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Abstract: This article presents the control of a three-phase three-wire (3P-3W) dual-stage grid-tied
PV-battery storage system using a multi-objective grass-hopper optimization (MOGHO) algorithm.
The voltage source converter (VSC) control of the presented system is implemented with adaptive
kernel width sixth-order maximum correntropy criteria (AKWSOMCC) and maximum power point
tracking (MPPT) control is accomplished using the variable step-size incremental conductance (VSS-InC)
technique. The proposed VSC control offers lower mean square error and better accuracy, convergence
rate and speed as compared to peer adaptive algorithms, i.e., least mean square (LMS), least mean
fourth (LMF), maximum correntropy criteria (MCC), etc. The adaptive Gaussian kernel width is a
function of the error signal, which changes to accommodate and filter Gaussian and non-Gaussian noise
signals in each iteration. The VSS-InC based MPPT is provided with a MOGHO based modulation
factor for better and faster tracking of the maximum power point during changing solar irradiation.
Similarly, an optimized gain conventional PI controller regulates the DC bus to improve the power
quality, and DC link stability during dynamic conditions. The optimized DC-link generates an accurate
loss component of current, which further improves the VSC capability of fundamental load current
component extraction. The VSC is designed to perform multi-functional operations, i.e., harmonics
elimination, reactive power compensation, load balancing and power balancing at point of common
coupling during diverse dynamic conditions. The MOSHO based VSS-InC, and DC bus performance
is compared to particle swarm optimization (PSO) and genetic algorithm (GA). The proposed system
operates satisfactorily as per IEEE519 standards in the MATLAB simulation environment.

Keywords: adaptive control; battery storage; MPPT; power electronics; power quality;
photovoltaic; optimization

1. Introduction

The grid-tied Photovoltaic (PV) system has become a natural choice for green energy,
considering PV power’s sharp cost curtailment [1]. The grid-tied PV systems have shown
considerable commitment as a stable and reliable participant in the modern power grid [2,3].

Maximum power point tracking (MPPT) is crucial for achieving the desired efficiency
and payback time of PV systems [4]. In [5,6], a detailed review of widely used traditional,
intelligent and optimization based MPPT methods have been provided. In [7], an exhaus-
tive review of artificial neural network (ANN) based MPPT has been provided along with
ANN-based variable step-size MPPT is also proposed. The perturb and observe (P&O)
and incremental conductance (InC) based MPPTs are among the widely implemented tech-
niques due to their ease of implementation, reduced computational burden and adequate
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efficiency. In conventional InC and P&O techniques, the step size or duty cycle perturba-
tion (∆D) remains fixed, where the trade-off has to be made between faster response and
oscillations across the maximum power point (MPP). During steady-state smaller ∆D is
desirable, which reduces the operating point oscillations across MPP and eventually PV
power (PPV) oscillations. Whereas, during a dynamic state larger ∆D contributes to the
faster dynamics and helps in the quick attainment of the MPP [8].

The variable step-size P&O/InC MPPT offers the extra advantage of easy implemen-
tation and lower computational burden, can be implemented by various methods, where
most of the algorithms are very similar, i.e., ∆D changed according to the multiplication of
modulation or scaling factor (δ) and derivative of power to current (δ ∗ ∆P/∆I) [9], or to
voltage (δ ∗ ∆P/∆V) [10] or to step-change in duty cycle (δ ∗ ∆P/∆D) [11]. In [9] variable
step-size InC (VSS-InC) MPPT is implemented for the boost control, which shows good
dynamic response but suffers from high overshoot due to fixed δ. In [10] according to
the experimental observation, VSS-InC/P&O MPPT controls the boost converter, where
δ is kept between 1 to 2.5% of the inverse of PV current

(
I−1
PV

)
. In [11] δ is autotuned for

the robust performance of buck converter control by VSS-P&O MPPT at the cost of the
computational burden. In [12], load current based adaptive step size MPPT is suggested,
D is made a function of derivative of current to change in duty cycle (∆I/∆D) where δ is
kept constant. In [13], for the VSS-InC method, δ = 0.001 is chosen at the design stage and
∆D is made a function of the power derivative on the difference of voltage and current
derivatives (δ ∗ ∆P/(∆V− ∆I)). The selection of δ is crucial for the MPPT performance and
bad selection may introduce steady-state oscillations and slow down the tracking speed.
In [14] the δ < ∆Dmax/|dP/dV| is suggested to improve the performance of VSS-InC
MPPT. In [15], a modified P&O method utilizes a direct duty ratio control for achieving
drift-free MPPT operation at the first step-change in duty cycle during rapidly changing
irradiation levels. The InC—with self-adaptive and immanent decision-making capability—
is presented in [16], where three consecutive points on the power-voltage curve accurately
detect the steady and dynamic conditions. In the presented work, the δ has been optimized
for the VSS-InC MPPT as the first objective of the implemented multi-objective grasshopper
optimization (MOGHO) algorithm [17]. The designing of δ is performed on an offline basis,
it does not affect the computational complexity of the VSS-InC, improves the MPP tracking
speed and accuracy.

The DC bus is of utmost importance for the stability of the system. The DC link
voltage (Vdc) is regulated by the conventional PI controller. Meta-heuristic optimization
techniques (MOT) have been frequently used for PI controller gain optimization, which
reduces the Vdc transients during a steady and dynamic state and increase the DC link
stability [18]. In [19] the Jaya algorithm is employed to increase the power quality by
optimizing the PI controller gains and filter parameters. The Jaya algorithm is a specific
parameter less technique that is robust but less efficient. In [20,21], the DC link optimization
with the salp swarm optimization (SSO) technique and generalized normal distributed
algorithm (GNDO) are presented. The SSO technique delivers a poor convergence rate
on higher-dimensional problems and GNDO is inspired by the Gaussian distribution and
require no special controlling parameters. In [22], the comparative analysis of regulated
Vdc with whale optimization algorithm (WOA) and particle swarm optimization (PSO) is
performed. Both WOA and PSO suffers from slow convergence, low accuracy, and local
minima stagnation. Many potent deep reinforcement learning (DRL) based optimization
techniques, i.e., soft actor-critic (SAC) [23], deep deterministic policy gradient (DDPG) [24],
expert assistant DDPG (EADDPG) techniques [25], etc. can further be utilized for the
performance enhancement of grid-tied PV systems. In the presented work, MOGHO is
utilized for the Vdc regulation by PI controller gains optimization as the second objective
of multi-objective optimization techniques. The MOGHO offers a better convergence rate
and balance between the exploration and exploitation phase which ensures to reduce the
chances of local minima stagnation [17].
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Numerous VSC control algorithms of various domains such as time domain, frequency
domain, adaptive controls etc. for the grid-tied PV system have been investigated and
implemented by the researchers. The synchronous reference frame (SRF), power balance
theory (PBT), and many more [26] are among the widely used time-domain techniques,
which are easy to implement and have less computational burden but produce more steady-
state error. In [27], active reactive power control of instantaneous and average nature (IARC
and AARC), balanced positive sequence compensation (BPSC), positive-negative sequence
compensation (PNSC), etc. based on VSC controls have been proposed. The frequency-
domain controls, i.e., Kalman filter-based controls (KFC) [28], Stockwell transformation
(ST), etc. [29] have higher computational complexity and slow convergence speed. On
the other hand, adaptive controls have a moderate computational burden and deliver
reduced steady-state error with a faster convergence speed. Adaptive algorithms such as
least mean square (LMS) [30], least mean fourth (LMF) [31], maximum correntropy criteria
(MCC) [32] deliver faster convergence and robustness. The LMS control due to the fixed
step size, produce a relatively higher steady-state error as compared to the LMF, which
acts as a higher-order filter for the error signal. The MCC utilizes the Gaussian kernel
which is effective against both Gaussian and non-Gaussian noise signals. Many advanced
versions of LMS, LMF and MCC, i.e., hyperbolic cosine LMS (HCLMS) [33], hyperbolic
tangent function (HTF) [34], LMS-LMF [35], adaptive neuro-fuzzy LMS (ANF-LMS) [36],
zero attracting normalized LMF (ZAN-LMF) [37], normalized MCC (NMCC) [38], fixed
forward prediction (FFP) [39], adaptive kernel width sixth-order MCC (AKWSOMCC) [40],
etc. The HC-LMS offers minimal dynamic oscillations, HTF acts as a higher-order filter,
which offers reduced mean square error (MSE), combined LMS-LMF reduces the short-
comings of LMS control by switching between second and fourth-order filter, but the
performance of both controls reduces during heavily tailed Gaussian noises due to fixed
step-size. The ANF-LMS delivers neuro-fuzzy tuned step-size for enhanced performance
but increases the computational complexity. The ZAN-LMF, NMCC and FPP vouch for
faster convergence rate and speed but have a high steady-state error due to fixed step size.
The AKWSOMCC can handle Gaussian and non-Gaussian noises efficiently, while acting
as a higher-order filter and delivering a better fundamental load current component. The
function approximation and noise cancellation offered by AKWSOMCC are better than its
peer adaptive controls due to adaptive kernel width, which also improves the convergence
speed despite computational complexity. The proposed AKWSOMCC algorithms parame-
ters are carefully tuned depending on their application ensuring the desired performance
during the diverse dynamic condition. The optimized MPPT and DC bus further enhance
the capability of the proposed control.

In the presented work, the MOGHO algorithm fulfils two objectives by providing
the optimum δ for VSS-InC MPPT and PI controller gains (kp, ki) for the Vdc control, in a
three-phase three-wire (3P-3W) grid-tied dual-stage PV-battery storage system. The VSC
is controlled by the AKWSOMCC algorithm. During steady-state and dynamic states,
the VSC control performs harmonics suppression, reactive power compensation, load
balancing and active power balancing at the point of common coupling (PCC). The battery
storage system maintains the power balance during dynamic conditions. The optimized
DC bus generates an accurate loss current component, which further enhances the system’s
performance. The main attributes of the proposed work are as follows:

a. MOGHO based scaling factor (δ) optimization for VSS-InC MPPT to achieve faster
tracking and reduced power oscillations at MPP.

b. MOGHO based PI controller gains (kp, ki) optimization for the Vdc control and
generation of an accurate loss current component (iLoss).

c. AKWSOMCC based VSC control for fundamental load current component extraction.
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2. System Description

The proposed topology is presented in Figure 1. A dual-stage PV system of 33 kW
along with battery storage is integrated with the 3P-3W grid. The PV array and battery
design parameters are provided in Appendix A. The MOGHO algorithm optimizes the
δ of VSS-InC based MPPT and PI controller gains

(
kp&ki

)
for Vdc regulation. The boost

converter is controlled by the gating signal delivered by the MPPT to stabilize the VPV.
The battery current control during the charging and discharging phase is aided by the
bi-directional buck-boost converter. The coupling capacitor at the DC link connects the DC
and AC systems. The 3P-3W converter is attached to the PCC through interfacing inductors
and ripple filters. The non-linear load of 16.5 kW and distribution grid of 415 V at 50 Hz
are also attached to PCC.
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3. Implemented Research Methodology

The implemented research methodology is depicted in Figure 2. The VPV, IPV,Vdc,
grid voltage magnitude (Vt), source voltage (vSabc) and current (iSabc) are sensed from the
simulated system. The derivative of PV power (PPV) from the reference value (P∗PV) is
utilized for the generation of first integral square error (ISE-1) as the first objective function
(Obj-1) to be minimized by the MOGHO algorithm as per (1). The optimized VSS-InC
MPPT regulates the boost converter. At the DC bus, the comparison of Vdc and (V∗dc) is
formed into second integral square error (ISE-2) as the second objective function (Obj-2) for
MOGHO algorithm as per (2). The ISE as error indices is chosen, considering the decaying
error with time. The MOGHO algorithm delivers the optimized δ and kp& ki for the DC
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bus control. The accurate iLoss current and feed-forward term (WPV) are provided to the
AKWSOMCC for generating the switching signals of VSC control.

Obj–1 =
∫ t

0
(P∗PV − PPV) =

∫ t

0
P2

err (1)

Obj–2 =
∫ t

0
(V∗dc −Vdc) =

∫ t

0
V2

err (2)
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4. Multi-Objective Grass-Hopper Optimization Algorithm and Implementation

The MOGHO is a nature-inspired swarm intelligence (SI) technique that is based on
the natural foraging and swarming behaviour of the grasshoppers. The grasshopper life
cycle in two phases, i.e., nymph and adult are considered, where nymph does not have
wings and move in the wind direction, whereas adults have wings and can travel a larger
distance. The flow chart of the MOGHO is shown in Figure 3.

The grasshopper swarm is mathematically represented as (3), where Pi is the fitness
function, Si is the social interaction term, Gi is the gravity term, Ai is the wind advection
term. The r1, r2, and r3 are the random numbers within [0, 1], which introduces randomness.

Pi = r1Si + r2Gi + r3 Ai (3)
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The complete equation of the MOGHO is presented as per (4).

Pi = r1


N

∑
j = 1
j 6= i

S(r) ∗
(
dij
)
d̂ij


︸ ︷︷ ︸

Si

+ r2
(
−gêg

)︸ ︷︷ ︸
Gi

+ r3(u ˆew)︸ ︷︷ ︸
Ai

(4)

The social interaction of grasshoppers is highly dependent on their social force and
the distance between them. The social force (S(r)) is calculated as per (5), where f is the
attraction intensity and l is the attractive length scale. The S(r) governs the social attraction
and repulsion (or exploitation and exploration) of the grasshoppers. If f and l vary in the
interval [0, 2.079] repulsion will occur and if f and l vary in the interval [2.079, 4] attraction
will happen in grasshoppers. The grasshopper will be in its comfort zone when f and l
remain exactly at 2.079. The dij is the distance between ith and jth grasshopper and d̂ij is a
unit vector showing the direction of the grasshopper movement.
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S(r) = f exp(−
r
l ) − exp(−r) (5)

dij =
∣∣Pj − Pi

∣∣; d̂ij =
Pj − Pi

dij
(6)

The Gi depending on gravitational constant (g) and unit vector êg towards the centre
of the earth. The Ai term is a function of a constant u and unit vector ˆew in wind direction.
The grasshopper swarm behaviour of reaching and staying in the comfort zone can lead
the iterative process towards local minima stagnation. For better chances of convergence,
the modified equation of MOGHO is utilized as per (7).

Pi = r1c1


N

∑
j = 1
j 6= i

c2

(
ub − lb

2

)
S(r) ∗

(
dij
)
d̂ij

+ T̂d (7)

c = c1 = c2 = cmax − t
(

cmax − cmin
tmax

)
(8)

The comfort zone coefficient (c = c1 = c2) calculated as per (8) will have the same
value but a different impact on the fitness function calculation as per (7). The c1 is similar
to the inertial weight in PSO, which reduces the search area as the iterations increases to
balance the exploration and exploitation phase. The c2 term reduces the repulsion, comfort,
and repulsion zone (or the search area around global optima) between grasshoppers
linearly to increase the chances of convergence and reduce the local minima stagnation.
cmax and cmin are chosen as 1 and 0.000001 for the current problem. At the end of the
iterative process, the MOGHO delivers the optimized δ and kp, ki gains. The presented
system is aided with the four dedicated controls, i.e., optimized VSS-InC based MPPT
control, bi-directional converter control, optimized Vdc control and AKWSOMCC based
VSC control.

4.1. MOGHO Based VSS–InC MPPT Control

The flow chart for the MOGHO based VSS-InC MPPT is shown in Figure 4. The VSS-
InC varies the D with ∆D as perturbation step instead of fixed perturbation in conventional
InC algorithm. The MPP is achieved when the variance of output conductance equals the
negative of output conductance or the slope of the power–voltage (P–V) curve reaches zero
as in the conventional InC algorithm as per (10).

∆D = D(n)−D(n− 1) = Dmin + δ ∗
(

P(n)− P(n− 1)
V(n)−V(n− 1)

)
(9)

∆IPV

∆VPV
= − IPV

VPV
At MPP (10)

The upper and lower bounds for δ optimization are selected based on experimental data
presented in [7], which is 1–2.5% of I−1

PV and likewise the Dmin is also selected. The δ optimiza-
tion is performed offline to reduce the computational burden of MPPT and optimized VSS-InC
MPPT offers better efficiency, faster MPP tracking and reduced steady-state oscillations as
compared to conventional InC MPPT algorithm. The variable and fixed step size MPPT
operation are described in Figure 5. With a larger fixed step size, the MPP tracking will be
very fast but chances of oscillations across MPP will be very high during steady-state, which
gets reflected in higher PPV oscillations. The smaller fixed step size increases the efficiency
and reduces the steady-state oscillations, but the tracking speed reduces. The variable step
size uses a larger step size during irradiation change to reach quickly near the MPP and
gradually reduces the step size near MPP to avoid the oscillations.
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4.2. MOGHO Based Vdc Control

The battery current control and Vdc control is shown in Figure 6. The DC bus is
regulated by a conventional PI controller, which is tuned with the MOGHO algorithm.
The MOGHO algorithm minimizes the Obj-2 and delivers the optimized gains for bet-
ter stabilization of the Vdc and generation of an accurate iLoss current during dynamic
conditions [13].
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The comparison of iLoss and battery current (IBat) is fed to another PI controller, by
which pulse width modulator (PWM) with logic gate, generates the adequate switching
sequence. For the battery overcurrent protection, the IBat is limited during charging and
discharging up to Imax

Bat = 30 A. The IBat control during the charging and discharging stage
is performed by S7 and S8 switches of the bi-directional buck-boost converter.

5. AKWSOMCC Based VSC Control

The AKWSOMCC based compensator control is implemented by varying the kernel
width as a function of the error signal as shown in Figure 7. The proper selection of the
kernel width results in the smoothness of function approximation, better convergence rate
and accuracy. The larger the kernel width, function smoothness will be more, but reduces
sensitivity and may only behave as LMS. With a smaller kernel width, the locality of the
training data is preserved, but the convergence rate will slow down. The proposed control
with adaptive width brings the Gaussian and non-Gaussian noises of the error signal in
the “observation window”. The adaptive Gaussian kernel width is a function of error
signals, try to cover all Gaussian and non-Gaussian noises under the Gaussian bell curve for
filtration. With adaptive kernel width, the whole network matrix or observation window
need not be analysed, hence convergence speed increases. The sixth-order MCC acts as a
higher-order adaptive filter with sixth-order power optimization. The MSE reduction with
higher-order filters produces better steady-state behaviour. The adaptive kernel width (σn)
is a function of the error signal and fixed kernel width (σ0) as per (11). The pre-decided
kernel width (σ0 = 10) will remain fixed during operation [27]. The error signal (enx) is
generated as per (12).

σ2
n = e2

nx + σ2
0 ; where x = (a, b, c) (11)

enx = iLa − µpa ∗Wsp; where x = (a, b, c) (12)
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The weight signals of each phase Wpa(n + 1), Wpb(n + 1) and Wpc(n + 1) are gener-
ated as per (13).

Wpx(n + 1) = Wpx(n) + e5
nx

µ ∗ µpx

σ2
n

exp
(
− e2

nx
2(σ2

n)

)
where x = (a, b, c) (13)

The µ is the step size, µpa, µpb, µpc are the unit templates or the in-phase components
of source voltage generated as µpa = vSx/Vt (where x = a,b,c), where Vt is the voltage
magnitude and vSx will be the phase to ground source voltage. The Wavg is the average
weight signal calculated as per (14). The feed-forward term (WPV) is introduced in the
VSC control for the power balancing is calculated as per (15), where VPV and IPV are the
PV voltage and current signal.

Wavg =
1
3

(
Wpa + Wpb + Wpc

)
(14)

WPV =
2
3

(
VPV ∗ IPV

Vt

)
; where Vt =

√
2
3
(
v2

Sa + v2
Sb + v2

Sc
)

(15)

The Wsp will be the overall weight generated as per (16), which is further utilized
for the current reference generation (i∗sx; where x = a,b,c) as per (17). During specified
power mode, the Wsp f ix

will replace the Wsp as per (18) and generate the reference currents(
i∗sx f ix

)
as per (19).

Wsp = Wavg −Wpv (16)

i∗sx = Wsp∗µpx; where x = (a, b, c) (17)

Wsp f ix
=

2
3

(P f ix

Vt

)
(18)

i∗sx f ix
= Wsp f ix

∗µpx; where x = (a, b, c) (19)

6. Results and Discussion

The system is scrutinized under steady-state, irradiation variation mode, specified
power mode, unbalanced grid voltage, abnormal grid voltage, unbalanced load, islanding,
and re-synchronization mode, with optimized Duty cycle and Vdc.
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6.1. MOGHO Based VSS–InC MPPT Analysis

The VPV performance with MOGHO, PSO, and GA optimized δ for VSS-InC MPPT
is compared to the non-optimized or initially selected fixed δ VSS-InC MPPT presented
in Figure 8a. The non-optimized fixed δ is selected as 0.0001. During the steady-state at
irradiation level of 1000 W/m2 the VPV variations are minimum with MOGHO tuned MPPT,
whereas with fixed δ VSS-InC variations are significant and continuous. The PSO and GA
optimized MPPT also reduce the VPV steady-state variations and performed comparatively
better than non-optimized MPPT. During irradiation change from 1000 W/m2 to 600 W/m2

and vice versa, the MOGHO tuned MPPT manages to track MPP more quickly and accurately
to settle down to the reference VPV.
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Figure 8. (a–d) System performance with optimized δ VSS-InC during steady-state and irradiation variation of (a) VPV (b) IPV

(c) PPV (d) D.

The IPV comparison with MOGHO, PSO, GA optimized VSS-InC MPPT is compared
with non-optimized VSS-InC MPPT in Figure 8b. During steady-state, MOGHO tuned
MPPT maintains the IPV close to its reference value, while performing better than PSO
and GA tuned MPPT. Even during irradiation variations, the IPV variations with MOGHO
tuned MPPT remain minimum, which dies out more quickly due to faster and accurate
tracking of MPP.



Electronics 2021, 10, 2770 12 of 24

The PPV also performs better with MOGHO tuned VSS-InC MPPT in comparison with
PSO and GA techniques as shown in Figure 8c. The PPV with adequate step size closely
tracks PPV and deliver more average power, hence improving the MPPT efficiency. During
irradiation variations, PPV variations are significantly reduced due to the accurate MPP
tracking with MOGHO tuned VSS-InC MPPT.

The duty cycle (D) generated by the MOGHO tuned VSS-InC MPPT kept around
the desired value, i.e., D = 0.137 as shown in Figure 8d. The D with MOGHO algorithm
accurately tracks the MPP and takes very small steps to avoid the chances of oscillations
around MPP. During dynamic state, the steps size increases to operate on a new load line
and quickly track the shifted MPP for maximum power extraction. The D generated by
MOGHO tuned MPPT during changing irradiations reduces the power oscillations to a
greater extent and enhances the boost converter efficiency. Table 1 shows the comparative
analysis of VPV, IPV settling time and boost converter efficiency with MOGHO, GA, PSO
tuned MPPT and non-optimized VSS-InC MPPT with fixed δ. The VSC efficiency with
MOGHO, GA, PSO tuned DC bus and non-optimized DC bus along with total dual-stage
PV losses are also presented in Table 1.

Table 1. MPPT, boost converter and VSC performance analysis during sudden irradiation level change.

Parameters MOGHO PSO GA With Initially
Selected δ

VPV settling time 2.11 ms 3.04 ms 3.75 ms 12.50 ms
IPV settling time 2.12 ms 3.02 ms 3.74 ms 13.25 ms

Boost Converter Efficiency 99.82% 99.61% 99.42% 98.82%
VSC Efficiency 99.23% 99.11% 98.79% 98.47%

Total dual-stage Losses (W) 308 W 414 W 580 W 875 W

6.2. MOGHO Algorithm Based DC Bus Analysis

The Vdc is regulated by the MOGHO tuned conventional PI controller. The Vdc
should be maintained close to its reference value (V∗dc) to ensure the stability of the
system throughout the steady and dynamic states. The MOGHO regulated Vdc remains
close to V∗dc with minimum variations as compared to PSO regulated, GA regulated and
non-optimized DC bus (with initially selected gains) during diverse dynamic conditions,
i.e., initial transients, irradiation variation, unbalanced load, specified power mode and
abnormal grid voltage as shown in Figure 9a. The optimized DC bus generates an accurate
loss component of current which is further utilized in battery current control (IBat) as
shown in Figure 6. The iLoss current is shown in Figure 9b, where the MOGHO based iLoss
current have minimum variation as compared to PSO and GA. The MOGHO based accurate
iLoss current reduces the IBat ripples and improves the overall performance of bi-directional
converter control. Table 2 presents the optimized design variables, i.e., kp, ki and δ with
various optimization techniques and their initially selected or non-optimized values. The
initially chosen or non-optimized design variables also serves as the initial condition for the
implemented optimization techniques. Table 3 shows the comparative performance of Vdc
during diverse dynamic conditions with MOGHO, PSO and GA optimization techniques.

Table 2. Optimized design variables (kp, ki and δ ).

Decision
Variables MOGHO PSO GA Without

Optimization

kp 1.22 0.94 0.82 1
ki 0.89 0.71 0.38 0
δ 0.00071 0.00049 0.00036 0.0001
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Table 3. Comparative performance of DC bus.

Parameters MOGHO PSO GA Without Optimization

Computational burden High Moderate Moderate None
Rise time 0.8 ms 0.85 ms 1.3 ms 1.78 ms

Settling time 3 ms 6 ms 6.5 ms 15 ms
Steady-state error 0.061% 0.064% 0.143% 0.121%

Dynamic-state error (Irradiation change) 1.800% 2.457% 2.943% 3.929%
Dynamic-state error (Load unbalancing) 0.200% 0.571% 0.671% 1.857%
Dynamic-state error (Fixed power mode) 0.829% 1.243% 1.643% 2.571%

Dynamic-state error (Abnormal grid voltage) 1.686% 2.200% 2.586% 3.486%
Transient-state error 1.229% 1.264% 1.886% 2.714%

6.3. Steady-State Analysis

The steady-state is simulated by maintaining the solar irradiation level at 1000 W/m2.
The total harmonics distortion (THD) of phase ‘a’ of grid voltage (vSa), grid current (iSa),
load voltage (vLa), and load current (iLa) are satisfactory as per IEEE519 standards are
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shown in Figure 10a–d. Table 4. presents the comparative THD analysis of vSa and iSa
during steady-state with MOGHO, PSO, GA and without optimization technique. With
the MOGHO algorithm the proposed system delivers comparatively minimum THD.
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Table 4. THD comparison of vSa, iSa, vLa, iLa with AKWSOMCC based VSC controls.

Parameters MOGHO PSO GA Without
Optimization

vSa 0.40% 0.44% 0.43% 0.49%
iSa 1.39% 1.89% 2.37% 2.82%
vLa 0.62% 0.61% 0.62% 0.62%
iLa 24.64% 24.64% 24.64% 24.64%

6.4. Irradiation Variation Analysis

The insolation level is reduced from 1000 W/m2 to 600 W/m2 at 0.15 s of simulation
time. The grid voltages and currents (vSabc and iSabc) remain in phase opposition, but the
iSabc magnitude reduces with insolation level such as Pg. The iSabc follows its reference
currents

(
i∗Sabc

)
during the induced dynamic condition. The Pg delivered to the grid

reduces, as less power is being generated by the PV system while following its reference
P∗g . The power PV power (PPV) and battery collectively are sufficient enough to satisfy
the load requirements. The phase ‘a’ of load current (iLa) and compensator current (iCa)
remains in phase with each other. The Qg must be satisfied by the VSC itself leaving the
sinusoidal nature of the source intact. The Qg follows the Q∗g = 0, which is the reference
reactive power exchange from the grid as shown in Figure 11a. The PV voltage (VPV),
current (IPV) and power (PPV) are also found following the reference PV voltage (V∗PV),
current (I∗PV) and power (P∗PV). The VPV settles down to 600 V after some variations with a
boost converter, while IPV and PPV change accordingly with a reduced irradiation level.
The battery voltage (VBat) and current (IBat) depict the battery’s charging and discharging
rate. The IBAT follows its reference signal (I∗Bat). The Vdc is maintained at the desired level
of 700 V and keep matching with its reference DC link voltage (V∗dc) is also shown in Figure 11b.
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6.5. Load Unbalancing Analysis

The load unbalancing is simulated from 0.35 s to 0.45 s by removing the phase ‘a’ of the
load. The iSabc maintains the UPF with vSabc while remaining 180

◦
out of phase. The iSabc

exactly follows i∗Sabc leading towards a stable system. During load unbalancing, only two
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phases of the load are connected to the system. Hence the load requirement reduces to 66%
of the actual load requirement. The Pg delivered to the grid increases during unbalanced
load. The Qg exchange with grid remains zero in load unbalancing mode, as shown in
Figure 12a. The VPV, IPV and PPV remain as it is with a fixed insolation level. The IBat
becomes more negative and follows I∗Bat as more power is available for battery charging.
The VBat also increases as the rate of battery charging increases. The Vdc is kept at the
required level of 700 V, such as V∗dc, as depicted in Figure 12b.
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6.6. Specific Power Mode Analysis

The fixed or specified power mode is simulated from 0.55 s to 0.65 s of simulation time,
where the system has to supply the pre-decided amount of power to the grid for handling
the peak demand. The Pg varies along with iSabc as per the pre-decided grid demand. The
iSabc keep following its reference signals i∗Sabc while maintaining the UPF in phase opposition
to vSabc. The iLa and iCa maintain the in-phase relation. The Qg is also held around zero while
following its reference Q∗g as shown in Figure 13a. The VPV, IPV and PPV shows no variation as the
irradiation level is kept at 1000 W/m2. The IBat and VBat change according to load requirement or
charging/discharging phase. The PV and battery are collectively managing the peak demand
occurring on the grid. The Vdc is also maintained at 700 V, as V∗dc, as shown in Figure 13b.
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6.7. Abnormal Grid Voltage Analysis

The grid voltage abnormality is simulated by changing the magnitude of vSabc to 0.8 p.u. and
1.2 p.u. from 0.75 s to 0.85 s of simulation time. As the vSabc changes iSabc has to change to maintain
the balance of power. The iCa and iLa remain in phase with each other. The Pg changes abruptly
with the abnormal grid voltage but settle down quickly. The Qg exchange with the grid is kept
zero as Q∗g as shown in Figure 14a. The VPV, IPV and PPV remain unchanged other than minor
transients. The IBat changes from charging to discharging mode as the grid voltage goes through
sag and swell. The Vdc is maintained at the desired level of 700 V as shown in Figure 14b.
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6.8. Internal Control Signals Analysis

The internal control signals involving µpa, i∗Sa, Wavg, WPV, and Wsp are presented in
Figure 15. The µpa remains sinusoidal with unity magnitude throughout the operation. The
i∗Sa magnitude changes under the induced diverse dynamic conditions. The Wavg reduces
during load unbalancing, as the weight signal of phase ‘a’ diminishes to zero. The Wavg
also varies during abnormal grid voltage as weight signals of each phase changes as per
voltage sag and swell. The WPV tries to balance the active power flow through the DC link.
The Wsp varies as a function of Wavg and WPV. Figure 16 shows the Wavg variations with
proposed AKWSOMCC, MCC, LMF and LMS control during diverse dynamic conditions.
The AKWSOMCC control delivers Wavg with the minimum steady-state and dynamic state
error. The convergence speed of the proposed control is also comparable with LMS and
LMF controls. As the Wavg is having reduced ripples with the proposed control, which
offers better VSC performance and reduced overall losses in the system.
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7. Future Research Direction

The authors wish to extend the presented work by utilizing the optimization tech-
niques for reducing the switching losses of the VSC and boost converter and validating it
through hardware implementation.

8. Conclusions

In the 3P-3W grid-tied dual-stage PV-battery storage system, a nature-inspired meta-
heuristic technique named MOGHO algorithm has been implemented for optimization
of modulation factor for VSS-InC MPPT algorithm and PI controller gains for DC bus
regulation. The VSS-InC with the optimized modulation factor offers faster and accurate
maximum power point (MPP) tracking with reduced oscillations across MPP. With op-
timization implemented, the settling time of PV voltage and current have been greatly
reduced from 13.2 ms to 2.1 ms just after sudden irradiation change along with oscillations.
The boost converter efficiency has also swollen from 98.82% to 99.82% with optimized
VSS-InC MPPT. The MOGHO tuned DC bus optimization offers enhanced system’s stabil-
ity during dynamic conditions and produces an accurate loss component of current. The
accurate loss component of current further improves the AKWSOMCC based VSC control
capability by extracting a precise fundamental component of current. The Vdc rise time
and settling time have been lessened to 0.8 ms and 3 ms with MOGHO in comparison
with PSO, GA and non-optimized DC bus. Moreover, with MOGHO the steady-state and
dynamic state error of Vdc are obtained as low as 0.061% and 0.2% respectively. Due to
the combined effect of optimized MPPT and DC bus, the VSC efficiency is grown from
98.47% to 99.23% and collective conduction losses of the boost converter and VSC have
also been reduced from 875 W to 308 W. The parameter optimization is carried out on
an offline basis, considering diverse dynamic conditions, to obtain the desired system’s
performance during online operation without slowing down the convergence speed of
the system. The AKWSOMCC based VSC control, with adaptive kernel width, acts as a
higher-order filter against both Gaussian and non-Gaussian noises, without affecting the
convergence speed. The AKWSOMCC control performs multi-functional operations, i.e.,
harmonics elimination, load balancing, reactive power compensation and active power
balancing during dynamic conditions. The presented system operates satisfactorily as per
IEEE 519 standards.
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Nomenclature

D Duty cycle
∆D Duty cycle perturbation
δ Scaling factor
Kp, Ki PI controller gains
iLoss Loss component of current (A)
Vt Voltage magnitude (V)
VPV PV voltage (V)
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V∗PV Reference PV voltage (V)
IPV PV current (A)
I∗PV Reference PV current (A)
PPV PV power (kW)
P∗PV Reference PV power (kW)
Vdc DC bus voltage (V)
V∗dc Reference DC bus voltage (V)
Pi Fitness function
Si Social interaction term
S(r) Social force
Gi Gravity term
g Gravitational constant
Ai Wind advection term
ˆew Unit vector in wind direction

êg Unit vector towards earth’s centre
c = c1 = c2 Comfort zone coefficient
tmax Maximum iteration
r1, r2, r3 Random numbers between [1, 0]
f Attraction intensity
l Attraction length scale
dij Distance between ith and jth grasshopper
IBat Battery current (A)
I∗Bat Reference battery current (A)
Imax
Bat Maximum battery current (A)

VBat Battery voltage (V)
σn Adaptive kernel width
σ0 Fixed kernel width
enx(x = a, b, c) Error signals
µpx(x = a, b, c) In-phase components
WPx(x = a, b, c) Weight signals
Wavg Average weight signals
WPV Feed forward term
WSP Overall weight
WSPfix WSP during fixed power mode
vSabc Source voltage (V)
iSabc Source current (A)
i∗Sx(x = a, b, c) Reference source current (A)
i∗Sx f ix

(x = a, b, c) Fixed power mode reference currents (A)

vSa Source voltage phase ‘a’ (V)
iSa Source current phase ‘a’ (A)
vLa Load voltage phase ‘a’ (V)
iLa Load current phase ‘a’ (A)
Pg Power delivered to grid (W)
P∗g Reference Pg

Qg Reactive power delivered to grid (W)
Q∗g Reference Qg

ubj, lbj Upper and lower bound
N No. of search agents
3P-3W Three-phase three-wire
ANN Artificial neural network
MOSHO Multi-objective grasshopper optimization
VSC Voltage source converter
AKWSOMCC Adaptive kernel width sixth order maximum correntropy criteria
InC Incremental conductance
VSS-InC Variable step-size InC
PI Proportional integral
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ISE-1 Integral Square Error-1
ISE-2 Integral Square Error-2
Obj-1 First objective function
Obj-2 Second objective function
SI Swarm intelligence
GA Genetic algorithm
PSO Particle swarm optimization
PV Photovoltaic
P&O Perturb and observe
VSS-P&O Variable step-size P&O
MPPT Maximum power point tracking
MPP Maximum power point
MOT Meta-heuristic optimization technique
SSO Salp swarm optimization
GNDO Generalized normal distribution optimization
WOA Whale optimization algorithm
DRL Deep reinforcement learning
SAC Soft actor-critic
DDPG Deep reinforcement polocy gradient
EADDPG Expert assiatent DDPG
SRF Synchronous reference frame
PBT Power balance theory
IARC Instantaneous active reactive control
AARC Average active reactive control
BPSC Balanced positive sequence compensation
PNSC Positive negative sequence compensation
KFC Kalman filter based controls
ST Stockwell transformation
LMS Least mean square
LMF Least mean fourth
MCC Maximum correntropy criteria
HCLMS Hyperbolic cosine LMS
HTF Hyperbolic tangent function
ANF-LMS Adaptive neuro-fuzzy LMS
ZALMF Zero attracting LMF
NMCC Normalized MCC
FFP Fixed forward prediction
PCC Point of common coupling
MSE Mean square error
THD Total harmonics distortion

Appendix A

PV array: Kyocera GT200 module, 23 and 7 panels connected in series and parallel,
Vpv = 604.9 V, Ipv = 53.32 A &Ppv = 32.3 kW; buck-boost converters parameters, Li = 4 mH;
boost converter parameters, Lb = 3.11 mH; optimized PI gains and δ:- with GA, KP = 0.82,
Ki = 0.38, δ = 0.00036; with PSO, KP = 0.94, Ki = 0.71, δ = 0.000049; with MOSHO, KP = 1.22,
Ki = 0.89, δ = 0.00071; initial values KPdc = 1, Kidc = 0 and δ = 0.0001; pre-decided kernel
width, σ0 = 10; battery parameters, VBat = 400, IBat = 14 Ah, battery capacity = 5.6 kWh;
MOSHO parameters, cmax = 1 and cmin = 0.000001, tmax = 50, population size = 50, lower
and upper bounds for KP = [0, 3], Kidc = [0, 3] and δ = [0, 0.1]; sampling time, Ts = 10 µs.
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