational purposes in offline mode.

In this work, we use a dense multilayer perceptron (MLP), in which neurons of a layer
are fully connected with neurons from the previous and next layer and the connections
have a forward direction. We use and compare three supervised gradient descent training
algorithms: backpropagation (standard version), resilient propagation—RPROP (an im-
provement of backpropagation where weight changes are affected only by the gradient’s
sign), and stochastic gradient descent—SGD (where, in each epoch, a random portion of
the training set is chosen to calculate the average error function and weights are changed
via the Adam update rule) [7].

We consider HCR as a multi-class classification problem. To this end, we defined an
image preprocessing methodology for dataset creation from text images to train and test
the NN. Created datasets map input pixel-based handwritten character representations
to output one-hot encodings of typed characters. The pixel values belong to {0, 1}. We
experimented with several NN structures and activation functions. We also experimented
with different hyperparameters’ values. The hyperparameters considered were learning
rate, momentum, batch size and the number of epochs.

Furthermore, we developed a Java application that implements the whole process:
takes as input an image of handwritten logic formulas, preprocesses it, specifies areas
of handwritten logic formulas, recognizes every character with a pre-trained NN, and
prints the logic formulas in an editable text file. In addition, the application provides the
capability of creating a new training set and specifying a new NN model (i.e., configure
and train the NN from scratch).

Therefore, the contributions of this work are as follows:

• Use of NN for HCR in a new problem domain (handwritten logical formulas), where
special characters, apart from English letters and digits, are also used.

• Introduction of an image preprocessing methodology, especially as far as the “Line
detection” subprocess is concerned, for dataset creation.

• A thorough study of the effects of the changes in the values of the training hyperpa-
rameters on the performance of the NN.

• Development of a software tool that implements the introduced methodology and
allows re-creation of the dataset and re-configuration of the NN model.

The rest of the paper is structured as follows. Section 2 presents related works on HCR,
mainly for the English language. Section 3 presents the proposed methodology, describes
its stages and analyzes its functionality. Section 4 presents the formulation of a novel
dataset of handwritten logic formulas, the experimental study and the collected results.
Section 5 presents the developed application that implements the methodology and is used
to recognize handwritten logic formulas in real conditions. Section 6 discusses the main
findings of the experimental study. Section 7 presents a comparison of our approach with
other similar approaches. Finally, Section 8 concludes the paper and provides directions
for future work.
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2. Related Work

In recent years, many approaches have been designed and applied to accomplish the
HCR task. In this section, we present recent works mainly concerning HCR for handwritten
or typed English language, based on NNs.

Perwej and Chaturvedi [8] propose the use of a feedforward MLP network for rec-
ognizing handwritten lowercase English alphabet characters. They created a dataset of
650 samples (25 for each character) from different writing styles and a grid size of 5 × 5
binary pixels. The network had 25 neurons at the input layer, 2 hidden layers of 25 neurons
each (with logistic sigmoid and tanh activation functions, respectively), and a 0.05 learning
rate. The final accuracy achieved was 82.5%, and the error margin was due to weakness of
distinction between look-alike characters (e.g., c–e, i–j, u–v, etc.)

An interesting approach to HCR is presented in the work of Kader and Kaushik [9],
which focuses on the size and color-invariant digits and capital English letters of “Times
New Roman” font using a feedforward NN without any hidden layers. The whole recog-
nition process is divided into four basic steps: preprocessing (digitization, noise removal
and boundary detection), normalization (12 × 8 grid size of binary pixels), network estab-
lishment (input layer of 96 neurons and output layer of 36 neurons) and recognition. The
trainset size was around 5–10 samples per character, and the testset size was more than
20 samples per character. After training with different subsets of the trainset, the accura-
cies achieved were 99.99% for digits, 98% for letters and about 94% for both mixed. The
interesting conclusion is that the proposed system produced excellent results for numeric
digits and letters when trained and tested separately, and a little lower when they were
trained together.

Choudhary et al. [10] underline that the main factors judging HCR’s accuracy and
capability are the choice of the classifier and the approach used to extract character features.
They focus on the recognition of handwritten English alphabet characters by creating a
dataset of 1300 samples from 10 people with a grid size of 15 × 12 binary pixels. In a
MATLAB environment, they preprocessed every sample by thresholding it with a global
value, followed by resizing, cropping and denoising. A feedforward NN with an input
layer of 180 neurons, one hidden layer of 80 neurons and output layer of 26 neurons with
one-hot encoding was trained using a backpropagation algorithm and adaptive learning
rate. Furthermore, the activation function of the hidden and output layer was tanh. The
average overall recognition accuracy achieved was 85.62%.

Katiyar and Mehfuz [11] use an NN of 144-100-90-6 architecture, where they make
use of 144 hybrid features, extracted by four different methods (boxing, diagonal distance,
mean pixel value, image gradient). Backpropagation gradient descent with momentum
and adaptive learning is used for training. The CEDAR (Centre of Excellence for Document
Analysis and Recognition) benchmark dataset of the English alphabet is used for training
and evaluation (19,145 isolated characters for training and 2183 for testing). A recognition
rate of 93.23% was achieved.

The work in [12] concerns the recognition of 62 typed English characters (alphabetic
and digits). A feedforward NN with one hidden layer is used, implemented in MATLAB. A
total of 558 samples of 62 typed characters each, where each character was in nine different
fonts, were used for feature extraction and training. The backpropagation algorithm was
used. The final architecture was 96-79-62 and achieved a recognition rate of 93%.

In [13], a methodology was developed to convert handwritten text, including only
alphabetic English characters, into typed text, using a multilayer feedforward NN, without
using feature extraction. The methodology includes image acquisition, preprocessing,
segmentation, classification, and recognition. After recognition, in a postprocessing stage,
the recognized characters are printed in a structured format. The used dataset consists
of 4840 characters (4400 for training and 440 for testing), produced from text written by
100 different people. Handwritten characters were resized into 30 × 20 pixels, so each
resized character consists of 600 pixels, considered as features. The final NN had two
hidden layers of 100 neurons with a logistic sigmoid activation function. The proposed
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system achieved an accuracy of up to 90.19%. A system implementing the methodology is
also reported.

The work of Chen [14] uses two smaller subsets of MNIST, one that had only digits 0
and 1 (12,665 samples for the trainset and 2115 for the testset) and the other only digits 3
and 5 (11,552 samples for the trainset and 1902 for the testset) and trained two feedforward
NNs as a binary logistic regression model with the SGD training algorithm and batch
size of 1. Furthermore, he conducted experiments by varying the trainset size from 5% to
100%. The results showed that smaller sizes of trainset led to insignificant, lower accuracies
compared to the highest accuracies achieved with full-size. More specifically, the accuracy
range was 97–99% for the 0–1 pair and 85–94% for the 3–5 pair.

Jana et al. [15] present a comparative study of multilayer perceptron (MLP), recurrent
neural network (RNN) and convolutional neural network (CNN), of which CNN provided
the highest accuracy. They focus on the recognition of handwritten digits using the famous
MNIST dataset. The MNIST dataset has a trainset of 60,000 and a testset of 10,000 digits
samples, normalized in 28 × 28 pixel size. After training CNN with two methods, they
achieved 98.92% accuracy with method 1 and 98.85% with method 2. The latter method
was finally proposed because it needed less training time.

Yousaf et al. [16] present a methodology for handwritten English character (alphabetic
and digital) preprocessing and recognition through an NN with one hidden layer, without
using feature extraction. Preprocessing consists of binarization (by Otsu’s global threshold-
ing method), segmentation, filtering, and dynamic resizing. They used the HCD dataset,
which consists of 19,422 alphabets and 7720 digits, produced from text written by 150
different writers. Handwritten characters are resized into 60 × 40 pixels, so each resized
character consists of 2400 pixels, considered as features. Two NNs were configured with the
best results, one for alphabet recognition with 240 hidden neurons and 96.98% precision,
and the other for digit recognition with 120 hidden neurons and 98.08% precision.

Kosykh et al. [17] discuss the task of optimizing parameters of NNs for image recogni-
tion using MATLAB and Hadoop tools. They used the MNIST digit dataset to evaluate
the accuracy of the network, dependent on choosing the number of hidden layer neurons,
choosing the optimal training algorithm, and using parallelization with the MATLAB Dis-
tributed Computing Server. By testing a range of (10,300) neurons in a hidden layer, they
concluded that (considering 784 input layers and 10 output layer sizes) the best accuracy
(95.7%) was achieved with 145 neurons. As for the training algorithms, they tested RPROP,
SGD, the Fletcher–Powell conjugate gradient, the Powell–Bill method, the Polac–Ryber
method and the one-step algorithm (cutting planes method). Among them, RPROP turned
out to be the fastest with lower accuracy, but on those terms, SGD was the optimal choice
(95.7% accuracy). Finally, they show that multiple CPU cores on distributed computing
can speed up calculations and training time.

Parthiban et al. [18] use a recurrent neural network (RNN) for handwritten English
character recognition. The IAM dataset is used, which includes images of 79 distinct
characters, resized in 32 × 80 pixels. They achieved 90% accuracy.

Recently, combinations of CNNs with other classifiers have been used for HCR.
For example, in [19], combinations of various CNN types (AlexNet, ZfNet, LeNet) with
the error-correcting output code (ECOC) are examined. The combination with AlexNet
achieves the best accuracy (97.71%). The NIST handwritten character image dataset was
used for training and validation. Similarly, in [20], CNN and SVM are combined. Using
the handwritten digit images of the MNIST dataset, an accuracy of 99.28% is achieved.

3. Methodology

In this section, we present the methodology followed to create a model for character
recognition and analyze its stages. The methodology has two main stages:

• Image preprocessing,
• Neural network design and training.
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3.1. Image Preprocessing

Image preprocessing is the first stage in creating a model for handwritten text recogni-
tion and aims at converting images in a form that represents (some of) their features to be
able to produce a suitable dataset for neural network training. In Figure 1, the main steps
of our image preprocessing stage are depicted. Each step may include other sub-steps,
which are not displayed for simplicity reasons. Creation of handwritten text images is the step
where specific text of logic formulas handwritten by different people on paper are collected
and scanned to obtain corresponding text images. More specific information is given in
Section 4.1.

Figure 1. Image processing flowchart.

3.1.1. Conversion to Grayscale

In this step, considering that our application should have the ability to detect both
scanned and camera images, a black 20-pixel wide padding is initially inserted to help
detection of the paper area. In the case of camera images, this demands that the background
must be plain black. Afterward, images are converted to grayscale with pixel values from
0 to 255.

3.1.2. Detection of the Paper Area

The aim of this step is to find the largest rectangle shape in an image, which will be
the paper area. First, we smooth the image with a bilateral filter to preserve edges and then
blur the white area. Next, we apply a global threshold with the Otsu method [21], detect the
paper’s largest contour, and apply a warp perspective to correct any angle the image was
taken from. In the end, the paper area is cropped with a default margin of −5 pixels. We
have chosen this value as a minimum default to ensure that no background image will be
inserted in the cropped area, while preserving most of the paper area. Note that this step
will fail if the edges of the paper are not perfectly straight. In such cases, those margins
should be changed separately for any direction.

3.1.3. Thresholding (Binarization)

In this step, the paper area image is binarized with adaptive thresholding of a 201 size
Gaussian kernel window and a subtracted constant 13. Those values were found by trial-
and-error and worked very well with every image we tried. However, they should be
changed if the application produces unsatisfying binarization.

Note that we also compared other types of thresholding, such as classic and OTSU,
which use global threshold values, but they yielded lower quality results. Additionally,
thresholding inverts the image in a way so that it has white characters (pixel values = 1)
in a black background (pixel values = 0). Figure 2 shows the comparison of the above
thresholding algorithms.
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Figure 2. Comparison of thresholding algorithms.

As shown in Figure 2, normal thresholding with 100 fixed values produces poor
results, while we lose much information from the characters. With the OTSU thresholding
method, we had better results, but again, a little amount of information was lost. Adaptive
thresholding was the best, and for more noise-free results, a median filter was applied first
with a small-sized erosion after thresholding.

3.1.4. Detection of Text Area

To detect the text area on a thresholded image, we collect all points whose pixel
values are greater than their average and find the minimum rotated rectangle that encloses
them. Then, the rectangle’s angle is computed and corrected with warp affine transformation.
Finally, the corrected rectangle area is cropped. For better results, we apply hard Gaussian
blurring at the start of this step to avoid any noise pixels that may lead to the wrong angle of
the rectangle. Note that if there are any large noise pixels out of the text area, this step may
fail and find a totally wrong rotated rectangle. The whole process is shown in Figure 3.

Figure 3. Example of text area detection.

In Figure 3, we start from the far-left binarized image, apply blurring with a 21 size
Gaussian kernel window, find the enclosing minimum rotated rectangle from pixels that
are greater than their average value, calculate the new angle, and warp affine the image
to deskew it. In the end, for the cropping, we insert a padding and crop image with a
+10 pixels additional margin, to avoid any extrapolated pixels.

3.1.5. Character Detection (Contours Extraction)

This is the most important step, as the method finds all possible contours in an image
with the Suzuki algorithm [22] and stores them in a matrix variable (Mat class of OpenCV).
Note that image resolution is crucial for better results of the algorithm. In addition, the
assumption here is that no contour character should be linked to another or they will be
considered as a single one. However, the problem of two-part characters like ‘i’, ‘j’ and
‘=’ arises, which we solve in a further step. After every character is isolated, the method
marks them with a red rectangle, as shown in the example of Figure 4.
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Figure 4. Example of contours extraction.

3.1.6. Line Detection

Detection of handwritten text lines is quite challenging because of the large variance
in line angles and cross interferences, etc. We designed an algorithm based on profile pro-
jection, as described in [23,24]. Figure 5 shows an example of horizontal profile projection
on printed and handwritten text.

Figure 5. Horizontal profile projection examples.

As shown in Figure 5, horizontal profile projection creates a histogram by counting
white pixel values horizontally. In the case of printed text, the distinction of lines is very
clear, but in the case of handwritten text, we see that the bottom histogram peaks interfere
with each other, which is a common problem of handwriting on blank paper. Therefore, to
solve this problem, we propose the following algorithm:

1. Compute the average height and width of characters.
2. Create an image with filled rectangles of every character and decrease its’ height by

2/3 if it is greater than the average height.
3. Divide the image in vertical stripes (partitions) of width equal to 3 times the average

width.
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4. Calculate horizontal histograms of every stripe and draw rectangles on lines’ bound
areas.

5. Concatenate all stripes and find all formed contours (as possible lines).
6. Search for small contours with height less than 2/3 of the average height, and width

less than half of the whole image width and merge them with the closest contour.
7. Merge all contour pairs that have vertical distance less than average height (the case

of lines that have large gaps inside).
8. Order contour lines by vertical position and find every character that lies inside each

line based on its’ center.
9. Calculate the convex hull of each line according to its’ characters and draw the overlay

(for user display).

This algorithm yielded 100% accuracy for all our image samples but is not perfect
because it makes assumptions such as low variant character sizes, no connection between
characters from consecutive lines, etc. Figure 6 shows an example of the algorithm’s basic
steps applied to a binarized image sample.

Figure 6. Basic steps of the line detection algorithm.

As shown in Figure 6, we start from the binarized and cropped text area, create an
image of characters’ modified rectangles, divide it into vertical stripes, find the horizontal
histogram for every stripe, draw a rectangle at every possible line area and concatenate
them all again forming the bottom-right image. Next, we find all contours and merge the
smaller ones with those closest to them. Then we draw their convex-hull outlines (based
on the characters of each line) and we transparently overlay them with the characters of
the binarized image, as shown in the bottom-left image. Finally, the red marking rectangles
of Figure 6 are drawn. This is performed just for user display reasons and is the last shown
optical image of the image preprocessing stage.

3.1.7. Ordering and Normalizing Characters

After all of the lines are detected, we order every character found in each line by the
x-axis, and we merge the two-part characters ‘i’, ‘j’ and ‘=’. The idea behind merging is
to take into account the geometric and position features of the three special characters
separately. Therefore, we traverse all adjacent pairs of characters in every line and for:

• ‘i’ and ‘j’: check if the lower point of the small one is on top of the higher point of the
big one. At the same time, check if the slope between them is greater than 1.



Electronics 2021, 10, 2761 9 of 25

• ‘=’: check if both aspect ratios are greater than 2 and if the center of one lies inside the
other’s width area.

After that, very small characters with an area less than 50 (this value was set after
experimentation) are removed. With this method, we had 100% success on all our samples.

In this step, we also normalize every character to obtain the same size. The dimensions
of every character found were squared, preserving its aspect ratio, and afterward were
resized using the INTER-AREA interpolation method. This resizing method was selected
because it showed better results with smoothed images and good quality. For testing
purposes, we created two images of different size for each character: one of 28 × 28 and
the other of 35 × 35 pixels. As a result, we tried two different trainsets—one corresponding
to 28 × 28 size images and the second to 35 × 35 size images.

Additionally, we tried thinning every character with the Zhang–Suen algorithm [25] to
test its impact on training. It seems that the Zhang–Suen algorithm works well in general,
but a closer look reveals that some information is lost, which can lead to low recognition
performance of the network.

In this final step, because of resizing, characters have pixel values in the range 0–255;
therefore, we re-binarize them to obtain binary values again. Therefore, by traversing every
matrix row on every normalized character, we store pixel values in a csv. file, separating
them by commas and changing the line when the next character comes.

3.2. Neural Network Design and Training

In Figure 7, the main steps of this stage are depicted.

Figure 7. Neural network design and training flowchart.

3.2.1. Labeling and Dataset Creation

In labeling, binary representations of characters resulting from image processing are
given labels. Each label is a representation of the corresponding character. We have chosen
a one-hot representation for labels. Our vocabulary includes all English alphabet characters
(lowercase and capital), all digits (0–9) and the special characters {“<”, “>”, “-”, “+”,
“=”, “(“, “)”, “,”, “∀”, “∃”, “∧”, “∨”, “→”, “↔”, “¬”}, most of which are necessary for the
representation of logic formulas. We must note that the characters that look identical (e.g., v-
V-∨, c-C) are considered once and have a single representation. Finally, 67 unique characters
resulted. Each one of them is represented as a vector with value ‘1’ in the corresponding
place, and ‘0’ in all other places. We store the resulted binary representations in a CSV file.
Therefore, the CSV file includes binary tuples of size 784 (=28 × 28) + 67 = 851 (in the case
of 28 × 28 images) or 1225 (=35 × 35) + 67 = 1.292 (in the case of 35 × 35 images). This is
the produced dataset.

3.2.2. Neural Network Configuration

After creating the dataset with the desired labels, we are ready to train the neural
network (NN). To this end, we first define the architecture of the NN, i.e., define the:

• Number of inputs,
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• Number of outputs,
• Number of hidden layers,
• Number of neurons at each hidden layer,
• Activation function of neurons at each layer.

The number of inputs is the same as the number of image pixels (784 or 1225), and
the number of outputs is the same as the number of words in our vocabulary (67). The
number of hidden layers and the neurons at each layer are set by trial-and-error. We are
experimenting with many different cases and choose the best (see Section 4).

3.2.3. Hyperparameters Setting

There are various algorithms for NN training. Depending on the algorithm used, there
may be different hyperparameters to be set. The following, except one, are common all the
algorithms we used:

• Learning rate,
• Batch size,
• Maximum number of epochs for training,
• Momentum (only for the backpropagation algorithm).

We follow the same strategy here: they are set by trial-and-error.

3.2.4. Neural Network Training

Neural network training includes:

• Initialization of weights,
• Selection of training algorithm,
• Testing and re-training.

For initialization of weights, we use the algorithm proposed by Xavier Glorot et al. [26],
which showed faster convergence and better performance in training. Furthermore, shuf-
fling of trainsets resulted in better accuracy, so we applied this for every training experiment.
A regularization technique, called Dropout, where a portion of neuron connections is cut
in every epoch, along with adaptive learning rate and early stopping strategies, was used
in some training to monitor whether final accuracy improves. By early stopping strategy,
we mean that, if during a training, accuracy does not improve or decreases, then we stop.

We selected three training algorithms to test (implemented in the Encog 3.4 library),
which belong to the Gradient Descent family. Their synoptic functions are as follows:

• Backpropagation: The basic technique that finds the error of the network by propa-
gating backward and changes weights calculating the gradient and magnitude of the
error function in every epoch. We can have incremental or batch training.

• Resilient Propagation: An improvement of backpropagation proposed by M. Ried-
miller et al. [27], where the change of weights is calculated only by the gradient’s sign
and independently, avoiding the defining learning rate and momentum. It works well
only with batch training.

• Stochastic Gradient Descent: It takes into account only a random portion (batch)
of the trainset in each epoch and changes weights independently using the Adam
update rule (proposed by Kingma and Ba [7]). This algorithm is also called mini-batch
Gradient Descent.

To apply an algorithm, we need to somehow create a trainset from the produced
dataset (for details, see Section 4) and a testset (the remaining cases). The application of an
algorithm means running it for all cases in the trainset, according to the selected batch mode,
many times (according to the number of epochs set), based on the current configuration
and hyperparameter settings. Based on the results, the trial-and-error process may require
strong recursion between this and the previous two steps (as shown in Figure 7). Even after
achieving the best result, the application of the (candidate) model to the testset may lead to
further training cycles. Finally, the best reached model is used as the final decision model.
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4. Experimental Study

In this work, more than 100 long-term training experiments were conducted on
different structures of networks, with the Softmax activation function in the output layer of
67 neurons and the shuffled trainset as commonly shared parameters. For every experiment,
a graph plot of trainset–testset accuracy was created, including the error rate per epoch
(recalibrated in the 0–100 interval). Because of randomized initial weights, we used the
best-of-3 evaluation strategy, by which every experiment was conducted 3 times and the
best result was recorded. All experiments were conducted on a laptop with 64-bit Windows,
CPU Intel Core i5-8250U and 8GB RAM.

The evaluation of every trained network was performed by the following main criteria:

• Overall accuracy of network for testset,
• Accuracy per character and ability to distinguish look-alike characters by examining

the Confusion Matrix of the testset,
• Impact of 28 × 28 versus 35 × 35 normalization on final accuracy,
• Generalizing ability of network (low variance between trainset–testset accuracy),
• Training time.

4.1. Formulation of Datasets

Initially, we selected 36 First Order Predicate Logic sentences with varying degrees of
difficulty and a typed prototype was created (three pages of 15, 15 and 6 typed sentences,
respectively, in landscape mode). Next, we gave the prototype to ten different people and
collected three equivalent handwritten pages from each (30 pages, 360 sentences in total).
Then, the handwritten pages were scanned with 400 dpi resolution in the TIF lossless
format. The initial number of total isolated characters was 16,822, but after examining
their occurrence frequency, we saw that they had a quite large imbalance leading to an
unbalanced dataset (trainset).

We expected that all frequencies in samples would be 10 times the prototype frequen-
cies (because of 10 copies of the prototype). However, results showed some differences,
due to the following: some people made mistakes by ignoring or miswriting characters, so
in labeling, we had to change corresponding initial labels to have a more realistic matching
(e.g., some persons in writing ‘t’ missed its bottom part, so it looked like ‘+’ and we labeled
it as that).

To deal with this imbalance, we used the techniques of under-sampling and image
data augmentation, where characters with more than 250 occurrences were removed and
those with less than 250 were rotated in an angle range of −17 to +17 to create additional
distorted versions of them. Therefore, the final trainset size was 16,750 with 250 samples
per character. The threshold of 250 was selected as a good balance value on average. A
smaller threshold would lose too much of the original samples, while a bigger one would
lead to too many distorted samples. Furthermore, note that we considered the distribution
per person seriously, so we created distorted versions using original characters from every
person’s writing style. As for the testset, we retained all the removed samples from the
under-sampling technique (occurrences that exceeded the 250 threshold) and created an
additional smaller handwritten dataset (four extra pages) that was merged with them. The
extra dataset was created because some characters did not have any removed samples. The
final testset had 7947 samples.

4.2. Training with Shuffled–Unshuffled Trainset

After having created the trainset from the formulated dataset, we had to determine if
shuffling should be used or not in our experiments. In Figure 8, we present four accuracy
graphs of our first experiments with unshuffled and shuffled versions of trainset using
the backpropagation training algorithm and sigmoid activation function, which show the
impact of shuffling on a network’s training and accuracy.
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Figure 8. Impact of shuffled–unshuffled trainset: (a) unshuffled trainset, backpropagation, full batch; (b) unshuffled
trainset, backpropagation, batch = 1; (c) shuffled trainset, backpropagation, full batch; (d) shuffled trainset, backpropagation,
batch = 1.

As shown in Figure 8, accuracy and smoothness are higher with a shuffled trainset
than with an unshuffled one. More precisely, in the case of an unshuffled trainset, there
is great instability during training, while in the case of shuffled, there is a stable, smooth
accuracy curve. Additionally, we must note that shuffling is necessary when we use
incremental or online training, while it is meaningless in a full batch, as all trainset samples
are used in order to accumulate weight changes and they are applied at the end of every
epoch.

4.3. Training with Different Layer Sizes

A wide set of parameters and layers were examined to define the best structure of
hidden layers. We trained different networks with different layer sizes using all three
algorithms, learning rate of 10−4 and different activation functions, such as sigmoid,
Elliott [28] and rectified linear unit (ReLU). The performances of the most indicative
networks are presented in Table 1.
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Table 1. Training with different hidden layer sizes and activation functions.

Training
Algorithm

Hidden
Layer Size

Batch
Size

Activation
Function

Testset
Accuracy

Backpropagation 200 1 Sigmoid 82.06%

RPROP 200 Full Elliott 59.05%

SGD 200 512 ReLU 85.1%

Backpropagation 300 1 Elliott 83.2%

RPROP 300 Full Sigmoid 48.7%

SGD 300 512 ReLU 90%

Backpropagation 400 1 Elliott 82.8%

RPROP 400 Full Sigmoid 55.17%

SGD 400 512 ReLU 90.02%

Backpropagation 500 1 Sigmoid 76.2%

RPROP 500 Full Elliott 65.8%

SGD 500 512 ReLU 88.98%

Backpropagation 700 1 Sigmoid 73.1%

RPROP 700 Full Sigmoid 74.9%

SGD 700 512 ReLU 89.7%

Backpropagation 800 1 Elliott 88.5%

RPROP 800 Full Elliott 62.25%

SGD 800 512 ReLU 90.03%

Backpropagation 900 1 Elliott 87.9%

RPROP 900 Full Sigmoid 75.7%

SGD 900 512 ReLU 90.1%

In Table 1, we can see that, depending on the training algorithm, different accuracies
are achieved. In backpropagation, accuracy increases inconsistently, achieving its best
(88.5%) with 800 neurons at the hidden layer. After size 800, accuracy drops again. Further-
more, the training times were very long, reaching even 4–5 h for sizes above 500. Note that
in all cases, backpropagation was used with incremental training (batch = 1).

In RPROP, we see a quite large increase in accuracy from 300 to 700 neurons and
slightly better performance with 900 neurons, where the highest accuracy reached 75.7%.
Because of its nature, RPROP worked well only with full batch training, and training times
were better than those for backpropagation.

In SGD, we had an 85.1% accuracy starting even with the small size of 200 neurons
and, above 300–400, did not manage to significantly improve the 90% limit. Its’ training
times were the best among all three algorithms, and the batch sizes were powers of 2.

For a better comparison of the three algorithms, we additionally present in Figure 9
an overall graph of testset accuracies depending on hidden layer sizes.
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Figure 9. Comparison of backpropagation-RPROP-SGD testset accuracies of Table 1.

From the corresponding accuracy graphs (not shown here), it shows that in the SGD
algorithm, the trainset’s accuracy had a significant improvement as the hidden layer size
was increasing, while testset accuracy did not have that much. However, its fluctuation
increased too. In backpropagation graphs, a smoother accuracy is shown with less variance
between the trainset and testset as the layer size was increasing. Finally, RPROP had quite
unstable accuracies in both the trainset and testset, with some serious drops after the 50th
epoch. This drop effect happened in almost every RPROP experiment we tried, so the
accuracies presented here were the highest achieved during overall training.

After experimenting with one layer of various sizes, we trained some networks with
two hidden layers, as shown in Table 2.

Table 2. Training NNs with 2 hidden layers.

Training
Algorithm

Hidden
Layer 1

Hidden
Layer 2

Activation
Function

Testset
Accuracy

Backpropagation 300 300 Elliott 87.6%

Backpropagation 400 400 Elliott 88.8%

SGD 400 400 Elliott 89.4%

RPROP 300 300 Sigmoid 62.6%

From Table 2 and the accuracy graphs (not shown here), we see that trainset accuracy
reached 100% for the backpropagation algorithm in both different sizes of 300-300 and
400-400, but testset accuracy remained stable. This means that training led to overfitting.
SGD showed almost similar results but with a little lower variance and a fluctuating testset
accuracy. On the other hand, RPROP had much lower accuracies with a huge drop at
the end. Furthermore, we experienced the strange phenomenon of a significantly greater
testset accuracy than trainset one during all training. It is obvious that by adding extra
hidden layers, the network’s complexity increases.

4.4. Training with Different Activation Functions

Among various available activation functions, we selected three: logistic sigmoid,
Elliott and ReLU. Tanh and linear functions proved inappropriate for our problem. In the
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following training graphs in Figure 10, the impact of them using backpropagation in a
network with one hidden layer of 400 neurons and 50 epochs maximum training is shown.

Figure 10. Comparison of activation functions. (a) Training with the logistic sigmoid function; (b) training with the Elliott
function; (c) training with the ReLU function (backpropagation); (d) training with the ReLU function (SGD).

As we see, sigmoid and Elliott functions led to a quite smooth accuracy movement,
with Elliott slightly improving it. On the other hand, the ReLU function had a terrible
performance with backpropagation with a steep error increase, but with SGD, it achieved
the best accuracy compared to all three functions.

4.5. Training with Dropout Technique and Adaptive Learning Rate

In some promising trainings, we used the Dropout regularization technique to see if
testset accuracy improves. With this technique, a number of randomly selected neuron
outputs are ignored in every epoch in order to avoid some neurons to co-adapt and make
the network more sensitive to their weights. In Table 3, we show the effect of Dropout in all
three cases. The decimal number represents the percentage of randomly selected neuron
connections that were ignored in every epoch.
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Table 3. Training with the Dropout technique.

Training Algorithm Hidden Layers Activation
Function

Trainset
Accuracy

Testset
Accuracy

Backpropagation 400-400 Elliott 100% 89%

Backprop. (Dropout: 0.5) 400-400 Elliott 96.7% 89.1%

Backpropagation 800 Elliott 90% 88.5%

Backprop. (Dropout: 0.8) 800 Elliott 88.6% 88.9%

RPROP 500 Elliott 80.3% 80.9%

RPROP (Dropout: 0.1) 500 Elliott 77.6% 77.4%

In the first case of backpropagation with a Dropout of 0.5, we see an insignificant
increase in testset accuracy (by 0.1%), while the trainset drop is 3.3%. In the second case,
with a Dropout of 0.8, we had a slightly bigger increase in the testset, and also a decrease
in the trainset. In the RPROP case, with a minimum Dropout of 0.1, we had a decrease in
both trainset and testset accuracies. In general, the testset accuracy did not improve much,
but the variance of the network was decreased.

In Figure 11, we display the training graphs before and after applying the adaptive
learning rate strategy, in which the learning rate is decreased by half, every time the epoch
error increases. For this experiment, we used the backpropagation algorithm with one
hidden layer of 400 neurons, the Elliott activation function, momentum with a value of 0.9
and initial learning rate equal to 0.0005.

Figure 11. Comparison of fixed and adaptive learning rate training: (a) training with fixed learning rate 0.0005; (b) training
with adaptive learning rate.

As we see from Figure 11, a fixed learning rate led to a decaying accuracy, while the
adaptive learning rate kept it stable. This is a reasonable expectation, as during training, the
network tries to minimize the error function. When it reaches close to a global minimum,
the learning rate (or the step) should be changed in order to adapt the sensitivity of the
network changes to weights.

4.6. Training with Different Batch Sizes

The best training algorithm to show the effect of the batch size is SGD, where we
used sizes of 256, 512, 1024 and the whole trainset size (full batch) in a network with one
hidden layer of 400 neurons, a ReLU activation function and learning rate of 0.001. The
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corresponding training graphs along with their confusion matrices and a table (Table 4)
with the highest accuracies achieved for each are presented below.

Table 4. Testset accuracies on different batch sizes.

Training Algorithm Hidden Layer Size Batch Size Testset Accuracy

SGD 400 256 88.77%

SGD 400 512 90.13%

SGD 400 1024 89.7%

SGD 400 full 88.39%

By looking at the accuracy graphs (not shown here), we clearly see the greater fluctua-
tion of testset accuracy while the batch size is decreasing. In the case of a full batch, we
see that both error and accuracy move more smoothly, and the graph could be similar to a
backpropagation training. Table 4 shows that the best accuracy is achieved with a batch
size of 512, while with smaller or greater sizes, the accuracy has a little drop.

4.7. Training with Normalization Sizes 28 × 28 and 35 × 35

In the previously presented results, most networks were trained with the 35 × 35
trainset and the rest with the 28 × 28 one. Table 5 displays results for both cases for
backpropagation and SGD algorithms.

Table 5. Accuracy of the trainset–testset on 28 × 28 and 35 × 35 normalization.

Training Algorithm Hidden
Layer Size Batch Size Activation

Function
Trainset

Accuracy
Testset

Accuracy

Backprop. (28 × 28) 800 1 Elliott 92.6% 87.3%

Backprop. (35 × 35) 800 1 Elliott 92.48% 87.21%

SGD (28 × 28) 400 512 ReLU 92.19% 90.13%

SGD (35 × 35) 400 512 ReLU 94.24% 90.17%

From Table 5, we see that testset accuracy did not have any significant difference in
both normalization sizes and algorithms. However, in SGD with 28 × 28 normalization,
there is a smaller variance in the trainset–testset than that with 35 × 35.

As an additional experiment, we tried thinning every character with the Zhang–Suen
algorithm to test whether the final accuracy improved. The following training graphs
(Figure 12) show the thinning impact using a 35 × 35 trainset and backpropagation with
two hidden layers of 400 neurons, the Elliott activation function, learning rate of 0.0005
and momentum of 0.9.
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Figure 12. Training comparison with normal and thinned characters. (a) Training with normal characters (35 × 35);
(b) training with thinned characters (35 × 35).

Here, we clearly see much better performance with normal characters (higher testset
accuracy and smaller variance) than with thinned (lower testset accuracy and much bigger
variance).

Finally, we must mention that, as shown in some previous graphs, the epochs of train-
ing were less when we did not see any improvement in order to save time (early stopping
strategy). The SGD algorithm needed about 1000 epochs in most experiments, whereas
backpropagation and RPROP need around 50–100. In SGD cases, we were calculating
accuracy every 10 epochs because it was an extra time-consuming process.

5. Application Development

An application was developed that implements our methodology and is able to
recognize handwritten logic formulas. The application was developed in Java and performs
all the steps that were presented in the methodology section. Its operation is schematically
displayed in Figure 13.

Figure 13. Basic schematic operation of the application.

5.1. Basic Functionalities

The application’s graphical interface (see Figure 14) lets the user select an image file of
JPEG or TIFF format. Then, the image is preprocessed, and the characters are extracted and
saved in a csv. file. During this phase, basic steps of image processing are shown to the
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user with a 1 s time delay interval between them (see Figure 15, for instance). Next, the
pretrained NN is loaded, and the csv. file is given as input. For each line read in the file
(every character extracted), we specify the output neuron with a higher value closer to 1
and decode it to the corresponding character. At the same time, a txt. file is created and,
considering the detected line structure, every recognized character is written into it.

Figure 14. Main interface window of the application.

Figure 15. Main window instance of the final preprocessing stage.

5.2. Additional Functionalities

An additional function of our application is the creation of a new trainset. The user
can input an image of his/her preferred character samples, preprocess it as previously
described, and click the ‘Train NN’ button. To this end, a new window is shown, where
the user can give the desired labels to the newly extracted character samples. They are
validated by the system and saved in a csv. file. In the case of an invalid label, the process
recurses; the csv. file can act as the new trainset.

Another additional function is the capability to create and train a new user-defined
NN model. The parameters of the network are initially set to the application’s default
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values, but the user can change them by pressing the ‘Settings’ button to move to the
settings window, where the user can redefine the number of neurons of the hidden layer,
the activation functions, the max epochs, the learning rate and the batch size.

6. Discussion of Results

From the presented results, we can see the high complexity of training a neural
network due to the tuning requirements of various parameters. In this section, we present
the findings that came out of our experimentation.

Trainset size is one of the most important factors in HCR accuracy. Today’s modern
commercial HCR applications that use NNs as classifiers are trained with huge datasets of
samples with a large variety per class (character) and achieve recognition accuracies above
99%. Furthermore, shuffling a trainset can make quite a big difference in final accuracy
(Figure 8). Note that this makes sense only for incremental or mini-batch training. Another
important factor is the image quality. For example, the lighting conditions of a taken
picture, its resolution, the surrounding context of text in an image, etc., affect the creation
of a good model.

Focusing on NNs, the random initialization of weights can affect training, by causing
longer training times, extremely small values (vanishing gradient problem) or even no
convergence. The Xavier initialization method we used showed much better performance
in general and should always be used to assure faster training and convergence.

6.1. Effect of Hidden Layers

By examining the results of Tables 1 and 2, we make the following observations:

• Increasing the size of a hidden layer can lead to better accuracy till a certain point.
Of course, by increasing the size, the network complexity is also increased, meaning
that it can approximate more complex functions, but after a point, this will lead to
memorizing the trainset without improvement of the testset (overfitting).

• By adding a second hidden layer, the network complexity increases even more with
the trainset reaching 100% accuracy faster in some algorithms. Furthermore, testset
accuracy may be improved a little, but generally, this results in greater variance of
trainset–testset. Thus, the network learns the trainset perfectly but has low generaliz-
ing ability on new datasets.

According to the above, we understand that more than one hidden layer is redundant
for this particular trainset used and that the hidden layer size should be increased until
testset accuracy has no significant improvement. On the other hand, using smaller sizes
has the advantage of less computational power needed for training but increases the risk
of underfitting (lower accuracy on both the trainset and testset). A neuron size range of
400–800 seems to be adequate for our problem.

6.2. Effect of Activation Functions

The comparison of logistic, Elliott, and ReLU activation functions, as shown in
Figure 10, underlines the following effects:

• Sigmoid and Elliott behaved quite similarly in the backpropagation algorithm, in
contrast to ReLU, which showed unpredictable and very low accuracy. Between
sigmoid and Elliott, we believe Elliott is better for two reasons: its plot has a smoother
curve, which leads to better classification detail, and it needs less computational
power, thus lower training times.

• ReLU performed much better with SGD, achieving the best accuracy overall. We
assume that the bad performance in backpropagation was caused by the exploding
gradient problem that may have happened because of ReLU’s steep linear part, leading
to very big weight values and accumulation of errors.

• The tanh function proved to be inappropriate for our network because of its output
range from −1 to 1, while we encoded from 0 to 1.
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• We believe that the Softmax function was the best choice for the output layer, as it
is ideal for letting only one active neuron out, based on the possibilities (one-hot
encoding).

6.3. Effect of Dropout and Learning Rate

In Table 3, we see that by applying the Dropout regularization technique, the variance
of the trainset–testset decreased, but the testset accuracy had no significant improvement.
Namely, it was like trying to slow down the learning process by forcing the network to
deploy all of its neurons’ connections but with much longer training time. Although the
decrease in variance made the network more capable of generalizing, the testset accuracy
did not have any improvement.

Regarding the learning rate, we see that it can mostly affect training time and some-
times accuracy. If a large value is defined, then it leads to faster learning initially, but with
unstable and fluctuating errors (or decreasing accuracy). If a small value is defined, then
we have a slower learning curve and run the risk of becoming stuck at a local minimum of
error function. As shown in Figure 11, our implementation of an adaptive learning rate
strategy seems to stabilize the accuracy but does not improve it. However, in the SGD
algorithm, the use of the Adam optimization method also had the effect of an adaptive
strategy, where we defined only the initial learning rate and then the weights changed in a
way that improved the results (compared to the other two algorithm accuracies achieved).
The Adam method calculates adaptive learning rates for every weight independently, based
on the first and second ‘moment’ of gradients. Therefore, we understand that adaptive
learning rate strategies proved quite useful for training, considering Adam as the one with
the best results for our problem.

6.4. Effect of Batch Size

Considering the four batch sizes we used for SGD, we observed that smaller sizes
result in rapid learning but with volatile and fluctuating accuracy stats. On the other hand,
larger batch sizes showed slightly slower learning but with more stabilized accuracy. This
is expected if we examine how SGD works with mini-batches. If a small portion of the
trainset is taken into account in every epoch, then the network estimates the average error
from that portion. Hence, comparing the error of all samples and the error of a part of them,
there will always be some inconsistency leading to larger deviations of accuracy between
epochs. As shown in Table 4, in the case of full batch size, the accuracy was smoother and
reached 88.39%, while with smaller sizes, greater accuracies were achieved even instantly
with better training times.

Nevertheless, corresponding confusion matrices seem quite similar, meaning that the
network performed almost the same on character distinction ability with minor differences.
Furthermore, note that batch size values should be powers of 2. In the backpropagation
algorithm, different batch sizes resulted only in better training times but not in higher
accuracy.

We believe that the SGD algorithm should not use very large batch sizes because
it loses its stochastic nature. Smaller sizes are better to use because, despite the higher
fluctuation, we can instantly achieve higher testset accuracy and shorter training times.

6.5. Effect of Normalization (Resizing-Thinning)

Considering the results of Table 5 and the particular trainset used, we did not see
any significant difference in accuracy. In the SGD case, the testset accuracy improved
slightly with 35 × 35 normalization, but if we examine the equivalent confusion matrices,
only two characters had low classification in the 28 × 28 trainset (‘k’ and ‘∃’ under 50%
accuracy), and four characters in the 35× 35 trainset (‘k’, ‘0’, ‘9’ and ‘∃’ under 50% accuracy).
Therefore, resizing characters to dimensions of 28 × 28 led to better generalization of
the network, as confirmed by Table 5, where variance is smaller than the 35 × 35 case
(92.19–90.13% < 94.24–90.17%).
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Considering an intuitive view, we can think about the amount of detail between the
two dimensions. With the 35 × 35 normalization, there is more detail on samples, but the
network will have to be more complex and have a larger margin of errors. On the other
hand, 28 × 28 normalization has less detail, but the network will be simpler with fewer
errors and of course a much better training time.

Regarding the thinning experiment with Zhang–Suen algorithm, as shown in Figure 12,
the network had a lower accuracy and a bigger variance. Although we thought that thin-
ning would improve the recognition, this did not happen, and we believe that it is due
to the Zhang–Suen algorithm (as shown in the example of Figure 7, where some samples
were distorted) and to the reduction of white pixels that made the network less sensitive to
any character variations.

6.6. Choice of Training Algorithm

As we compare all three algorithms in all presented results, we make the following
observations:

• RPROP had good training times, but it resulted in the worst accuracy with unstable
and sometimes unexplained performance. For example, we noticed a significant
drop in accuracy after the 70th epoch, while the testset accuracy was higher than the
trainset accuracy during all of the training. Although Encog’s developer suggests
using RPROP over backpropagation, as it is more sophisticated, we assumed that it
was inappropriate for our kind of problem. The highest accuracy achieved with this
algorithm was 80.9%.

• Backpropagation produced quite good results with ideal parameters: Elliott activation
function, adaptive learning rate with an initial value of 0.0005, and a momentum of
0.99. However, the largest problem was long training times (an average of 2–4 h per
experiment) with 50–100 max epochs. In all of the presented training graphs, we see a
large accuracy from the first epoch (greater than 60%), followed by slow improvements.
This happened because of the initial learning rates and proper activation functions
used (Logistic and Elliott). The highest accuracy we achieved was 89.1%, with two
hidden layers of 400 neurons.

• The SGD algorithm achieved the best accuracies and, by using the ReLU activation
function and proper batch size, managed to pass the 90% accuracy limit. Furthermore,
it had the shortest training times, smaller trainset–testset variance and slightly better
confusion matrices compared to backpropagation. We believe that its success is due to
its stochastic nature and the Adam optimization method implemented in the Encog
library. The highest accuracy achieved was 90.13%, and that is why, by default, we
consider it as the best choice for the final trained network in our application.

6.7. The Final Network of Application

According to all previous remarks, we defined the default pretrained network that
is used by our application in order to perform HCR tasks. The final parameters that are
defined and used in the application are the following:

• Character Normalization: 28 × 28,
• Input Layer: 784 inputs,
• Hidden layers: one layer of 400 neurons with ReLU activation function,
• Output layer: 67 neurons with Softmax activation function,
• Training algorithm: stochastic gradient descent with Adam optimization,
• Initial learning rate: 0.001,
• Batch size: 512.

This neural network achieved a final testset accuracy of 90.13% and trainset accuracy
of 92.19% with an early stopping strategy. In total, 42 of 67 characters were recognized with
an accuracy greater than 90%, while characters ‘k’ and ‘∃’ with less than 50%. Therefore,
this network has a low ability to distinguish ‘k’ from ‘x’ and ‘∃’ from ‘3’. Finally, we must
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note that the accuracy of 90.13% depends on this particular testset used and does not imply
that it will be the same for every other testset.

7. Comparisons

In Table 6, we attempt to compare our work with other recent works that use NN
for English handwritten character recognition based on basic parameters (‘?’ means “esti-
mated” because it is not clear in the corresponding paper).

Table 6. Comparison of approaches for handwritten character recognition.

Research Work Dataset
(Samples) Character Type NN Architecture Training Algorithm Accuracy

[8] Perwej and
Chaturvedi (2011)

650 (520 train, 130 test),
size 5 × 5

English lowercase
alphabet

2 hidden layers
(25-25-25-?) Backpropagation (?) 82.5%

[10] Choudhary etal
(2013) 1300, size 15 × 12 English lowercase

alphabet
1 hidden layer

(180-80-26)
Backpropagation,

adaptive learning rate 85.62%

[11] Katiyar and
Mehfuz (2015)

CEDAR: 21,328 (19,145
train, 2183 test) English alphabet

2 hidden layers
(144-100-90-6) hybrid

features
Backpropagation 93.23%

[13] Attigeri (2018) 4840 (4400 train, 440 test),
size 30 × 20

English lowercase
alphabet

two hidden layers of
100 neurons Backpropagation 90.19%

[16] Yousaf et al.
(2019)

HCD: 27,142 (19422 train,
7720 test), size 60 × 40

English capital
alphabet

Digits

1 hidden layer:
2400-240-26
(alphabet)

2400-120-10 (digits)

Backpropagation (?)

96.98%
(alphabet)

98.08%
(digits)

[17] Kosykh et al.
(2019)

MNIST: 70,000 (60,000 train,
10,000 test), size 28 × 28 Digits 1 hidden layer

(784-145-10) SGD 95.7%

Our Approach 24,697 (16,750 train, 7947
test), size 28 × 28

English alphabet
Digits

Logic characters

1 hidden layer
(784-400-67)

SGD with Adam
optimization 90.13%

Based on the information from Table 6, we can conclude that our approach has reasons
to be characterized as among the best, if not as the best. The approach in [11], although
it declares slightly more than 2% better accuracy, it lacks the ability to recognize logic
characters, which has added an extra level of difficulty to our approach. Furthermore, a
more time-consuming feature extraction approach is used. The approach in [13] had an
easier task to tackle: recognition of only lowercase letters. The approach in [16], although it
declares 7+% better accuracy, it is a result of much easier recognition tasks: recognizing
only capital letters or only digits. Finally, the approach in [17], although it shows about
5.5% better performance, it is also due to the much easier task of recognizing only digits
and a much larger data set was used. On the other hand, none of the works in Table 6
report any systematic experimental study related to hyperparameters.

8. Conclusions

In this paper, we present an HCR system that aims to recognize first-order logic
handwritten formulas and create corresponding editable text. We introduce a methodology
for creating a suitable data set from images of the handwritten formulas and producing a
trained feedforward dense neural network decision model. The methodology includes two
main stages: image processing and NN design and training. In the first stage, we produce
a dataset by using image processing techniques on images of handwritten logic formulas.
The dataset consists of binary tuples representing handwritten characters. In the second
stage, NN architecture is designed and trained with the produced dataset in a recursive
way due to the required tuning of its parameters and hyperparameters.

We have executed a large number of experiments to find the best configuration of
the trained NN, in terms of character normalization size, number of inputs, number of
output neurons, number of hidden layers and their neurons, activation functions, training



Electronics 2021, 10, 2761 24 of 25

algorithms, learning rate and batch size. The best accuracy achieved was 90.13%. This
accuracy is very comparable with the results of other similar approaches, if not the best.

From the experiments, we extracted many useful remarks concerning various sides
of the training algorithms in relation to the parameters and hyperparameters of the NN.
Stochastic gradient descent with Adam optimization turned out to be the best training
algorithm for our problem. Furthermore, ReLU and Softmax were proved to be the best
activation functions for the hidden layer and the output neurons, respectively.

Finally, we presented a system developed in Java, which implements the above
methodology and creates a decision model. Additionally, it gives the user the possibility
to re-train the NN, i.e., to produce a different model, by creating new datasets based on
new data and re-configure the NN architecture and training process by redefining the
parameters and hyperparameters of the NN.

The results of this work are based on a specific dataset, so their validity is not fully
assured. The use of several datasets and the production of new results is a direction for
further work. On the other hand, the use of a deep learning neural network architecture,
such as CNN, could be another direction of future work, where a much bigger data set will
be needed.
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