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Abstract: Dementia and Alzheimer’s disease are caused by neurodegeneration and poor commu-
nication between neurons in the brain. So far, no effective medications have been discovered for
dementia and Alzheimer’s disease. Thus, early diagnosis is necessary to avoid the development
of these diseases. In this study, efficient machine learning algorithms were assessed to evaluate
the Open Access Series of Imaging Studies (OASIS) dataset for dementia diagnosis. Two CNN
models (AlexNet and ResNet-50) and hybrid techniques between deep learning and machine learn-
ing (AlexNet+SVM and ResNet-50+SVM) were also evaluated for the diagnosis of Alzheimer’s
disease. For the OASIS dataset, we balanced the dataset, replaced the missing values, and applied the
t-Distributed Stochastic Neighbour Embedding algorithm (t-SNE) to represent the high-dimensional
data in the low-dimensional space. All of the machine learning algorithms, namely, Support Vector
Machine (SVM), Decision Tree, Random Forest and K Nearest Neighbours (KNN), achieved high
performance for diagnosing dementia. The random forest algorithm achieved an overall accuracy
of 94% and precision, recall and F1 scores of 93%, 98% and 96%, respectively. The second dataset,
the MRI image dataset, was evaluated by AlexNet and ResNet-50 models and AlexNet+SVM and
ResNet-50+SVM hybrid techniques. All models achieved high performance, but the performance of
the hybrid methods between deep learning and machine learning was better than that of the deep
learning models. The AlexNet+SVM hybrid model achieved accuracy, sensitivity, specificity and
AUC scores of 94.8%, 93%, 97.75% and 99.70%, respectively.

Keywords: Alzheimer; dementia; t-SNE algorithm; machine learning; deep learning; hybrid techniques

1. Introduction

The number of dangerous diseases has increased in recent years due to demographic
shifts in developing and developed countries [1]. Despite advances in medical techniques,
effective treatments for dementia and Alzheimer’s disease remain elusive, except for
some drugs that delay the diseases’ progression. Therefore, early diagnosis plays an
important role in stopping the progression of the diseases to their advanced stages [1,2].
Some of the severe chronic conditions that have attracted much attention in the field
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of mental health are dementia and Alzheimer’s diseases because of their widespread
prevalence among the elderly and their harmful effects on the elderly’s cognitive abilities
to conduct daily activities normally. Dementia is the loss or impairment of memory to
conduct healthy mental abilities due to age or disease; it is characterised by changes in
the mind and behavioural disturbance or stroke. It is a syndrome that includes impaired
memory, behaviour and thinking and the loss of ability to perform daily activities [3,4].
According to the reports of the World Health Organization (WHO), about 47 million
people suffer from dementia around the world, and the number is rapidly increasing
annually; the number of sufferers could reach 82 million people by 2030. The underlying
causes of dementia are neurodegeneration and weak brain connectivity, which lead to
poor decision-making; the non-neurodegenerative mechanisms result in vascular dementia.
Alzheimer’s disease (AD) is one of the most common and prevalent types of dementia and
accounts for 60% to 70% of dementia cases. Age is the direct cause of AD, especially in
people over the age of 65. AD has a more noticeable prevalence among women than men.
However, AD aetiology has not yet been identified. The main hypotheses are based on the
accumulation of extracellular Aβ peptides and the accumulation of hyperphosphorylated
tau proteins inside brain cells. These two structures are biomarkers called amyloid plaques
(an accumulation of beta-amyloid fragments between neurons) and tangles (intracellular
accumulations of tau protein in the form of twisted fibrils). A biomarker is a measure or
indicator of the brain’s biological state. Biomarkers appear early before clinical symptoms
appear [5]. Thus, as a histopathological procedure, the accumulation of amyloid plaques
and neurofibrillary tangles is responsible for neuronal damage and death [6,7], thereby
leading to progressive memory loss with physiological changes in thinking and behaviour.
Dementia and Alzheimer’s are multifactorial diseases that occur independently from
physiological aging parameters, such as diet, sleep disturbances, environmental factors,
sedentary lifestyle and genetic predisposition.

AD is one of the main causes of intellectual disability among the elderly worldwide.
At the onset of AD, a combination of psychological and mental evaluation occurs, such as
that involving tau protein and cerebrovascular amyloid protein, to find synapses, brain
plaques and neuronal degeneration. There are measures to assess cognitive and mental
decline in the elderly, such as tacrine for the level of symptoms and assessment of genetic
history to identify Down syndrome [8,9]. AD is then evaluated by a brain imaging called
Pittsburgh Compound B (PIB), which is based on n-positron emission tomography (PET);
it is considered for the early detection and monitoring of AD [10,11]. Subsequently, the
AD Neuroimaging Initiative (ADNI) is established; it standardises image formats with
psychological and intellectual tests to monitor the effectiveness of treatment and early
detection of disease. There is an urgent need to identify biomarkers that can detect histo-
logical changes in the brain, which may indicate neurological disorders, such as atrophy
and amyloid plaques; these changes may represent early signs of dementia, and AD can
be predicted. Thus, biomarkers help us differentiate between dementia and AD and pre-
dict them early. In recent years, researchers have provided biomarkers in the form of
neuroimaging techniques, such as MRI, single-photon emission computed tomography
(SPECT) and Positron Emission Tomography (PET), which had a prominent role in the
early diagnosis of both dementia and Alzheimer’s [12]. Diagnosing the soft tissues of the
brain and distinguishing them from healthy tissues are essential for the early prediction
of dementia and AD. Manually extracting features from MRI images or medical records
requires a great deal of time and effort from experts. Similarities between soft and healthy
tissues in MRI make manual diagnosis more prone to errors [13]. Therefore, this paper
aimed to evaluate the use of machine learning algorithms on the Open Access Series of
Imaging Studies (OASIS) dataset for the early prediction of dementia and the use of deep
learning algorithms and hybrid techniques between deep and machine learning on MRI
dataset for the early prediction of AD and for differentiating disease stages and severity
from mild to moderate to severe. Machine learning, deep learning and hybrid and pattern
analysis technologies serve as powerful tools for building predictive models based on MRI
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images and medical records for computer-aided diagnosis. Deep learning techniques ex-
tract deep representative feature maps without the need for manual feature representation.
All results are more effective, consistent, less likely to create bias and proven to be effective
in diagnosing dementia and AD compared with manual approaches.

Duc et al. introduced a deep learning-based method for assessing Mini-Mental State
Examination (MMSE) through resting-state functional Magnetic Resonance Imaging (rs-
fMRI); the system yielded good results for the diagnosis of AD [14]. Li et al. presented
a deep learning model and validated the diagnosis of 2146 cases of magnetic resonance
imaging to predict the progression of mild cognitive impairment (MCI) to AD demen-
tia [15]. Francesco et al. introduced deep learning techniques to evaluate an EEG dataset
to distinguish Creutzfeldt–Jakob disease from other dementias. The method is based
on the extraction of time frequencies from EEG by continuous wavelet transform (CWT)
algorithm and measuring complex EEG signals through permutation entropy (PE) [16].
Amoroso et al. applied the random forest technique to select the most important features
extracted from the dataset that contains four classes, namely, HC, AD, MCI and cMCI, and
their classification by DNN techniques [17]. Popuri et al. presented a model calculating
the FDG-PET DAT score (FPDS) as a score between 0 and 1 for the diagnosis of demen-
tia of Alzheimer’s type (DAT) [18]. Raza et al. introduced a system for diagnosing AD
and monitoring similar diseases through machine learning techniques [19]. Aram et al.
presented several machine learning algorithms to evaluate the MMSE-KC and CERAD-K
datasets for the diagnosis of dementia. The MMSE-KC dataset was diagnosed as normal
or abnormal, whereas the CERAD-K dataset was diagnosed as both dementia and mild
cognitive impairment [20]. Chen et al. introduced many machine learning algorithms and
statistical methods for diagnosing people with dementia or no dementia; among these,
Bayesian and SVM algorithms achieved the best performance [21]. Joshi et al. applied
machine learning and deep learning methods to diagnose dementia. The system achieved
the best accuracy when collecting tests for both machine and deep learning [22]. Cho et al.
introduced a double-layer hierarchical architecture for the early diagnosis of dementia.
The Bayesian algorithm runs at the top layer, whereas the FCM and PNN algorithms
run at the base layer [23]. Trambaiolli et al. presented an SVM algorithm to evaluate the
electroencephalography (EEG) dataset to classify EEG signals as normal and Alzheimer’s
images. The SVM algorithm achieved an accuracy of 87% [24]. Shanklea et al. presented
a machine learning algorithm to predict CDR; the Naive Bayes algorithm achieved the
highest accuracy among all algorithms [25]. Ekin et al. presented a 3D VGG convolutional
neural network to preserve 3D MRI images while converting them to 2D through convolu-
tional layers. The system was evaluated by using the ADNI and OASIS datasets, and the
system achieved an accuracy of 73.4% for the ADNI dataset and an accuracy of 69.9% for
the OASIS dataset [26]. Pinaya et al. presented standardised module-based autoencoder
models for a neuroimaging dataset for AD diagnosis and trained an independent dataset
on autoencoder modules. Then, they monitored the deviation of each patient and identified
the deviated brain regions based on the autoencoder units [27]. Jorge et al. presented a
spatio-temporal LME method based on Linear Mixed Effects (LME). The method exploits
the spatial structure of MRI images to analyse measurements on the cortical surface. The
method achieved good results [28]. The main contributions to this study are as follows:

First, for the OASIS dataset:

• Distribution of the converted class records to the non-demented and demented classes
based on a feature value of CRD.

• Representation of high-dimensional data in low-dimensional data space by the
t-SNE algorithm.

• Representation of the correlation of each feature with the other and the correlation of
each feature with the target feature.

Second, for the MRI dataset:

• Balance the dataset by data augmentation technique to multiply the minority classes.
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• Apply hybrid techniques between deep learning based on AlexNet and ResNet-50
models and machine learning based on SVM classifier to produce hybrid AlexNet+SVM
and ResNet-50+SVM models that achieve high performance and effective diagnosis
of AD.

• Machine learning, deep learning and hybrid techniques can be generalised with high
efficiency to diagnose dementia and AD with the help of clinicians and experts and
support their diagnostic decisions.

The remainder of the paper is organised as follows. Section 2 describes materials and
methods and contains subsections for describing the two datasets and processing features.
Section 3 reviews classification techniques. Section 4 presents the results of the analysis
and diagnosis. Section 5 is the conclusion of the paper.

2. Materials and Methods

In this section, we describe the methodology used to process the OASIS and MRI
datasets. The OASIS dataset contains medical records and is used for predicting dementia,
whereas the MRI dataset is a made up of images for mild, moderate and severe AD. Figure 1
describes the methodology used to evaluate the proposed systems on the two datasets.

Figure 1. Methodology for classifying the OASIS and MRI Alzheimer’s datasets.

2.1. Description of Two Datasets

In this study, two datasets were used. The first dataset is called OASIS, which contains
a combination of medical and environmental examinations (medical records) for the early
detection of dementia. The second dataset is MRI, which relies on magnetic resonance
imaging of the brain for the early detection of AD.

2.1.1. OASIS Dataset

OASIS dataset is an organisation that aims to make neuroimaging data of the brain
available to researchers and interested parties. The OASIS-Cross-sectional [5] and OASIS-
Longitudinal [6] datasets extracted from neuroanatomical atlases of MRI images are avail-
able. OASIS is a longitudinal neuroimaging and cross-sectional biomarker for normal and
AD patients. The dataset is available in XML format and contains clinical and demographic
data from MRI imaging. More details on the characteristics of the images and nomencla-
ture can be obtained at http://www.oasis-brains.org/longitudinal_facts.html (accessed
on 25 May 2021). The oasis_longitudinal dataset contains 15 features of 374 patients aged

http://www.oasis-brains.org/longitudinal_facts.html
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between 60 and 90 years old, of whom 37 are converted, 190 are demented and 147 are
non-demented. Table 1 describes the dataset, which contains 15 features of 373 patients,
including their demographics, clinical and derived anatomic volumes of information.

Table 1. Description of the OASIS dataset for the diagnosis of dementia.

No Information Features Name Explanation

1 Gen Info Subject.ID A unique identifier for each patient
2 MRI.ID A unique identifier for the MRI image of each patient
3 Group The dataset is divided into converted (it was

normal and turned into a dementia patient),
demented and normal

4 Visit Number of patient visits to detect dementia
5 MR.Delay Not Known

6 Demographics M.F Gender (M or F)
7 Info Hand Right hand
8 Age Age in years
9 EDUC Years of education

10 SES Socioeconomic status of each patient
classified according to the Hollingshead Index
of social status, which classifies from 1 as the

highest status to 5 as the lowest status

11 Clinical Info MMSE Mini Mental state Examination score ranging
from 0 as the worst to 30 as the best

12 CDR Clinical Dementia Rating divided into 0 as no
dementia, 0.5 as very mild Alzheimer’s

Disease (AD), 1 as mild AD and 2 as moderate AD

13 Derived anatomic eTIV Estimated total intracranial volume (mm3)
14 volumes nWBV Normalised whole-brain volume expressed as

a percentage of pixels in the atlas and
categorised as white or grey matter by

tissue segmentation
15 ASF Atlas scaling factor. This is a computed

scaling factor that works to convert the
original space brain into the Atlas target

2.1.2. MRI Alzheimer’s Dataset

The MRI dataset for AD was obtained from the open source Kaggle website. The MRI
dataset contains 6400 images separated into four classes, namely, mild dementia disease
(896 images), moderate dementia disease (64 images), non-dementia (3200 images) and
very mild dementia disease (2240 images) [29]. Figure 2 describes a sample of the MRI
dataset for AD. https://www.kaggle.com/tourist55/alzheimers-dataset-4-class-of-images
(accessed on 25 May 2021).

2.2. Pre-Processing

One of the most critical processes in data mining and medical image processing is
pre-processing. This step transforms raw data into usable information, eliminates noise,
processes missing numbers and enhances image quality. In this paper, we used data mining
optimisation techniques to improve the OASIS dataset, whereas medical image processing
optimisation techniques were used to improve the second dataset containing MRI images.

https://www.kaggle.com/tourist55/alzheimers-dataset-4-class-of-images
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Figure 2. A sample of the MRI Alzheimer’s dataset.

2.2.1. Pre-Processing of OASIS Dataset

Data cleaning, which involves removing outliers and replacing missing values, is
one of the most important steps in data mining. At this stage, we looked at the overall
distribution of the numerical and category columns to see which features can help our
analysis; these features should not be strongly correlated with the target feature. We also
looked at features that have a unique value to remove them. Afterwards, we addressed
missing values and datatype mismatches. From the summary statistics, we noted that the
Hand feature had only one unique value, which was R, whereas the Subject ID and the
MRI ID were not correlated with the target feature. Thus, we removed these three columns
from the dataset. The dataset contains 19 missing values for the SES feature by 5% and
two missing values for the MMSE feature by 1%. Thus, the median was applied to replace
missing values based on neighbouring values. Table 2 describes the processing of missing
values before and after the median method.

Table 2. The processing of missing values.

Features Name No. Missing Value before Handling No. Missing Value after Treating

Group 0 0
Visit 0 0

MR Delay 0 0
M/F 0 0
Age 0 0

EDUC 0 0
SES 19 0

MMSE 2 0
CDR 0 0
eTIV 0 0

nWBV 0 0
ASF 0 0
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2.2.2. Pre-Processing of MRI Dataset

The patient’s position inside the scanner, his motions and images obtained from
different locations and many other factors all affected the quality of the MRI images,
thereby resulting in a difference in the brightness of the images. The bias field is defined
as the difference in MRI intensity values from black to white. Therefore, preprocessing is
necessary for the success of the following stages in image processing. Otherwise, if the
bias field is not corrected, then all next image processing stages will produce inaccurate
results. To achieve reliable accuracy in the next steps, the preprocessing algorithms rectify
the failures produced by the bias field and remove the noise. In this study, the Mean RGB
colour for MRI scans and image scaling for colour constancy were computed. Finally, the
averaging filter was applied to improve the MRI images by computing each central pixel
according to the average of neighbouring pixels. Deep learning models were used to resize
all MRI images. Figure 3 describes sample MRI images after image enhancement.

Figure 3. Sample MRI images after the image enhancement process.

2.3. Dataset Unbalance Processing

Classification of a dataset containing unbalanced categories is one of the issues that
cause poor performance in classification. The rating scales require an equal distribution
of the categories except for the accuracy scale. In this paper, the OASIS dataset contains
three unbalanced classes, and the MRI dataset contains four unbalanced classes. Thus, we
addressed this problem.

2.3.1. Processing the Unbalance of the OASIS Dataset

In the OASIS dataset, there are 373 rows distributed over three unbalanced classes. The
dataset is unbalanced and is divided into three classes, namely, non-demented (190 records)
(Class 0), demented (147 records) (Class 1) and converted (37 records) (Class 2). Thus, the
distribution rates of cases in the dataset among non-demented, demented and converted
cases are 51%, 39% and 10%, respectively. In this paper, the Synthetic Minority Over-
sampling Technique (SMOTE) was applied. SMOTE is a suitable mechanism to make the
dataset balanced. The SMOTE method randomly selects minority class ranks, searches
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for the closest neighbours of the minority class and randomly generates new samples at a
given point for the minority class. The dataset is divided into 80% for training (152 records
for class non-demented, 117 records for class demented and 29 records for class converted)
and 20% for testing (38 records for non-demented disease, 30 records for demented disease
and 8 records for converted disease). Table 3 shows the distribution of records before and
after the application of the SMOTE method during the training phase. The dataset for all
classes became balanced and contained 152 rows for each class.

Table 3. OASIS dataset before and after the application of the SMOTE method.

OASIS Dataset

Training 80% Testing 20%

Classes Non-Demented Demented Converted Non-Demented Demented Converted

Before OverSampling 152 117 29 38 30 8
After OverSampling 152 152 152 38 30 8

Table 4 shows the balancing of the dataset after the distribution of the records of the
converted class to the other two classes based on the CDR feature value. The converted
class contains 37 records distributed into 16 records for non-dementia class and 21 records
for dementia class. The mechanism will be explained later.

Table 4. OASIS dataset balancing before and after application of the SMOTE method.

OASIS Dataset

Training 80% Testing 20%

Classes Non-Demented Demented Non-Demented Demented

Before OverSampling 164 134 42 34
After OverSampling 164 164 42 34

2.3.2. Augmentation Data of MRI Dataset

Deep learning models require a large dataset, but most of the medical datasets do not
contain enough images. So, the problem is solved by generating more images from the
same dataset. Moreover, when the dataset is small, the problem of overfitting appears due
to the lack of data during the training phase. Therefore, the data augmentation method
works to generate images during the training phase. In this paper, the MRI dataset contains
6400 images divided into four classes as follows: mild dementia (896 images), moderate
dementia (64 images), non-dementia (3200 images) and very mild dementia (2240 images).
Thus, the dataset is unbalanced. The augmentation technique was applied to increase
the size of the minority dataset class, thereby making the dataset balanced and solving
the overfitting problem. The dataset for minority classes was augmented during the
training phase by using the following operations: Cropping, Rotation, Brightness, Flipping,
Contrast Augmentation. The moderate dementia category contains 64 fewer images than
the other categories. Thus, many data augmentations were applied compared with the
other categories. Table 5 describes the number of images for each category in the MRI
dataset before and after the application of data augmentation, where the increase in the size
of the dataset and the balance of the dataset are observed after the augmentation approach.
If the data augmentation technique is not used, the problem of overfitting will appear due
to the lack of data during the training phase and thus lead to poor diagnostic results. In
addition, not using this technique in an unbalanced data set leads to inappropriate overall
diagnostic accuracy.
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Table 5. The data augmentation technique to balance the MRI dataset during the training phase.

Name of Class Mild Dementia Moderate Dementia Non-Dementia Very Mild Dementia

Before augmentation 896 64 3200 2240
After augmentation 7258 7040 7400 7392

2.4. Analyse Some Features of the OASIS Dataset

As mentioned, the dataset contains approximately 39% of the demented class, that
is, most of the data consists of the non-demented class (51%), whereas 10% of the data
consists of the converted class. So, we take a look at some numerical features and perform
univariate analysis on them to determine if we can identify any patterns or learn anything
new. As a result, we started by looking at the most essential feature class, which is the
Clinical Dementia Rating (CDR). Table 6 describes the statistical measures of the mean and
standard deviation of the features selected in the OASIS dataset.

Table 6. Statistical measures of the mean and standard deviation of the OASIS dataset.

Features Age EDUC SES MMSE CDR eTIV nWBV ASF

count 373 373 354 371 373 373 373 373
mean 77.01341 14.59786 2.460452 27.34232 0.290885 1488.12869 0.729568 1.195461

std 7.640957 2.876339 1.134005 3.683244 0.374557 176.139286 0.037135 0.138092

2.4.1. CDR Feature

The CDR Scoring is a set of descriptive anchors that help clinicians make accurate
ratings. An overall CDR score can be computed using a CDR Scoring Algorithm as follows:
Normal is 0, Very Mild Dementia is 0.5, Mild Dementia is 1, Moderate Dementia is 2 and
Severe Dementia is 3. This score can be used to describe and track a patient’s level of
impairment or dementia. The converted class contains 37 records and, therefore, can be
distributed to the other classes based on the CRD characteristic value. When CRD is zero,
the records will join the non-demented class, whereas when CRD is greater than or equal
to 0.5, all converted class records will join the demented class. Thus, the dataset contained
two categories: non-dementia, which consisted of 206 records at 55%; and dementia, which
consisted of 167 records at 45%.

2.4.2. Mini Mental State Examination (MMSE)

The MMSE is a clinically-diagnosed clinical practice study that includes 30-point
cognitive impairment. When the MMSE is greater than 24, the cognition is normal with
320 cases. When it is below 24, the cognition varies from severe to moderate cognition.
Severe cognition takes 9 points and contains 2 cases. Mild cognition ranges from 10 points
to 18 points and contains 12 cases. Moderate cognition ranges from 19 points to 23 points
and contain 39 cases.

2.4.3. Age

In the dataset, the ages of all cases ranged from 60 years old to 98 years old. The
dataset contains 75 cases for ages between 60 years old to 70 years old, 173 cases for ages
between 70 and 80 years old, 107 cases for ages between 80 and 90 years old and 16 cases
between 90 and 100 years old. The prevalence of dementia in males was after the age of
80 years old, whereas in females, this was after the age of 75 years old.

2.5. Correlation Features

Statistical methods are among the methods to process raw data and make it easy to
understand. The data are easy to understand through the use of descriptive statistics that
represent the data in the form of tables or graphs. In this paper, the most important features
of the dataset were selected, and the relative correlation between all the features of the
OASIS dataset was identified. The correlation rate between each feature and another in the
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dataset was also extracted. The correlation rate between each feature with the target feature
was determined. Figure 4 describes the correlation rate feature of one another. Where the
correlation of the most important features with each other and with the target feature is
noted. For example, the figure shows a correlation between ASF feature with the target
feature (demented) of −2.9%, while the relationship between age with a demented at a
rate of 21%, while the correlation between CDR feature with the demented feature by 84%,
the correlation between Educ feature with the demented feature by 1.9%, the correlation
between MMSE feature with the demented feature by −61%, the relationship between SES
feature with the demented feature by 18%, and thus the rate of the correlation is found
between each feature and the other through Figure 4.

1

ASF   - 0.8

Age   - 0.13 0.6

CDR   - -0.04 0.2 0.4

Educ   - -0.11 0.15 -0.044 0.2

MMSE   - -0.029 -0.17 -0.75 0.11 0

SES   - 0.17 0.15 0.2 -0.22 -0.29 -0.2

demented   - -0.029 0.21 0.84 0.019 -0.61 0.18 -0.4

eTIV   - -0.98 -0.13 0.027 0.12 0.037 -0.18 0.025 -0.6

nWBV   - 0.012 -0.87 -0.45 -0.15 0.42 -0.13 -0.41 -0.0082 -0.8

ASF Age CDR Educ MMSE SES demented eTIV -1

Figure 4. Correlation between features of the OASIS dataset.

2.6. t-Distributed Stochastic Neighbour Embedding Algorithm (t-SNE)

t-SNE is a nonlinear measuring technique that is used for reducing a high-dimensional
dataset and representing it in a low-dimensional space. The technique calculates similar
data points in both high-dimensional and low-dimensional spaces. Based on the Gaussian
probability density, conditional probability is used to calculate the similarity of data points
between the high and low dimensions. To obtain the optimal data in the low-dimensional
space, the algorithm minimises the difference between the conditional probabilities in
the high and low spaces. Equation (1) depicts the distribution of data points in the high-
dimensional space, whereas Equation (2) uses the t-SNE technique to describe similar data
points in the low-dimensional space. The algorithm reduces the Kullback–Leibler diver-
gence by using gradient descent to reduce the sum of conditional probability differences
between high and low dimensional squares. KL spacing is used to evaluate the conditional
probability spacing between both high- and low-dimensional data points, as shown in
Equation (3).

P(Loi/Loj) =
S(Loi/Loj)

(∑N
m 6=i S(Loi/Lom)

(1)

Q(Hii/Hij) =
S(Hii/Hij)

(∑N
m 6=i S(Hii/Him)

(2)

KL = ∑
i

∑
j

P(Loi/Loj) log
P(Loi/Loj)

Q(Hii/Hij)
(3)

where Lo represents the data points in the high dimensional space, and Hi represents the
data points in the low dimensional space.
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3. Classification Methods

This section introduces the classification methods that were used in this study.

3.1. Classification Algorithm of the OASIS Dataset

The classification algorithms that were used with the OASIS dataset are:

3.1.1. Support Vector Machines (SVM)

SVM is used to solve classification issues for linearly and nonlinearly separable classes.
SVM is an algorithm that separates data into different classes. During the training phase,
the SVM algorithm finds a line (hyperplane) that separates the dataset data into classes and
increases the margins between the different class limits. If the margins between classes is
at maximum, then the more accurate the classification effectiveness is. After the algorithm
learns and chooses the best hyperplane classification, the model can be applied to new
data, known as test data [30].

3.1.2. Decision Trees

Decision trees are an important type of algorithm of machine learning for predictive
modelling. The representation of the decision tree model is a binary tree. The decision tree
consists of the root that represents the complete set of data, the inner nodes representing
the features, and the branches represent the decision-making rules. Finally, the leaf nodes
represent the decision to make the prediction. No branching is found after that. Trees
are quick to learn and quick to predict. They are also often accurate in diagnosing and
categorising the dataset to be solved [31].

3.1.3. Random Forest

Random Forest Algorithm is a machine learning algorithm used for solving classifica-
tion and regression problems, known as Bootstrap Aggregation or bagging. The bootstrap
is a powerful statistical algorithm that guesses a quantity from a dataset, such as means. It
takes a large amount of dataset and calculates the means. Then, it calculates the mean of all
the outputs of the means to give a strong predictive value. For bagging, the same method
as before is used, but instead of taking the entire dataset, multiple training samples are
taken, and a model is created for each training sample. When testing a new dataset, each
model makes a prediction, and the predictions are averaged to give the best predictive
accuracy. Thus, the Random Forest algorithm is a modification of these methods; decision
trees are created, and suboptimal divisions are made through randomness rather than
optimal divisions. Each model produces a prediction, and the combination of predictions
leads to accurate predictive results.

3.1.4. K Nearest Neighbours (KNN)

The KNN algorithm is among the machine learning algorithms used for solving
classification and regression problems, and it is simple and effective. The KNN algorithm
works by representing the entire training dataset so that it is called the lazy algorithm. The
process of predicting a new data point is performed by searching the training dataset to
find instances of k that are similar to the new (test) point. The Euclidean distance is used
to measure the similarity between the new (test) point and training points to determine
the affiliation of the new point. For each new point, the number of neighbours from each
class is counted, and the new point is assigned to the majority classes [32]. To store all data,
KNN requires storage space, but it performs prediction only when needed. The training
data can also be updated over time to keep the prediction effective.

3.2. Deep Learning and Hybrid for the MRI Dataset

Deep learning uses a convolutional neural network (CNN) system, in many fields
including the field of medical image processing. These models are commonly used to clas-
sify images, signs and medical records to perform ROI detection and early diagnosis [32].
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In this paper, the two transfer models of CNN algorithms are AlexNet and ResNet50,
which are applied to classify AD. All models contain the three most important layers:
convolutional layers, pooling layers and fully connected layers. The first layer in deep
learning models is a convolutional layer. The convolution layer wraps around the image
with the filter size specified in the convolution layer and passes the result to the next layer.
CNN convolutional layers create deep feature maps that summarise the most important
deep features in an input. Each convolutional layer performs a specific task. For exam-
ple, the first layer is concerned with showing the edges, whereas the next layer shows
the geometric complexities of an image. Then, the next layer is concerned with showing
shapes and colours, and so on. A convolutional layer contains the three most important
hyperparameters that affect the performance of this convolutional layer, namely, filter size,
zero paddings and stride. Next to the convolutional layer is the ReLU layer, which passes
the positive data and blocks the negative data and converts it to zero. Pooling layers are
used in deep learning techniques after the convolutional layer. The convolutional layer
produces millions of parameters. Thus, the pooling layer reduces the dimensions of deep
feature maps. Thus, the number of parameters is reduced, which in turn results in the
reduction in computational complexity. There are two types of pooling layers, namely, the
Max and the Average pooling layer. The Max pooling layer selects the maximum element
in the deep feature map specified by the filter. Thus, the output of the Max pooling layer
is a low-dimensional feature map that contains the maximum elements of the previous
feature map. The Average pooling layer selects averages of the elements of the feature
map specified by the filter. Therefore, the output of the average pooling layer is a low-
dimensional feature map that contains the average of the previous feature map elements.
The fully connected layer feeds the neural networks forward, as each layer connects to
the next. Fully connected layers are the last layers in the network, and they receive the
feature map from the pooling or convolutional layer. Then, all the feature maps are placed
on one vector, which means they are flattened. Then, they are fed to the fully connected
layer. At each layer in the Artificial Neural Network, the following process is performed:
g(Wx + b). where x is the input vector, W is the matrix weights of current and previous
neurons, b is the bias vector and g is the activation function called ReLU. After passing
feature maps from fully connected layers, the last layer of the network is the softmax
activation function, which produces neurons of the number of classes entered. In our study,
the softmax activation function produced four classes. Each class contained the correct
classification according to the input images.

3.2.1. Transfer Learning

Transfer learning is among the deep learning techniques. All CNN models have
been pre-trained on millions of images to diagnose more than a thousand classes; thus,
this great effort has been exploited to make it the seedbed for solving new classification
problems [32]. The idea of transfer learning is to use pre-trained CNN models to solve new
related tasks [26]. In this study, the two CNN models AlexNet and ResNet-50 were used.

3.2.2. AlexNet CNN Mode

AlexNet is a model of deep learning designed by Alex Krizhevsky in 2012. The
AlexNet architecture contains 25 layers, which are five convolutional layers, to extract
deep feature maps. Seven layers of activation functions, called ReLU, pass the positive
output and suppress the negative output in feature maps and turn them to zero. Three
max-pooling layers reduce the dimensions of the deep feature maps. Two dropout layers
turn off 5% of neurons and pass 50% on each iteration, thus reducing overfitting, but this
layer increases training time. Three fully connected layers receive feature maps as a flat
vector and pass them to the SoftMax activation function, which produces four classes to
classify AD. Figure 5 describes an AlexNet architecture showing all layers that pass over
six million parameters through it.
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Figure 5. Architecture of the AlexNet and ResNet-50 models.

3.2.3. ResNet-50 CNN Mode

ResNet-50 is a deep learning model that contains many architectures and models,
such as 18, 34, 50, 101 and 152 and has proven to be very efficient in classification. The
ResNet-50 architecture contains 177 layers representing 16 blocks. The 177 layers are
divided into 49 convolutional layers to extract deep feature maps. Activation functions
are called ReLU after the convolutional layers that pass the positive output and suppress
the negative output in feature maps and turn it to zero. Two pooling layers, one of the
average type and the other of the max type, are used to reduce the dimensions of the
deep feature maps. Fully connected layers receive feature maps as a flat vector and pass
them to the SoftMax activation function, thereby producing four classes for classifying AD.
Figure 5 describes an architecture of the ResNet-50 model showing all layers passing over
23.9 million parameters through it.

3.3. Hybrid between CNN Models with SVM of MRI Dataset

There is a method that uses both deep learning and machine learning techniques [33–36]
together to diagnose AD. This is called a hybrid technique. Deep learning models are used
to extract deep feature maps from the input images and train the models. This technique
is characterised by its speed of implementation, ability to solve complex computational
problems and effective diagnostic accuracy. The hybrid techniques consist of two blocks.
The first block includes CNN models to extract feature maps that are considered as input to
the second block. The second block is the machine learning SVM algorithm for classifying
deep feature maps [37,38]. The next steps implement the hybrid techniques. The image-
Datastore is created; this stores images with a label for each class. The dataset is divided
into 80% for training and validation (80%:20%) and 20% for testing. CNN models were
applied to the training dataset to extract deep feature maps through convolutional layers.
The SVM algorithm was applied to classify the test dataset for AD diagnosis.

4. Experimental Result and Discussion

The experiments in this study were conducted as follows:

4.1. Splitting Dataset

The OASIS dataset consists of 374 records for three classes namely, demented, non-
demented and converted. The class of the converted class was distributed to both of
the other classes based on the CDR feature value. Then, the dataset was divided into
206 cases (55%) of non-demented patients and 168 cases (45%) of demented patients.



Electronics 2021, 10, 2860 14 of 20

Dataset imbalances were addressed during the training phase, in which 164 cases were
demented, and 164 cases were non-demented. The dataset was divided into 80% for
training and 20% for testing. The second dataset (MRI) consists of 6400 images divided into
mild dementia disease (896 images), moderate dementia disease (64 images), non-dementia
(3200 images) and very mild dementia disease (2240 images). The second dataset was
balanced by the data augmentation technique shown in Table 5. The MRI dataset was
divided into 80% for training and validation (80:20) and 20% for testing. Table 7 shows
the division of the two OASIS and MRI datasets after balancing during the training and
selection phases for dementia and non-dementia patients for the first dataset and for
Alzheimer’s patients with varying severity from mild to moderate to severe for the MRI
dataset.

Table 7. Splitting the two data sets.

Class Non-Dementia Dementia Mild Dementia Non-Dementia Dementia Mild Dementia

Training 164 164 7258 7040 7400 7392
Testing 42 34 179 13 640 448

4.2. Evaluation Metrics

The performance of four machine learning algorithms on the OASIS (medical records)
dataset was evaluated using four statistical measures, namely, Accuracy, Precision, Recall
and F1 score. The MRI dataset was also evaluated by two CNN models, namely, AlexNet
and ResNet-50, and hybrid techniques CNN (AlexNet and ResNet-50) with machine
learning (SVM classifier). Then, the hybrid became (AlexNet+SVM and ResNet-50+SVM),
which used four evaluation scales, namely, Accuracy, Sensitivity, Specificity and AUC. The
following Equations (4)–(10) described how to evaluate the proposed system using a
confusion matrix that extracts all true positive (TP), true negative (TN), false positive (FP)
and false negative (FN).

Accuracy =
TN + TP

TN + TP + FN + FP
∗ 100% (4)

Precision =
TP

TP + FP
∗ 100% (5)

Recall =
TP

TP + FN
∗ 100% (6)

F1score = 2 ∗ Precision ∗ Recall
Precision + Recall

∗ 100% (7)

Sensitivity =
TP

TP + FN
∗ 100% (8)

Speci f icity =
TN

TN + FP
∗ 100% (9)

AUC =
True Positive Rate
False Positive Rate

=
Sensitivity
Speci f icity

(10)

where:
TP is patients’ cases (dementia or AD) that have been correctly classified.
TN is patients’ cases correctly classified as normal.
FN is patients’ cases (dementia or AD) classified as normal.
FP is a normal condition classified as (dementia or AD).
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4.3. The Results of the OASIS Dataset

The problem of an unbalanced dataset was overcome, and each feature was evaluated
through the correlation of each feature with the other and the correlation of each feature
with the target feature. The t-SNE algorithm was also applied to reduce dimensionality by
representing high dimensional data in low dimensional space. The features selected were
evaluated by four machine learning classifiers, namely, SVM, Random Forest, decision
tree and KNN. All algorithms reached superior results for diagnosing dementia. Classi-
fiers were fine-tuned by tuning hyperparameters and reducing the loss function. Table 8
describes the results of the proposed systems for diagnosing both dementia and non-
dementia. We displayed the results of dementia cases diagnosis, noting that the random
forest classifier achieved better results than the rest of the classifiers, as it reached an overall
accuracy of 94% and precision, recall and F1 scores of 93%, 98% and 96%, respectively. For
the decision tree algorithm, it achieved an overall accuracy of 94% and precision, recall
and F1 scores of 95%, 93% and 94%, respectively. The KNN algorithm achieved an overall
accuracy of 87% and precision, recall and F1 scores of 98%, 81% and 88%, respectively. The
SVM algorithm achieved an overall accuracy of 90% and precision, recall and F1 scores of
93%, 88% and 91%, respectively.

Table 8. Results of dementia diagnosis by using machine learning for each class.

Classifiers SVM Decision Tree Random Forest KNN
Phase Testing (20%) Testing (20%) Testing (20%) Testing (20%)
Class Non-Dementia Dementia Non-Dementia Dementia Non-Dementia Dementia Non-Dementia Dementia

Precision % 88 93 93 95 98 93 77 98
Recall % 93 88 95 93 93 98 97 81

F1 score % 90 91 94 94 95 96 86 88
Accuracy % 90 94 94 87

4.4. Results of Alzheimer’s MRI Dataset

The results of Alzheimer’s MRI dataset were discussed as follows:

4.4.1. The Results of the Alzheimer’s MRI Dataset by CNN Models

The problem of the dataset for unbalanced MRI and overfitting was overcome by the
technique of data augmentation. Table 9 describes the tuning of CNN models in terms of
the optimiser, learning rate, Mini Batch Size, maximum epoch, validation frequency and
training time. The deep feature maps extracted by AlexNet and ResNet-50 models were
evaluated, and the two models reached superior results for the diagnosis of AD. Figure 6
shows a confusion matrix for both models that contains all correctly classified (TP and TN)
and incorrectly classified (FP and FN) cases of AD. Table 10 shows the results achieved
by the two models. The ResNet-50 model achieved better results than the AlexNet model
for Accuracy and Specificity, whereas AlexNet achieved better results than ResNet-50 for
Sensitivity and AUC. We discussed the evaluation of ResNet-50 and AlexNet for diagnosing
all classes of AD. Table 11 describes the results achieved in assessing the severity of the AD
cases. It is noted that ResNet-50 achieved an accuracy of 98.4%, whereas AlexNet achieved
an accuracy of 95% for mild dementia. For moderate dementia, AlexNet achieved 100%
accuracy, whereas ResNet-50 achieved 92.3% accuracy. Non-dementia images were rated
equally by ResNet-50 and AlexNet, with an accuracy of 93%. For very mild dementia,
AlexNet reached an accuracy of 98%, whereas ResNet-50 reached an accuracy of 94.9%.
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(a) (b)

Figure 6. Confusion matrices. (a) Confusion matrix for the AlexNet to evaluate Alzheimer’s disease. (b) Confusion matrix
for the ResNet-50 to evaluate Alzheimer’s disease.

Table 9. Training Parameter Options ResNet-50 and AlexNet Models.

Options AlexNet ResNet-50

training Options adam adam
Mini Batch Size 130 18

Max Epochs 10 5
Initial Learn Rate 0.0001 0.0001

Validation Frequency 50 5
Training time (min) 34 min 28 s 231 min 17 s

Execution Environment GPU GPU

Table 10. Alzheimer’s disease diagnosis results using deep learning and hybrid models between
deep learning and machine learning.

Classifier Deep Learning A Hybrid between Machine
Learning and Deep Learning

AlexNet ResNet-50 AlexNet ResNet-50

Accuracy % 92.20 93.10 94.80 94.10
Sensitivity % 94.50 92.25 93.00 91.75
Specificity % 97.00 97.25 97.75 97.50

AUC % 99.45 98.82 99.70 99.31

Table 11. Performance evaluation results on Alzheimer’s MRI datasets.

Diseases Deep Learning A Hybrid between Machine
Learning and Deep Learning

AlexNet ResNet-50 AlexNet ResNet-50

Mild dementia 95 98.4 88.8 92.7
Moderate dementia 100 92.3 92.3 84.6

Non-dementia 93 93 97.7 96.1
Very mild dementia 98 94.9 93.3 92.2

4.4.2. The Results of the MRI Dataset by Hybrid CNN Models with SVM

The MRI dataset was evaluated by data augmentation technique to create a balanced
dataset and to overcome the problem of overfitting. The deep feature maps were extracted
by AlexNet and ResNet-50 models. Training of these deep features by CNN techniques
required high-performance computers. It took a long time to train the model. Thus, we
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implemented a technical hybrid of deep learning and machine learning that solves the
problem of time and computer devices and achieves effective performance. This technique
was one of our contributions. It comprised two blocks. The first block is made up of CNN
models (AlexNet and ResNet-50) to extract deep feature maps and send them to the second
block. The second block is a machine learning algorithm (SVM) that trains the model and
classifies all the input images in a short time. Figure 7 shows a confusion matrix for both
hybrid models (AlexNet+SVM and ResNet-50+SVM) containing all correctly classified
and incorrectly classified cases of AD. Table 10 shows the results achieved by the two
hybrid models, where the AlexNet+SVM model achieved better results than the ResNet-
50+SVM model for all measures. The AlexNet+SVM model achieved accuracy, sensitivity,
specificity and AUC of 94.8%, 93%, 97.75% and 99.70% straight, respectively. We discuss
the evaluation of AlexNet+SVM and ResNet-50+SVM for diagnosing all categories of
AD. Table 11 describes the results achieved to assess the severity of AD cases. For mild
dementia, ResNet-50+SVM achieved an accuracy of 92.7%, whereas AlexNet+SVM had
an accuracy of 88.8%. For moderate dementia, AlexNet+SVM had an accuracy of 92.3%,
whereas ResNet-50+SVM had an accuracy of 84.6%. Images for non-dementia were rated
97.7% by AlexNet+SVM, whereas they were rated 96.1% by ResNet-50+SVM. For very
mild dementia, AlexNet+SVM had an accuracy of 93.3%, whereas ResNet-50+SVM had an
accuracy of 92.2%.

(a) (b)

Figure 7. Confusion matrices. (a) Confusion matrix for the AlexNet-50+SVM to evaluate Alzheimer’s disease. (b) Confusion
matrix for the ResNet+SVM to evaluate Alzheimer’s disease.

4.5. Performance Comparison between Deep Learning and Hybrid between Deep and
Machine Learning

In the previous sections, the performances of AlexNet and ResNet-50 models and
that of the hybrid of the two AlexNet+SVM and ResNet-50+SVM models are explained
(Table 10). Figure 8 shows the performances of AlexNet and ResNet-50 models and the two-
hybrid technique, AlexNet+SVM and ResNet-50+SVM. The hybrid technologies performed
better than CNN models (AlexNet and ResNet-50) in terms of accuracy, specificity and AUC,
whereas AlexNet and ResNet-50 models performed better than the hybrid technologies in
terms of sensitivity measure.
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Figure 8. The performances of deep learning and hybrid techniques.

5. Conclusions

Dementia and AD are among the diseases that affect the elderly and their lives. Thus,
an effective diagnosis of AD is an important factor in overcoming the disease. The volume
of spending on AD and its economic impact amount to a trillion dollars. This indicates that
the early diagnosis of dementia and AD is crucial. Considering the difficulty of manual
diagnosis by doctors, artificial intelligence techniques have played an important role in the
early diagnosis of dementia and AD. In this paper, we used two datasets. The first dataset
was OASIS, which comprises medical records. SMOTE algorithm was applied to balance
the dataset. The missing values were processed by replacing them using the median
method. The relationship ratio between each feature and the target feature was found.
The t-SNE algorithm was used to represent high-dimensional data in low-dimensional
space. Finally, these features were diagnosed by four machine learning algorithms, namely,
SVM, Decision Tree, Random Forest and KNN, and the dataset was divided into 80% for
training and 20% for testing. All algorithms achieved effective results, the best of which
was achieved by using the random forest classifier. It achieved an overall accuracy of 94%
and precision, recall and F1 scores of 93%, 98% and 96%, respectively. The second dataset
is MRI. All images were optimised to remove noise and artifacts through the average filter.
Data augmentation method was used to balance the dataset and overcome the problem
of overfitting. The dataset was divided into 80% for training and validation and 20% for
testing. Deep feature maps were extracted through AlexNet and ResNet-50 models, where
9216 features were extracted for each image. Feature maps were fed to both fully connected
layers. These maps were an extension of deep learning and the SVM algorithm and were
the features of a hybrid method. The hybrid algorithm between machine learning and
deep learning achieved better results than deep learning, with the AlexNet+SVM model
achieving accuracy, sensitivity, specificity and AUC values of 94.8%, 93%, 97.75% and
99.7%, respectively.
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