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Abstract: This paper presents novel low-cost single- and dual-band microstrip patch antennas.
The proposed antennas are realized on a square microstrip patch etched symmetrically with four
slots. The antenna is designed to have low cost and reduced size to use in Internet of things (IoT)
applications. The antennas provide a reconfigurable architecture that allows operation in different
wireless communication bands. The proposed structure can be adjusted to operate either in single
band or in dual-band operation. Two prototypes are implemented and evaluated. The first structure
works at a single resonance frequency (f 1 = 2.4 GHz); however, the second configuration works at
two resonance frequencies (f 1 = 2.4 GHz and f 2 = 2.8 GHz) within the same size. These antennas use
a low-cost FR-4 dielectric substrate. The 2.4 GHz is allotted for the industrial, scientific, and medical
(ISM) band, and the 2.8 GHz is allocated to verify the concept and can be adjusted to meet the user’s
requirements. The measurement of the fabricated antennas closely matches the simulated results.

Keywords: internet of things; microstrip antenna; slotted patch antenna; single-band; dual-band

1. Introduction

Lately, technology growth has been increasing rapidly. Most things in the world and
human life will be affected by the Internet. Therefore, the Internet of things (IoT) received
extensive consideration in observing and sensing applications [1,2]. The IoT consists of the
observation region for sensing data, network region for transmitting data, and application
region for connecting the objects and the cloud network. In the IoT, numeral devices,
sensors, equipment, and things communicate with others through the cloud network [3].
Many antenna configuration types for IoT applications have been presented in recent
years [4–6].

Single-band antennas can be used in some general equipment. However, modern sys-
tems need multi-functionally and smart antennas, which demonstrate higher efficiency and
are compact. As technology rapidly grows, modern wireless systems (IoT devices) exhibit
various functions and require operation at more than one frequency without increasing the
antenna size [7–10]. In the literature, different shapes of the single-band and multi-band
monopole antennas have been developed, such as H-shaped [11], circular-shaped [12],
U-shaped open stub [13], M-shaped open stub [14], L-shape with coupled branch strip [9],
L-shaped stub folded into U-shaped [4], D-shaped [15], U-shaped with rectangular patch
inside [16], square spiral loop [17], tapered rectangular patch antenna [5], and symmetric
bow-tie circular patch antenna [18]. Dual-band or multi-band operations can be obtained
by etching some slots either in the radiating elements [3,18–22], in the ground plane of the
antennas [23–26], or both [9,27,28]. A square microstrip patch etched with four symmetrical
slots [29–33] has been proposed for nondegenerate dual-mode filter applications.

Table 1 shows the performance comparison for previously published single-, dual-,
and multi-band antennas. In this table, three of the proposed structures with good perfor-
mance are included.
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Table 1. Comparison of the proposed antenna with another state-of-the-art.

Ref. Antenna Type Substrate No. of
Ports

Resonance
Frequencies

(GHz)

Dimensions
(mm2)

Maximum
Gain (dB)

Bandwidth
(MHz)

[1] Slotted patch FR-4 2 1.73 and 2.53 48 × 48 −3.8 and 1.9 30

[4] U-shaped Rogers
RO4003 1 3.5 14 × 14 1.42 200

[5] Slotted patch FR-4 5 0.9, 1, 1.72, 2.18,
5 and 5.5 120 × 65

0.53, −0.96,
1.97, 3.75,

2.46, and 4.9
150

[6] PIFA FR-4 1 1.8 and 2.4 45 × 32 1.6 and 1.8 50

[11] H-shaped Rogers
RT5880 1 1.8 72 × 17 5.5 40

[12] Slotted circular
patch FR-4 1 1.8 24 × 40 1.9 180

[34] Meander line FR-4 1 2.4 40 × 10 1.35 146

[35] Slotted FR-4 1 2.4, 3.5, and 5.8 80 × 80 2.33, 3.14,
and 2.89 140

[36] C-shaped FR-4 1 1.8, 2.4, and 5 209 × 260 4.40, 4.75,
and 5.25 100

[15] Monopole FR-4 1 2.4 and 5 34 × 26 2.2 and 2 220

This work
Slotted square Rogers

RT5880 1
2.4 41.5 × 38.5 3.39 18

2.4 and 2.8 38.5 × 38.5 3.45 and 3.2 20
Wideband

slotted square FR-4 2.4 36.4 × 36.4 2.45 220

This study proposes a slotted square patch antenna for IoT applications. The antenna
is designed to have low cost and reduced size to allow use in IoT applications. The
antenna provides a reconfigurable architecture that allows operation in receive or transmit
modes at the specified frequency. In addition, the antenna can be used in a full-duplex
system transmitting and receiving at different frequencies. This study can reduce the
interference with other nodes in the IoT network. The proposed antenna can operate at
dual resonant frequencies. Two prototypes are designed and fabricated on low-cost FR-4
substrate (εr = 4.3, tan σ = 0.025, and h = 1.6 mm). The first configuration works at a single
resonance frequency (f 1 = 2.4 GHz); however, the second configuration was developed to
work at two resonance frequencies (f 1 = 2.4 GHz and f 2 = 2.8 GHz) within the same size.
The two prototypes are fabricated, and the results are validated. The measured results
correlate well with the simulated one.

The study is scheduled as follows. The non-slotted and slotted square patch antennas
are discussed in Sections 2 and 3, respectively. In Section 4, the single-band antenna is
designed and explained. The dual-band antenna is discussed in Section 5. In Section 6,
the bandwidth improvement is discussed. Section 7 displays the simulated and measured
results for both antennas. The conclusion and discussions are presented in Section 8.

2. Non-Slotted Square Patch

The square patch resonator can be considered as a square cavity with magnetic walls.
The field inside the square cavity matches those of TMz

mn0 modes [37]. The consequential
modes of the square patch type (TMz

mn0) can be calculated using the same method as
described in [29]. The resonance frequencies of the resultant modes for the non-slotted
square patch can be obtained using [38]:

fm, n =
150

α
√

εe f f

√
m2 + n2 GHz, (1)
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where m and n are the nonnegative integer numbers and the effective relative permittivity(
εeff
)

is given using

εe f f =


εe f f (w) i f m = 0
εe f f (w) i f n = 0
ε2

e f f (w)
εr

otherwise
(2)

εe f f (w) =
1
2

εr + 1 +
(εr − 1)√(

1 + 10h
w

)
 (3)

where w is the square width in mm, and α is the effective width of the square, given as:

α = w + 2|∆w|mm (4)

∆w = 0.412h
εe f f (w) +

( 0.3w
h
)
+ 0.264

εe f f (w)−
( 0.258w

h
)
+ 0.8

, (5)

where h is the substrate thickness in mm.
The performance of a microstrip antenna is affected by fringing fields. The strength of

the fringing field is mainly dependent on the patch’s dimensions and the substrate’s height.
Due to the fringing field, the physical dimensions of the square patch appear smaller than
its effective electrical dimensions [39]. Because of the fringing field, the effective width (α)
increased by 2∆w.

In our design, the 20 mm long non-slotted square patch is designed on the top of the
low-cost FR-4 substrate with relative permittivity (εr = 4.3) and thickness of h = 1.6 mm.
Here, the resonance frequencies of the first two fundamental modes (degenerate modes),
TM100 and TM010, are equal (f 100 = f 010 = 2.805 GHz). For the TM110 mode, the resonance
frequency is f 110 = 3.966 GHz. Modes’ resonance frequencies depend on the current
distribution of each mode. As an example, the current parallel to the X-direction excites
only the TM100 mode, the current parallel to Y-direction excites only the TM010 mode, and
the current parallel to the diagonal excites the three modes. The feeding mechanism mainly
determines the current in the patch. Therefore, appropriate feeding can control the excited
modes and thus the resonance frequencies of the patch. The symmetric feed lines are used
to excite the single dominant mode; however, asymmetrical feed lines are used to excite
the two degenerate modes [29]. In addition to that, differential excitation is used to excite
the modes, such as the TM10 and TM30 modes for rectangular patch [40,41], and TM10 and
TM11 modes for an equilateral triangular microstrip patch antenna [42].

3. Slotted Square Patch

Figure 1 illustrates the geometry of the proposed slotted square patch antenna. The
main building block of the proposed antenna is a microstrip square patch with length L.
The square patch is etched with four symmetrical slots along X- and Y-axes, as shown in
the figure. All slots have the same length (LS) and width (WS).

For the slotted square patch in Figure 1, the vertical slots (along the Y-axis) cut the
current parallel to the X-axis and increase the effective length of the TM100 mode and
decrease its resonance frequency. Similarly, the horizontal slots cut the contemporary
parallel to the Y-axis and increase the effective length of the TM010 mode that reduces
its resonance frequency. For symmetrical slots, both the TM100 and TM010 are affected
simultaneously in the same manner, and therefore they have the same resonance frequency
denoted f 1. The resonance frequencies of these two modes decrease as the lengths of the
slots Ls increase. These two modes can be excited simultaneously, or only one of them
can be excited according to the feeding mechanism. The vertical and horizontal slots cut
the current of the TM110 mode, and thus, its resonance frequency, denoted as f 2, decreases
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faster with the lengths of the slots Ls. The slots’ resultant modes can be considered distorted
types of those described in the above section. The effect of the length of the slot Ls and
width Ws on the resonance frequencies of the modes TM100, TM010, and TM110, is studied
using the patch of side L = 20 mm on low-cost FR-4 substrate with εr = 4.3, thickness
h = 1.6 mm, and loss tangent of 0.025. The resonance frequencies f 1 and f 2 generated by
computer simulation technology (CST) simulators using the same technique presented
in [29] are shown in Figure 2. The resonance frequencies f 1 and f 2 decrease as the slots’ Ls
lengths increase, but f 2 decreases faster since it is affected by both vertical and horizontal
slots. It has to be shown that these frequencies are also affected by the width of the slots,
and this can be used to add more fine control of the resonance frequencies of each mode, as
will be seen in the next section. Figure 2 can be generated for any other patch length L and
any other dielectric material.
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4. Single-Band Antenna Design

The same patch size of length L = 20 mm is considered in this design. Only one of
the two modes, TM100 and TM010, can be excited by the inset feed. The TM100 mode is the
only exciting mode if the feeder is positioned along the X-axis as shown in Figure 3. The
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width of the feed line can be optimized for matching purposes. The single band operation
at the specific frequency of this antenna can be adjusted by the appropriate selection of the
slot’s length and width. The characteristics of the designed antenna were simulated and
calculated using a CST simulator. Figure 4a,b shows the effect of the dimensions of the slot
on S11 performance of the antenna. First, Figure 4a shows the result of the LS variation on
the resonance frequency f 1 when the slot width is 1 mm.
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As slot length increases, the resonance frequency f 1 decreases. The effect of slots width
Ws on the resonance frequency f 1 is observed in Figure 4b for slot length = 8.5 mm. The
slot’s width can be used for fine adjustment of f 1. As slot width increases, the resonance
frequency f 1 decreases.

The single band antenna design is selected to operate at 2.4 GHz, corresponding to
slot length 8.5 mm and width 1 mm. The simulated S11 is shown in Figure 5.
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Figure 6 shows the surface current distribution for the developed single-band antenna
at 2.4 GHz. It is observed from this figure that the current along the X-axis turned around
the vertical slots and increased the effective length of the patch.
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In addition, the simulated 2D and 3D radiation patterns at 2.4 GHz are shown in
Figure 7. It has been noted that the proposed antenna gain with FR-4 substrate is less than
0 dB, while the directivity = 4.72 dB. This gain reduction is due to the low performance of
the low-cost FR-4 substrate. The low gain can be overcome using high-quality dielectric
material such as RT Duroid 5880. Another antenna is designed on this substrate with the
parameters: εr = 2.2, thickness = 1.6 mm, and loss tangent = 0.0009 to prove the concept.
The patch dimensions are optimized to operate at the same 2.4 GHz frequency as: patch
length = 24 mm, slot length = 9.4 mm, and slot width = 4.5 mm. A little increase in the
patch length is observed due to the decrease in the dielectric constant. The simulated S11
and 2D radiation patterns of this antenna are shown in Figure 8. A significant increase of
3.95 dB in the gain is observed.
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5. Dual-Band Antenna Design

Figure 9 shows the dual-mode slotted patch antenna with a coaxial probe feeder. By
using this feeding technique, the three modes are excited. The degenerate modes TM100 and
TM010 have the same resonance frequency f 1, and the TM110 mode has resonance frequency
f 2. The probe position is selected by trials to match all modes. The dual-frequency of
operation can be chosen directly from Figure 2 at a specific slot length when the width of
the slot is 1 mm. More analysis can also be added for more design flexibility. Figure 10a,b
shows the effect of the dimensions of the slot on S11 performance of the dual-band antenna.
Figure 10a shows the effect of Ls for constant Ws = 1 mm, and Figure 10b illustrates the
effect of Ws for Ls = 8.5 mm. The slot’s width can be used for fine adjustment of f 1 and f 2.
As the slot width increases, the resonance frequencies f 1 and f 2 decrease.

The dual-band antenna design is selected to operate at 2.4 GHz and 2.8 GHz, corre-
sponding to slot length 8.5 mm and width 1 mm. Figure 11 shows the simulated S11 of the
proposed dual-band antenna.

Figure 12a,b shows the current distribution at these two resonance frequencies, re-
spectively. It is observed from the distributions that the vertical and horizontal slots will
affect the resonance frequency of the TM100 and TM010 modes, respectively. However, the
TM110 mode has currents in both X and Y directions. Thus, its resonance frequency will be
affected by both vertical and horizontal slots. Figure 13 shows the 3D radiation pattern at
f 1 and f 2. The gain of the proposed dual-band antenna with FR-4 substrate is still less than
0 dB. This issue is due to the low performance of the low-cost FR-4 substrate. However, the
gain can be improved by using any other high-performance substrate. For example, the
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simulation of the same dual-band antenna with RT Duroid 5880 substrate shows that the
gain can be increased to about 3.45 dB and 3.2 dB at 2.4 GHz and 2.8 GHz, respectively. The
radiation patterns of the dual-band slotted square patch antenna are shown in Figure 14. It
is observed that a maximum gain of 3.45 dB (at 2.4 GHz) and 3.2 dB (at 2.8 GHz) are in the
broadside direction.
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6. Bandwidth Enhancement

Conventional microstrip antenna structures are narrowband and their impedance
bandwidth is typically 1–2%. However, the bandwidth can be improved by either increas-
ing the substrate thickness, decreasing the dielectric constant (εr) of the substrate [43–47], or
both. Other techniques, such as proximity coupled feed [48], aperture-coupled feed [49,50],
and L-shaped feeding probe [51,52], can also be used. Some other configurations are
suggested, such as slotted antenna [53,54], log-periodic array [55], E-shaped patch [56],
circularly polarized patches [57,58], and defected ground method [59,60].

In this paper, bandwidth enhancement is attained for the same proposed structure
by increasing the substrate thickness and decreasing the dielectric constant (εr). This
arrangement is developed by adding foam substrate between the ground and the upper
FR-4 substrate. For the matching purpose, a slot of size 6 × 6 mm2 is etched at the center
of the radiating patch. The modified structure is shown in Figure 15. Figure 16 shows the
simulated S11 of the modified structure. As observed from this figure, significant bandwidth
improvements with –10 dB bandwidth of 220 MHz (2.33–2.54 GHz) are achieved.
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The simulation of this structure shows a significant increase in the gain of the antenna.
The maximum gain of the antenna with FR-4 is less than 0 dB, while this structure gain is
increased to 1.87 dB.



Electronics 2021, 10, 2766 11 of 16

7. Experimental Results

Two prototypes for this antenna are fabricated and evaluated: one for a single-fed
single-band antenna and the other for a single-fed dual-band antenna. Figure 17 shows
photographs of the fabricated slotted square patch antennas. Both antennas are designed
and simulated using CST simulators. However, experimental validation was conducted
using the Anritsu Vector Network Analyzer (Anritsu VNA 37369C). Figure 18 shows the
simulated and measured S11 for the fabricated single-band antenna. Further, Figure 19
shows the comparison between the simulated and measured S11 for the dual-band antenna.
The figures show that the simulation and measured results closely match.
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Figure 18. Simulated and measured return loss (S11) of the single-fed single-band slotted
square antenna.

In addition, a time-domain antenna measurement system GEOZONDAS (GEOZONDAS-
TDAMS) [61] is used to measure the radiation patterns for the proposed antenna. A mea-
surement setup was established to validate the far-field radiation pattern of the antenna,
as shown in Figure 20. The antenna under test was placed on the top of the rotor, as
shown in Figure 21. Figures 22 and 23 illustrate the simulated and measured radia-
tion patterns of the single band antenna on xz-plane with FR-4 substrate and RT Duroid
5880 substrate, respectively.
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8. Conclusions

This study demonstrated a novel single-fed single-band and dual-band microstrip
patch antenna. This antenna was realized on a square microstrip patch etched symmet-
rically with four slots. The antenna was designed to have low cost and reduced size to
allow use in IoT applications. This antenna provides a reconfigurable architecture that
allows operation in receive or transmit modes at the specified frequency. In addition,
the antenna can be used in a full-duplex system sending and receiving at different fre-
quencies, which can reduce the interference with other nodes in the IoT network. The
proposed antenna operates at dual operating frequency bands of 2.4 GHz and 2.8 GHz
that have been specified for the upcoming IoT technology. Two prototypes were fabricated
with low-cost FR-4 substrate and tested. The first antenna works at a single resonance
frequency (f 1 = 2.4 GHz); however, the second structure works at two resonance frequen-
cies (f 1 = 2.4 GHz and f 2 = 2.8 GHz) within the same size. The 2.4 GHz is allotted for the
industrial, scientific, and medical (ISM) band, and the 2.8 GHz is allocated to verify the
concept and can be adjusted to meet the user’s requirements. The results were successfully
demonstrated regarding return loss, radiation, and gain. The maximum gain achieved by
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the dual-band antenna is 3.45 dB and 3.2 dB at 2.4 GHz and 2.8 GHz, respectively. The
measurement of the fabricated antennas closely matched the simulated results.
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