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Abstract: The purpose of image dehazing is the reduction of the image degradation caused by
suspended particles for supporting high-level visual tasks. Besides the atmospheric scattering model,
convolutional neural network (CNN) has been used for image dehazing. However, the existing
image dehazing algorithms are limited in face of unevenly distributed haze and dense haze in
real-world scenes. In this paper, we propose a novel end-to-end convolutional neural network called
attention enhanced serial Unet++ dehazing network (AESUnet) for single image dehazing. We
attempt to build a serial Unet++ structure that adopts a serial strategy of two pruned Unet++ blocks
based on residual connection. Compared with the simple Encoder–Decoder structure, the serial
Unet++ module can better use the features extracted by encoders and promote contextual information
fusion in different resolutions. In addition, we take some improvement measures to the Unet++
module, such as pruning, introducing the convolutional module with ResNet structure, and a residual
learning strategy. Thus, the serial Unet++ module can generate more realistic images with less color
distortion. Furthermore, following the serial Unet++ blocks, an attention mechanism is introduced
to pay different attention to haze regions with different concentrations by learning weights in the
spatial domain and channel domain. Experiments are conducted on two representative datasets: the
large-scale synthetic dataset RESIDE and the small-scale real-world datasets I-HAZY and O-HAZY.
The experimental results show that the proposed dehazing network is not only comparable to state-
of-the-art methods for the RESIDE synthetic datasets, but also surpasses them by a very large margin
for the I-HAZY and O-HAZY real-world dataset.

Keywords: serial Unet++ module; image dehazing; dep learning; unevenly distributed haze

1. Introduction

When light spreads in dense suspended particles such as fog, haze, smoke, dust,
etc., the image information collected by imaging sensors is seriously degraded due to the
scattering of the particles, which causes the loss of a large amount of useful information
and greatly limits high-level vision tasks. The purpose of image dehazing is to eliminate
the influence of the atmospheric environment on image quality, increase the visibility of
images, and provide support for downstream vision tasks such as classification, local-
ization, and self-driving systems. In the past few decades, single image dehazing has
been widely used for outdoor video surveillance systems, such as highway traffic, forest,
and grassland ecology. As a foundational low-level vision task, single image dehazing
has gained more and more attention from the computer vision community and artificial
intelligence companies over the world.

Numerous image dehazing methods can be divided into traditional methods and
learning-based methods in general. Traditional image dehazing algorithms are mostly
based on hypothetical models, among which the atmospheric scattering model introduced
in [1,2] is one of the most successful models. The atmospheric scattering model can well
explain the formation of haze, therefore it also provides a theoretical basis for traditional
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dehazing algorithms. Unfortunately, this model inevitably causes errors in estimating the
transmission map and global atmospheric light. As a result, the quality of the restored im-
age is not satisfactory. Therefore, much prior knowledge [3–11], varying with atmospheric
environment, is utilized to improve the performance of the atmospheric scattering model.
Among them, the dark channel prior (DCP) [3] dehazing algorithm is the most successful
and famous algorithm. By counting a large number of outdoor hazy images, the author
finds that, in the color channels of these images, the brightness value of at least one channel
is very small or close to zero. Through such a priori knowledge, the DCP algorithm can
locate hazy areas and remove this haze combined with the parameter estimation of the
atmospheric scattering model.

In recent years, CNN-based deep learning has achieved excellent results in some
high-level visual applications [12–14]. At the same time, it also shows great performance
in dealing with some low-level visual tasks such as super resolution [15–18]. To avoid
the above disadvantages of the atmospheric scattering model, some end-to-end dehazing
networks were proposed to estimate the transmission map or directly predict the hazy-free
image [19–21]. Compared with traditional methods, the learning-based image dehazing
algorithms have shown more valid, significant and robust visualized improvement. For
example, Cai et al. [19] introduced a trainable and end-to-end network (called DehazeNet)
that generates a haze-free image using the self-learned transmission map. An all-in-one
dehazing network called AODNet was presented by Li et al. [20] to jointly estimate the
transmission map and global atmospheric light in one framework. In addition, Zhang
et al. [21] presented a densely connected pyramid dehazing network, which is also named
DCPDN, to access the transmission map through a pyramid network branch as well as to
parallelly estimate atmospheric light via another Unet [22]-based branch.

Although many attempts have been made to improve the dehazing performance
of learning-based methods, there still exist some factors that set the limitation for these
methods, which causes incomplete dehazing and color distortion in the face of unevenly
distributed haze and dense haze in real-world scenes. Accordingly, we proposed a novel
end-to-end attention enhanced serial Unet++ Dehazing Network for single image dehazing
(called AESUnet). The proposed method can directly generate the dehazed image free of
the estimation of middle parameters. We present a serial strategy of two Unet++ modules to
fully extract features in different resolutions and promote the information fusion. In order to
avoid the loss of shallow features, we established residual connections between two Unet++
modules. Since feature extraction is essential for an end-to-end image restoration task,
in this paper, the dehazing model utilizes an enhanced Unet (called Unet++ [23])-based
architecture to capture the contextual information between different layers and increase the
reception field of each pixel. Although the structure of Unet has been applied to the image
dehazing algorithm [24,25], to the best of our knowledge, it is the first time introducing the
Unet++ structure for single image dehazing. While retaining the excellent performance
of Unet in dealing with the low and deep contextual information at the same time and
reducing information loss caused by down-sampling and copy-and-crop strategy through
long connections, the Unet++ adds more densely short connections and more skip routes,
which improves the efficiency of using features in different resolutions. Moreover, the
attention module [26] is introduced into the model to enable the network to learn the
uneven distribution of haze.

The contributions of this work are summarized as follows:

• We propose a novel end-to-end attention enhanced serial Unet++ dehazing network.
The serial Unet++ module extracts features in different resolutions and effectively
fuses them to restore thick hazy images. An attention mechanism is introduced to pay
different levels of attention to haze regions with different concentrations;

• We build a serial Unet++ structure that is responsible for fully extracting features of
different resolutions and reconstructing them on different scales. The serial Unet++
structure directly transmits the original information of the shallow layers to the
subsequent deeper layers, so that the deeper layers focus on residual learning while
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reusing shallow contextual information. Thus, the structure can not only avoid
the degradation of the model, but also fuse shallow contextual information into
deep features, which contributes to generating more realistic images with less color
distortion in the faces of dense daze regions;

• To remove the haze and restore the image information as much as possible, we take
some improvement measures to the Unet++ module. First, the original Unet++ is
pruned to avoid expansion of model parameters. Besides, in the down-sampling
operation, we replace the simple convolutional layer with the convolutional module
with ResNet in order to prevent the loss of original information in the transmission to
the deep network;

• The different pixel values in the spatial domain and different feature channels show
different sensitivities to haze regions with different concentrations. We introduce the
attention module at the bottom of the decoder to assign different weights to different
spaces and channels, which helps to pay different levels of attention to haze regions
with different concentrations and further enables the network to learn the uneven
haze in images.

The rest of the paper is organized in the following way. Section 2 describes recent stud-
ies related to our work. Section 3 presents the proposed network, including a Unet++-based
structure of the Encoder–Decoder and the learnable attention modules. The experiment
results are discussed in Section 4, while the ablation studies are drawn in Section 5. The
conclusion and acknowledgement are put at the end.

2. Relate Works

The atmospheric scattering model was firstly introduced by McCartney [1,2] and
further developed by Narasimhan [27] and Nayar [28]. It is widely used for describing the
formation of hazy images and formulated as:

I(z) = J(z)t(z) + A(1− t(z)), (1)

where I(z) is the observed hazy image, J(z) is the recovered hazy-free image, t(z) is the
medium transmission map, and A is the global atmospheric light. When the atmospheric
light A is homogeneous, the transmission map can be expressed as:

t(z) = e−βd(z), (2)

where β is the scattering coefficient of the atmosphere, and d(z) represents the scene depth. Given
a hazy image I, the target hazy-free image J can be calculated from the above two formulas.

From the formula, we can see that, in order to solve the recovered hazy-free image J,
we need to calculate three key parameters correctly. However, in practice, we usually cannot
obtain these parameters directly. Therefore, many scholars use different prior knowledge.

He et al. [3] discovered DCP (dark channel prior) according to statistical law to reckon
the transmission map. However, DCP will be invalid when it comes to the regions with
high brightness. Zhu et al. [4] introduced CAP (color attenuation prior) to describe the
relationship among brightness, saturation, and the density of haze. Berman et al. [5]
proposed a non-local prior that means the color of a haze-free image can form tight,
non-local clusters in RGB space, and their varying distances can translate to different
transmission coefficients in the presence of haze. Derived from a local linear model, He
et al. further put forward a guided filtering method [6] which is cost-efficient in haze
removal without the use of a complex atmospheric model. Although many improved
atmospheric models [7–11] have achieved a large amount of success, they also showed the
problem of insufficient robustness in dealing with more complex real-world scenes. In the
meantime, the prior error is still not be completely avoided, which directly causes color
distortions in restored images.

Since image dehazing is a highly ill-posed problem, the existing methods often use
strong priors or assumptions as additional constraints to restore the transmission map,
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global atmospheric light, and scene radiance. Due to unavoidable errors caused by the
estimation of some middle parameters, the atmospheric scattering model has been gradu-
ally replaced by end-to-end models [29–37] to directly generate the dehazed image. For
instance, Surez et al. [24] employed a triplet of Generative Adversarial Network (GAN) [38]
to remove the haze on each color channel independently. A GAN-based enhanced pix2pix
dehazing network (EPDN) [34] was designed to have a multi-resolution generator and
a multi-scale discriminator followed by the pyramid pooling enhancer module. Dong
et al. [35] also borrowed the structure of GAN for image dehazing. They introduced the fre-
quency domain information into the generator network as a priori knowledge to deal with
the problem of color distortion. Inspired by knowledge distillation, Wu et al. [36] designed
a two-stream dehaze network, KTDN, to transfer the knowledge learned from abundant
haze-free images. Chen et al. [37] adopted a smoothed dilation technique to help to remove
the gridding artifacts and leverage a gated sub-network to fuse the features from different
levels. The methods mentioned above have significantly improved the performance of
dehazed images; however, these generic methods suffered from the problems of complex
models, unevenly distributed haze and insufficient dehazing degree after reconstruction.

The Unet model was first proposed for application in biomedical image segmen-
tation [39–41] and soon stretched to a variety of visual tasks [42,43]. On account of its
mirrored down-and-up-sampling structure, the Unet structure can pay more attention to
the contextual information in one image and restore the features’ scale to the size of the
original image, which is significant to the end-to-end tasks. Additionally, long connections
are also used to fuse the features extracted by the previous down-sampling parts to the
later up-sampling parts with the same resolution. Unet++ redesigns the network by adding
more skip routes and short connections between different resolutions. Therefore, such an
operation can improve the efficiency of feature utilization and avoid the introduction of
too many parameters.

3. Method
3.1. Architecture

In this section, we present the AESUnet in detail, including the pipeline and the
stabilization of the whole network, the encoder-decoder structure of serial Unet++ with
local residual learning, and the attention module.

3.1.1. Pipeline Overview

The pipeline of the network, shown in Figure 1, consists of two Unet++ blocks con-
nected in serial. The input of this network is hazy images. Two serial Unet++ blocks are
responsible for fully extracting features of different resolutions and reconstructing them on
different scales. When the output features (shallow features) of the first Unet++ block are
passed to the second Unet++ block, they are also passed backward to be concatenated with
the output features (deep features) of the second block. Through this residual connection,
shallow contextual information can be used again; that is, the serial Unet++ structure
allows the original information of the shallow layers to be directly transmitted to the
subsequent deeper layers, so that the deeper layers can focus on residual learning and avoid
the degradation of the model. After obtaining the concatenated features, we take an attention
module to pay different attention to haze regions with different concentrations and adopt two
convolutional layers to reduce the channels to three. At last, we add the original hazy images
to the finally extracted feature channels and obtain the haze-free images.
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Figure 1. The whole structure of the AESUnet including two Unet++ blocks, an attention module, two
convolutional layers, and some skip connections between them. The network is a fully end-to-end
structure. Two Unet++ structures are used to extract shallow features and deep features, respectively,
and these features are concatenated in channel dimension. Attention module is then employed to
have the network learn the distribution of haze. Finally, perceptual loss and reconstruction loss are
used to help the training process.

3.1.2. Encoder-Decoder of the Serial Unet++ Structure

In order to remove the haze and restore the image as much as possible, the feature
extractor must make full use of the information in one image. Inspired by several previous
dehazing networks that utilized the encoder–decoder structure as the feature extractor
and achieved great performance, we build a serial Unet++ block with an encoder–decoder
structure. Especially, we use a variant of the original Unet model called Unet++, which
adds more short connections and skip routes to promote the information for contacting
and fusing. As shown in Figure 2, different from the original Unet++, we do some pruning
to the model. Specifically, since the input patches were resized to 256 × 256 pixels, we cut
the deepest layer of the Unet++ and just keep three layers to down-sample the resolution
to 1/8 scale. Therefore, the expression of the j-th feature at the i-th layer is formulated as:

xi,j = G
(

xi,0 ⊕ xi,1 ⊕ . . .⊕ xi,j−1 ⊕ up
(

xi+1,j−1
))

, (3)

where G (·) means convolution layer, up(·) means Upsampling operation, and⊕ represents
the concat operation.

Moreover, in the Down-sampling operation, a convolutional module with ResNet [44]
structure is used to replace the simple convolutional layer. As shown in Figure 3a, the
Down-sampling operation contains three convolutional layers, and immediately after every
convolutional layer are batch normalization (BN) and ReLU layers. To keep the gradient
from dispersion, a residual learning strategy is introduced. The input features transferred
from the upper encoder are pooled to half size and fed to the first two convolutional layers.
Further information extracted by two series of convolutional, batch normalization (BN),
and ReLU layers are then added to the input and sent to the next convolutional layer to-
gether. The structure of the Up-sampling operation is similar to that of the Down-sampling
operation, as shown in Figure 3b, except that the pool operation is replaced by interpolation
to restore the feature size to the original resolution. Through assigning different weight to
different spaces and channels, the attention module at the bottom of the decoder helps to
learn the uneven distribution of haze.
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Figure 3. The detailed structure of the Down-sampling operation and Up-sampling operation in
serial Unet++ module. Compared to original network, we replaced the convolutional layer with
residual convolutional layer. After the Down-sampling operation or the Up-sampling operation, the
size of the features is reduced to half of the original size or doubled accordingly. An attention module
is added at the bottom of the Up-sampling operation to facilitate learning the distribution of haze in
different spaces or channels.

3.1.3. Attention Mechanism

In most cases, the distribution of haze is uneven, especially for dense haze. This makes
it difficult to apply CNN-based dehazing network to the real scene. At the same time,
different feature channels also have different sensitivities to haze regions with different
concentrations. Therefore, assigning different weights to corresponding channels also has
an effect on the dehazing performance. Many works [45–47] have applied the attention
mechanism to the Unet structure and achieved good results in different visual tasks.
Inspired by [48,49], we introduce the attention mechanism into our network so that it
can focus more on the dense haze areas when the distribution of haze is uneven in one
image. As shown in Figure 4, in the process of keeping input features passed back, channel
attention and spatial attention are multiplied in turn to obtain refined features as the output
of the feature module.
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In the channel attention module (see Figure 4), we first adopted an adaptive mean
pooling operation to obtain the raw weight of each channel. Through the adaptive mean
pooling operation, for the feature map of size H ×W × C, we extract a feature matrix of
size 1 × 1 × C, where each value is a weight of all the pixel values in the corresponding
feature map. Then, the raw weights are sent to a learning module consisting of one
convolutional layer, a ReLU activation function unit followed by the other convolutional
layer and Sigmoid activation function. Finally, the learned feature weights are channel-
wise multiplied into the input features so that different channels have different degrees of
attention to the haze.

After the channel attention module, a spatial attention module (see Figure 4) is em-
ployed to measure the degree of attention to different locations of the feature map. We
first perform the max-pooling and mean-pooling operations along the channel axis on
the feature map fused with channel attention. In this way, two spatial attention maps of
H ×W × 1 are obtained from the original feature map of H ×W × C. Immediately after
concatenating them, a convolutional layer and Sigmoid activation function are utilized
to learn the distribution of haze in the whole image. At last, the spatial attention map is
pixel-wise multiplied into the input features. In summary, the attention feature is computed
as:

F′ = F ∗ λ ∗ γ,
λ = δ(Conv(σ(Conv(AMP(F))))),

γ = σ(Conv(CAT[Max(F), Mean(F)])),
(4)

where F is the input features of the attention module, and F′ is the output features with
channel attention and spatial attention. δ(·) is the Sigmoid activation function and σ(·)
is the ReLU activation function. AMP(·) represents the adaptively mean pooling opera-
tion and CAT(·) means the concatenation in channel dimension. Max and Mean mean
max-pooling and mean-pooling operations, respectively.

3.2. Loss Function

We use reconstruction loss Lr and perceptual loss Lp as the composition of the inte-
grated loss function and formulate them as:

Ltotal = αLr + βLp, (5)
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Reconstruction loss measures the mean absolute error (MAE), which is also called L1
Loss, between ground truth and corresponding image, and is formulated as:

Lr =
1
n ∑i L1(G(Ii)− Ji), (6)

where Ii is the input hazy image, G(·) means the network operating on the input, and Ji is
the corresponding ground truth.

Perceptual loss was proposed in [50] to measure the perceptual similarity in features
space and calculate the mean square error, also called L2 Loss. The vgg(·) means pretrained
VGG16 [51] network. It is defined as:

Lp =
1
n ∑i L2(vgg(G(Ii))− vgg(Ji)), (7)

Finally, we use a weight combination of the two loss functions. In this work, the
parameters α, β are set to 1, 1 correspondingly.

4. Experiments

In this section, we will introduce the datasets used in training and testing our network.
At the same time, the detail parameters of the training process are given. Finally, we
compare the results of the network with several representative methods in the same
objective metrics.

4.1. Datasets and Metrics

Similar to the existing learn-based dehazing methods, we utilized two of the most
commonly used dehazing datasets, RESIDE datasets [52] and I-HAZY and O-HAZY image
dehazing datasets [53,54], for training our model.

The RESIDE dataset is a large-scale benchmark consisting of both synthetic and real-
world hazy images. It is divided into five subsets, each serving different training or
evaluation purposes. In our experiment, we used Indoor Train Set (ITS) and Outdoor Train
Set (OTS) as training datasets, and Synthetic Objective Testing Set (SOTS) for evaluating. In
ITS, there are 10,000 different hazy indoor images and 10 corresponding synthesized hazed
images to each. In OTS, there are 8970 different hazy outdoor images and 35 corresponding
synthesized hazed images to each. Therefore, there are, totally, 100,000 images in ITS and
313,950 in OTS. In SOTS, there are 500 hazed images and their corresponding ground truth
images are used for calculating the metrics partly.

Compared with the RESIDE dataset, I-HAZY and O-HAZY datasets are real-world
datasets. I-HAZY and O-HAZY datasets are proposed to address the limitation that
is currently considered, both for assessment and training of learning-based dehazing
techniques which all exclusively rely on synthetic hazy images. They are composed of pairs
of real hazy and corresponding haze-free images. The real hazy images are all generated by
professional haze machines and captured under the same illumination parameters with the
corresponding haze-free images, therefore they are closer to the actual application. I-HAZY
datasets have 30 images, among which 25 are for training and 5 are for evaluating. O-HAZY
dataset have 45 images, among which 40 are for training and the rest are for evaluating.

To objectively evaluate the performance of the proposed method, we adopt two
metrics widely used in image dehazing task: the Peak Signal to Noise Ratio (PSNR) and
the Structural Similarity index (SSIM).

PSNR is the most common and widely used image objective evaluation index, and
it is based on the error between corresponding pixels, which is an error-sensitive based
image quality evaluation matric. PSNR can be formulated as:

PSNR = 10log10(
(2n − 1)2

MSE
), (8)
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where n represents the bit width of the pixel. MSE stands for the mean absolute error and
it can be formulated as:

MSE =
1

hw ∑h−1
i=0 ∑w−1

j=0 ‖Ii,j − Ji,j‖, (9)

where h, w mean the height and weight of the image, and Ii,j, Ji,j mean the pixel value of
the input hazy image and the corresponding output haze-free image at position (i, j).

SSIM is also a full-reference image quality evaluation index, which measures image
similarity from three aspects: brightness, contrast, and structure. SSIM can be formulated as:

SSIM = l(x, y) ∗ c(x, y) ∗ s(x, y), (10)

where l, c, and s stand for brightness, contrast, and structure, respectively.
To evaluate and compare the proposed model with previous methods from a more

comprehensive perspective, except for the above two most commonly used reference
subjective evaluation metrics, we also selected two additional evaluation metrics: Natural
Image Quality Evaluator (NIQE), a non-reference image quality index, and Natural Image
Quality Evaluator (LPIPS) [55], a subjective evaluation index.

The design idea of NIQE is to construct a series of features to measure image quality
and use these features to fit a multivariate Gaussian model. These features are extracted
from some simple and highly regular natural landscapes. The smaller the value of NIQE,
the more the characteristics of the image conform to the natural image with high rules,
which means that its quality is better. LPIPS uses the similarity measurement of high-
dimension image structure to replace the distance measurement that cannot be formed
in practice, which means the difference of pixel values is not always consistent with
people’s subjective perception. In practical use, LPIPS uses the deep network pre-trained
on ImageNet datasets to extract the deep features of images and reference images. The
lower the LPIPS value, the higher the feature similarity between the generated image and
the corresponding reference image, and the more similar the subjective perception.

4.2. Implement Details

We implement our framework in Pytorch 1.7.1 and train our model in a computer
equipped with a RTX 2080Ti GPU and an Intel i9-9900K CPU. We utilize ADAM [56] as an
optimizer where β1 and β2 are set to 0.9 and 0.999. The default learning rate is set to 0.0001.
To better adjust the learning rate, we adopt CosineAnnealingLR [57] as a scheduler.

Every image is randomly rotated by 0◦, 90◦, 180◦, or 270◦ and flipped horizontally
with 50% probability to improve the robustness of the model and prevent overfitting. The
batch size is set to 2 and the thread of the CPU is set to 16. Other hyperparameters are
different in training different datasets. When training on RESIDE dataset, we randomly
take a pair of images from the dataset and train our network for 1,000,000 iterations.
All the patches transferred to the network are resized to 256 × 256pixels. In I-HAZY
and O-HAZY datasets, all the images are resized to 512 × 512, and the size of patches
transferred to the network is also 256 × 256. Due to the small number of samples in the
datasets, we train for 125,000 iterations on each dataset. Code will be made available at
https://github.com/kirqwer6666/Image-dehazing-pytorch.

4.3. Experiments Results

We compare the proposed method with several representative and state-of-the-art
methods: DCP [3], AODNet [20], DCPDN [21], FD-GAN [37], and GCANet [30].

4.3.1. Experiment on Synthetic RESIDE Datasets

The experimental results of our method AESUnet and the other comparative methods
on the RESIDE dataset are shown in Figure 5 and Table 1. As shown in Table 1, AESUnet
can achieve state-of-the-art performance in all four metrics. The performance of AESUnet on the

https://github.com/kirqwer6666/Image-dehazing-pytorch
https://github.com/kirqwer6666/Image-dehazing-pytorch
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indoor RESIDE dataset is comparable with GCANet. Moreover, when it comes to the outdoor
dataset, AESUnet can reach significant improvements over the other comparative methods.
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Table 1. Metrics comparisons of the dehazing results on SOTS dataset. In this table, “↑” and “↓” respectively mean that the
larger the metric, the better and the smaller the metric, the better. The best results are shown in bold.

Method
Indoor Outdoor

PSNR (dB) ↑ SSIM ↑ LPIPS ↓ NIQE ↓ PSNR (dB) ↑ SSIM ↑ LPIPS ↓ NIQE ↓

DCP 16.62 0.8179 0.268 \ 19.13 0.8148 0.257 \
AODNet 19.06 0.8504 0.228 13.5746 20.29 0.8765 0.243 12.6212
DCPDN 19.98 0.8565 0.243 13.9711 20.67 0.9098 0.239 13.2775
FDGAN 23.15 0.9207 0.203 13.7742 23.43 0.9285 0.212 14.0714
GCANet 30.23 0.9800 0.176 13.8669 28.13 0.9450 0.184 12.4203

Ours 29.60 0.9549 0.200 11.6144 30.75 0.9639 0.191 10.9311

Specifically, as seen from Figure 5, the DCP method can achieve relatively soft vi-
sual performance, but in the face of areas with high brightness such as sky (the image
in the first row) and wall (the image in the sixth row), it causes serious color distortion
compared with ground truth. The convolutional module used in AODNet is at the same
resolution, therefore its ability to characterize features is weak. AODNet’s dehazing perfor-
mance is not thorough enough, which makes the images still present a hazy sense. The
feature extraction module used in DCPDN comprehensively considers different resolu-
tions, and multi-scale fusion is used in feature reconstruction. However, due to the error
accumulation of parameter estimation in the atmospheric scattering model, DCPDN will
bring obvious color distortion. This error is more obvious when the haze becomes thicker
(see Figures 5d and 6d). Although DCPDN has achieved good results in some images,
there is still much color distortion that cannot be ignored, and a large amount of haze
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remains in some areas with high-density haze, such as the lower right area of the image in
the third row. FDGAN and GCANet use more advanced feature extraction modules. The
former uses a GAN network with a deep encoder–decoder structure, while the latter uses
a gated fusion module to optimize the features extracted by encoder–decoder structure.
FDGAN and GCANet perform well in the indoor dataset; however, the effect of dehazing
is not ideal in the outdoor dataset, especially in the areas with obvious gradient changes,
such as the junction of objects and the sky.
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In comparation, the dehazed images generated by AESUnet are not only more visually
faithful and closer to the ground truth, but the color is changed more smoothly even in the
areas with dense haze.

4.3.2. Experiment on Real-World I-HAZY and O-HAZY Datasets

Compared to the RESIDE datasets, the advantage of our method is more obvious on
more challenging I-HAZY and O-HAZY datasets. As shown in Table 2, we reach the best
performance and surpass the second place by a very large margin, 4.425 dB in PSNR and
0.028 in SSIM as the average. As for LPIPS and NIQE, we also achieved the best results.
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Table 2. Metrics comparisons of the dehazing results on I-HAZY and O-HAZY dataset. In this table, “↑” and “↓” respectively
mean that the larger the metric, the better and the smaller the metric, the better. The best results are shown in bold.

Method
I-HAZY O-HAZY

PSNR (dB) ↑ SSIM ↑ LPIPS ↓ NIQE ↓ PSNR (dB) ↑ SSIM ↑ LPIPS ↓ NIQE ↓

DCP 14.43 0.752 0.333 \ 16.78 0.653 0.411 \
AODNet 13.98 0.732 0.374 10.7116 15.03 0.539 0.445 12.6648
DCPDN 16.21 0.755 0.274 15.3483 15.16 0.673 0.377 18.3160
FDGAN 17.82 0.757 0.224 13.9222 18.38 0.682 0.289 14.2454
GCANet 14.95 0.719 0.207 11.3894 16.28 0.645 0.259 12.2723

Ours 22.08 0.728 0.197 10.8302 22.97 0.767 0.206 12.0232

As seen from Figure 6, some previous methods, such as DCP, AODNet, and DCPDN,
totally fail in this dehazed task of the real-world dataset. Due to the lack of attention
module to learn the distribution of uneven haze, FDGAN and GCANet have a certain
effect but are accompanied by serious degradation in dealing with the unevenly distributed
haze. Stacking more parameters in the feature extraction module (14.07 M for FDGAN
and 9.61 M for GCANet) does not bring qualitative change to deal with uneven haze. As
marked with red boxes in Figure 6, because of the dense haze attached on the surfaces of
some objects, the outlines and texture details cannot be clearly seen on the object surfaces
of the FDGAN and GCANet results in row 1 and row 5. In addition, it is worth mentioning
that FDGAN and GCANet are not enough to completely restore the original color of the
images covered by heavily dense haze. Finally, as shown in row 2 and row 3 in Figure 6, in
the face of dense and uneven haze, FDGAN and GCANet almost completely fail. The lack
of ability to capture deeper features makes them unable to recover the image information
better. Compared with these methods, our model can not only adaptively remove haze in
both low-density and high-density areas to the greatest extent, but can also restore more
outlines and texture details with less color distortion.

5. Ablation Study

In order to analyze the effectiveness of each module in the proposed network, we
conduct the ablation study by consideration of two main factors: (1) Unet + + struc-
ture compared with ordinary Unet structure; (2) strategy of module series connection;
(3) attention mechanism. Therefore, we design three different models in the ablation study:

• AES-simple-Unet: Serial Unet-based block with attention module;
• AEUnet: Single Unet++ block with attention module;
• SUnet: Serial Unet++ block without attention module.

In order to avoid the positive effect caused by parameter stacking, we adjust the
convolutional layers of the three models in the ablation study so that their flops and
parameters are almost the same. When calculating the flops and parameters, the size of the
input is set to 1× 3× 256× 256. We trained the models in the RESIDE outdoor dataset and
tested it in the SOTS outdoor dataset. Other hyperparameter settings are also consistent.

As shown in Table 3, the three factors can bring a significant improvement to the
network. This promotion mainly comes from the mechanism of these factors rather than
the stacking of parameters. In particular, the introduction of the attention module can
bring more obvious performance improvement compared with the Unet++ structure. The
performance improvement of serial strategy is greater than the first two. On the one hand,
this is due to the positive impact of parameters; on the other hand, it is brought by feature
fusion between shallow and deep layers. The results are also reflected in Figure 7. Due to
the lack of short connections and more skip routes in the Unet++ structure, although more
convolutional layers are added to extract features, the AES-simple-Unet also performs
poorly in some regions compared with AESUnet. In the red box of Figure 7b, the color of
the sky area around the sun is clearly divided into three layers, while, in Figure 7e, the
color changes more naturally and smoothly. By comparison, as marked with the red box in
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Figure 7, the image generated by AESUnet is closer to the ground truth. The performance
of AEUnet is the worst among the four models in the ablation study. It can be clearly seen
from the Figure 7c that the color distortion in the sky area is very serious. This is because a
single UNet++ block cannot capture deeper color information well to restore the original color.
As for SUnet, because of the lack of attention module, the haze in the high-density areas is
left on the image (marked with green box in Figure 7d), which seriously degrades the visual
performance, and AESUnet can better take effect (marked with green box in Figure 7e).

Table 3. Ablation study results.

Flops (G) Params (M) PSNR (dB) SSIM

AES-simple-Unet 173.417 14.10 27.39 0.9586
AEUnet 263.218 15.79 23.26 0.8873
SUnet 234.478 14.05 26.20 0.9117

AESUnet 234.216 14.05 30.74 0.9639
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6. Conclusions and Future Work

In this paper, we propose a fully end-to-end Convolution Neural Network called
Attention Enhanced Serial Unet++ Dehazing Network (AESUnet) for single image dehazing.
To fully make use of the features extracted, we employ serial structure of two Unet++
blocks to replace the simple Encoder–Decoder structures. Moreover, the attention module
is introduced to help the network learn the distribution of the uneven haze. Compared
with the existing dehazing methods, AESUnet can better remove the dense haze in images
with less color distortion. Experiments on both synthetic and real-world datasets show that
our method can achieve state-of-the-art performance and generate more visually pleasing
results in the image dehazing task.

Although the proposed model can achieve quite pleasing dehazing performance on
real-world datasets, it is still worth discussing in the following aspects. Firstly, because the
proposed model adopts the end-to-end Unet++ architecture, it will be very computationally
expensive, which is not conducive to its industrial deployment. Replacing the heavy-weight
Unet structure with a more light-weight structure such as MobileNet [58] will have broader
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application prospects [59]. Secondly, the running speed of the proposed model is not fast
enough to meet the needs of real-time operation. In our experiment, the model can only
process images in the RESIDE dataset at a speed of 14 FPS. Therefore, the model still needs
to be improved to meet the needs of video dehazing. Considering the existing video image
processing methods [60–62], feature fusion methods such as key frame, nearest neighbor
frame, or time attention can be used to speed up the processing speed of video frames.
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