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Abstract: Real-time object detection is a challenging but crucial task for autonomous underwater
vehicles because of the complex underwater imaging environment. Resulted by suspended particles
scattering and wavelength-dependent light attenuation, underwater images are always hazy and
color-distorted. To overcome the difficulties caused by these problems to underwater object detection,
an end-to-end CNN network combined U-Net and MobileNetV3-SSDLite is proposed. Furthermore,
the FPGA implementation of various convolution in the proposed network is optimized based on the
Winograd algorithm. An efficient upsampling engine is presented, and the FPGA implementation of
squeeze-and-excitation module in MobileNetV3 is optimized. The accelerator is implemented on a
Zynq XC7Z045 device running at 150 MHz and achieves 23.68 frames per second (fps) and 33.14 fps
when using MobileNetV3-Large and MobileNetV3-Small as the feature extractor. Compared to CPU,
our accelerator achieves 7.5×–8.7× speedup and 52×–60× energy efficiency.

Keywords: underwater object detection; U-Net; MobileNetV3; Winograd algorithm

1. Introduction

Precise real-time object detection is crucially important in autonomous underwater
vehicles (AUVs), which are wildly used for resource exploration, underwater rescue, and
salvage. At present, sonar [1] and lidar [2] are the major approaches used in underwater
object detection. However, both of these technologies have obvious shortcomings. For
example, sonar suffers from low imaging resolution and poor short-range detection ability,
while lidar can only detect the contour information of objects and has difficulties in distin-
guishing objects with a similar shape. With the rapid development of image processing,
vision-based underwater object detection has gradually been a research hot-spot.

One of the primary challenges in vision-based underwater object detection is how
to obtain underwater images with better quality. Because of the color cast and contrast
degradation due to the absorption and scattering of light in water, it is difficult to per-
form high-accuracy underwater object detection for raw underwater images. Therefore,
improving the quality of underwater images has become the first problem to be solved
in underwater object detection. So far, many image enhancement algorithms have been
applied into color restoration and edge enhancement of underwater images, such as
fusion algorithm [3] and dark channel prior algorithm (DCP) [4]. In recent years, the
encoder-decoder architecture convolutional neural network (CNN), U-Net, for instance,
has achieved better performance in underwater images enhancement due to its lightweight
structure and the powerful nonlinear approximation of CNN [5–7]. CNN is also much more
popular than traditional methods in the field of object detection. Various high-accuracy
CNN for object detection have been proposed over past few years. Compared to the stan-
dard CNN models, including YOLOv2 [8], Faster R-CNN [9] and GoogLeNet [10], the CNN
based on depth-wise separable convolution, such as MobileNets [11–13], Xception [14],
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and ResNet [15], are more efficient by significantly reducing computations and parameters
with limited loss in mean average precision (mAP).

An end-to-end underwater object detection CNN network combined U-Net and
MobileNetV3-SSDLite is proposed in this paper. U-Net is used to restore underwater
images to ensure the stable restoration quality under different imaging environment.
MobileNetV3-SSDLite is used as object detection network to reduce the dependence
on the computing ability of the deployment platform. In practical applications, field-
programmable gate array (FPGA) is a popular option for designing AUVs due the con-
veniences of expanding peripheral interfaces and customizing special hardware control
logic. Compared with focusing on balancing the computation parallelism and the memory
bandwidth [16–24], the research focusing on optimizing the implementation of convolution
computation onto FPGA have attracted more attention recently. Converted convolution
into general matrix multiplication (GEMM) could reduce the times of memory access [25].
The fast Fourier transform (FFT) algorithm reduces the computational complexity of con-
volution, especially for the convolution with large filter kernels [26]. Based on the Chinese
remainder theorem, the Winograd algorithm significantly reduces the multiplications re-
quired by 2-D convolution with small filter kernels [27]. Various convolution accelerators
based on the Winograd algorithm have been proposed [28–31]. Moreover, [32,33] proposed
a method of optimizing 2-stride convolution with the Winograd algorithm, which reduces
the design complexity of the Winograd-based CNN accelerator and significantly enhances
the computation efficiency. However, the Winograd algorithm is not the best optimization
scheme for the upsampling in U-Net because of the sparse feature map after expansion.
The processing strategy of the squeeze-and-excitation (SE) module in MobileNetV3 on
Winograd-based convolution accelerator output results also affects the object detection
speed of the proposed network significantly.

The main contributions of this article are as follows:

• An end-to-end CNN network combined U-Net and MobileNetV3-SSDLite for under-
water object detection is proposed. We deployed the network onto NVIDIA Xavier
NX, and conducted experiments of underwater object detection. The experimental
results show the advantage of proposed network in underwater object detection tasks;

• FPGA implementation of 1-stride and 2-stride convolution with 3 × 3 and 5 × 5 filter
was optimized. Those convolutions were all implemented in a single engine to
maximize the reuse of the multiplier in FPGA and improve the data processing
capacity of the accelerator;

• An efficient engine for 2 × 2 upsampling is proposed. It only consumes 4/9 of the
multipliers needed in the Winograd algorithm, and the upsampling speed is also
faster. The FPGA implementation of SE module in MobileNetV3 is optimized by
decomposing the computational procedure. A memory access is presented based on
“ping-pong” operation to improve data reuse.

The rest of the article is organized as follows. Section 2 summarizes related work
and motivation. Section 3 introduces the detail of proposed end-to-end underwater object
detection network and the leading algorithm. The FPGA accelerator design for the pro-
posed network is described in Section 4. Section 5 shows the results of underwater object
detection experiments and the results of FPGA implementation and comparison. Section 6
gives the conclusion and future work.

2. Related Work

Previous studies have proposed many machine learning-based approaches for under-
water object detection and classification. Oliver et al. [34] applied scale-invariant feature
transform (SIFT) to underwater object detection based on the simulated object features.
Pizarro et al. [35] proposed bag of features object recognition system based maximum likeli-
hood classifier (MLC). Burguera et al. [36] and Conzalez-Cid et al. [37] performed underwa-
ter object classification with support vector machine (SVM). However, all these algorithms
are shallow intelligent and too dependent on handcrafted features. With the development
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of deep learning, CNN-based algorithms have shown significant advantages in object
detection tasks. Py et al. [38] and Dai et al. [39] presented their deep neural network (DNN)
for plankton detection, but their models have a too high computational cost since they
build the neural network with large size kernels. To overcome the class-imbalance prob-
lem of training data, Lee et al. [40] employed the transfer learning combined pre-training
CNN and original data fine-tuning. Faster R-CNN was applied in different underwater
object detection tasks [41,42]. VGGNet is used as corals classifier in work [43]. To achieve
real-time object detection on remotely operated vehicle platform, Yao et al. [44] optimized
the basic network of MobileNet-SSD. Sung et al. [45] used YOLO for fish detection and
achieved 16.7 fps object detection speed in GPU. In work [46], YOLOv3 was implemented
on NVIDIA Jetson TX2 and the experimental results showed that it can achieve real-time
object detection. However, the above research does not take any effective approaches to
enhance the quality of underwater images before performing object detection. This results
in the specific imaging environment seriously affecting the accuracy of underwater object
detection and restricting the practical development of underwater robots.

Compared to GPUs, FPGA are a more popular design platform for AUVs due to the
conveniences of expanding peripheral interfaces and customizing special hardware control
logic. For implementing CNNs onto FPGA, most of previous studies focused on improving
the computational parallelism and data reuse. By applying data compression and maxi-
mizing local data reuse to reduce data movement, Eyeriss [17] and Eyeriss v2 [18] achieved
high energy efficiency and improved the utilization of computation resources. Work [47]
improved the computational parallelism by separating the convolution computation and
other data processing such as pooling and full connection. Bai et al. [24] and Wu et al. [22]
proposed specific CNN accelerators for implementing depth-wise separable convolution
onto FPGA. However, these works did not use fast algorithms to reduce the computational
cost of convolution operations. Wang et al. [48] presented corresponding fast convolution
units for computing convolutions in the CNN models based on fast finite impulse response
algorithm (FFA). Nevertheless, this work has weak flexibility to support various convolu-
tions with different strides and kernel sizes. FFT is used in work [26]. Compared to FFT,
Winograd algorithm is more efficient for convolution with small kernel sizes [27]. Podili
et al. [28] optimized the FPGA implementation of VGG16 based on Winograd algorithm
and achieved 142.3 ms overall latency. Kala et al. [29] proposed an accelerator based on
Winograd and GEMM. However, this work did not optimize the 2-stride convolution.
Besides, Winograd F(6, 3) had been used as the fundamental computation unit in this work.
Such large transformation matrices result in complex pre-computation and more latency.
Yang et al. [32] and Yepez and Ko [33] further applied the Winograd algorithm for 2-stride
convolution by decomposing the input feature map titles and kernels.

Different to the above-mentioned object detection research of AUVs, the underwater
images captured by the camera are restored by U-Net before performing object detection in
our FPGA-based underwater robot. Works [4,5] showed that U-Net can achieve excellent
performance in underwater images restoration. Since the state-of-the-art lightweight CNNs
such as MobileNets [11–13] and ResNet [15] greatly relieve the pressure of implementing
real-time object detection on edge computation platform, it is worth considering spend-
ing some extra computational resource to obtain better-quality underwater images for
object detection. For the case of FPGA implementation, even optimizing the convolution
based on Winograd algorithm, 3/4 of the multiplications are wasted when performing
deconvolution-based upsampling in U-Net. Meanwhile, due to the limited on-chip mem-
ory, it needs to access the external memory frequently when implementing the SE module
of MobileNetV3 on FPGA. This will significantly reduce the speed of object detection.
Thus, a novel upsampling engine and a SE engine is presented in this paper. The proposed
underwater object detection CNN network combined U-Net and MobileNetV3-SSDLite is
successfully implemented into the FPGA of our underwater robot, where it can achieve
real-time object detection.



Electronics 2021, 10, 2889 4 of 15

3. Proposed Underwater Object Detection CNN Network and Leading Algorithm

To achieve a high object detection accuracy, it is necessary to restore the images before
performing object detection. U-Net is a considerable option because of its lightweight
architecture and excellent performance of underwater images restoration.

3.1. Proposed End-to-End Underwater Object Detection CNN Network

This paper proposes a CNN network combined U-Net and MobileNetV3-SSDLite. As
shown in Figure 1, the raw underwater images captured by camera in underwater vehicles
are first restored by U-Net, and then the reconstructed image will be fed to MobileNetV3-
SSDLite for detecting object.
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Figure 1. Proposed end-to-end underwater object detection CNN network.

3.1.1. Underwater Images Restoration Based on U-Net

Figure 2 shows the detailed description of U-Net in the proposed network. A 300 × 300
RGB underwater image will gradually be downsampled into a 38 × 38 × 256 vector
through continuous convolutions and downsampling in the encoder part of U-Net. In each
downsampling stage, 1-stride 3 × 3 standard convolution is conducted twice followed
by a rectified linear unit (ReLU) activated function and a 2-stride 2 × 2 max-pooling. In
the decoder part, 2 × 2 upsampling is first conducted of the input feature maps. After
each upsampling operation, output feature maps are concatenated to the corresponding
symmetric layer in the encoder side, and are then followed by two consecutive 3 × 3
standard convolutions and a ReLU activation layer.
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3.1.2. MobileNetV3-SSLite Object Detection Model

The architecture of MobileNetV3-SSDLite is shown in Figure 3. The feature extrac-
tor is the base network of the MobileNetV3-SSDLite, followed by four extra convolu-
tional layers which enable features to be extracted at multiple scales. For MobileNetV3-
Large (M3_Large), C4 represents the expansion layer of the 13-th bottleneck block. For
MobileNetV3-Small (M3_Small), C4 represents the expansion layer of the 9-th bottleneck
block. For all feature extractor, C5 represents the layer immediately before pooling.

3.2. Leading Algorithm

MobileNets [11–13] are the representative lightweight CNN network. By adopting
depth-wise separable convolution instead of standard convolution, MobileNets signifi-
cantly reduce the number of parameters and computation. When implementing the trained
CNN network, using a Winograd algorithm can further reduce the multiplication required
for convolution.
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3.2.1. Depthwise Separable Convolution and the Bneck of MobileNetV3

MobileNets [11–13] construct CNN based on depthwise separable convolution (DSC).
As shown in Figure 4, by decomposing standard convolution (SC) into depthwise con-
volution (DWC) followed by pointwise convolution (PWC), DSC significantly reduces
the parameters and computation of convolution. Considering input feature maps size
W × H × C1 and the kernels size K × K × C1 × C2, compared with SC, the reduction
factors on parameter and computation can be written as:

Fp = Fc =
1

C2
+

1
K2 . (1)
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As the successor of previous versions, MobileNetV3 [13] further simplifies the network
structure and applies SE module into the inverted residual block. The structure of the
bottleneck in MobileNetV3 is shown in Figure 5. SE squeezes the DWC output feature
maps into a 1 × 1 × C vector so-called channel descriptor through global average pooling,
and generates a vector represented by the channel contribution weights of feature maps
after performing two consecutive full-connected layers. The output vector of the SE module
is used to do the channel-wise multiplication with original output feature maps of DWC,
which could make the output feature maps of the bottleneck more high-quality. It is noted
that SE is an optional module in some bottlenecks instead of exiting in all layers.
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3.2.2. Winograd Algorithm

The Winograd algorithm [27], an efficient convolution decomposition model, is widely
used to optimize DWC and SC. In the case of 2-D convolution with the stride of 1, the
Winograd algorithm can reduce the number of convolutional multiplications from m2r2 to
n2. Assuming the input title d sizes n × n, the filter kernel g sizes r × r and the output
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title Y sizes m × m, where m = n – r + 1. Using Winograd algorithm F(m × m, r × r), the
convolution can be formulated as:

Y = AT[(GgGT)·(BTdB)]A, (2)

where, symbol “·” represents element-wise matrix multiplication. It is noted that the
transformation matrices A, B and G in F(m × m, r × r) are the same as F(m, r).

However, the original Winograd algorithm is not suitable to accelerate the convolution
layers with non-1 stride. Refs. [32,33] proposed a strategy of decomposing 2-D 2-stride
convolution, that is, decomposing and recombining the input feature title and convolution
kernel according to the location of elements. Then, each decomposed feature sub-titles
only do convolution with the corresponding decomposed sub-kernel. All the convolution
results of those sub-titles are added up finally. As shown in Figure 6, 2-stride convolution
with 3 × 3 filter can be implemented by accumulating the result of one F(2 × 2, 2 × 2),
four F(2, 2) and one element-wise convolution with 4 × 4 input title; 2-stride convolution
with 5 × 5 filter can be implemented by accumulating the result of one F(2 × 2, 3 × 3), one
F(2 × 2, 3 × 2), one F(2 × 2, 2 × 3) and one F(2 × 2, 2 × 2). It is noted that F(2 × 2, 3 × 2)
can be implemented by considering the matrices of F(2, 3) as AT, G and BT, and considering
the matrices of F(2,2) as GT, B and A; F(2 × 2, 2 × 3) can be implemented by considering
the matrices of F(2, 2) as AT, G and BT, and considering the matrices of F(2, 3) as GT, B and
A. The transformation matrices of F(2, 2), F(2, 3) and F(2, 5) can be respectively written
as Equations (3)–(5):

BT =

 1 0 −1
0 1 1
0 −1 1

 G =

 1 0
1/2 1/2
1/2 −1/2

 AT =

[
1 1 1
0 1 −1

]
, (3)

BT =


1 0 −1 0
0 1 1 0
0 −1 1 0
0 0 0 1

 G =


1 0 0

1/2 1/2 1/2
1/2 −1/2 1/2

0 0 1

 AT =

[
1 1 1 0
0 1 −1 −1

]
, . (4)

AT =

[
1 1 1 1 1 0
0 1 −1 2 −2 1

]

BT =



4 0 −5 0 1 0
0 −4 −4 1 1 0
0 4 −4 −1 1 0
0 −2 −1 2 1 0
0 2 −1 −2 1 0
0 4 0 −5 0 1

 G =



1/4 0 0 0 0
−1/6 −1/6 −1/6 −1/6 −1/6
−1/6 1/6 −1/6 1/6 −1/6
1/24 1/12 1/6 1/3 2/3
1/24 −1/12 1/6 −1/3 2/3

0 0 0 0 1


(5)
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4. FPGA Accelerator Design for Proposed Network

In this paper, some computational engines including Winograd-based convolution
engine, 2 × 2 upsampling engine, and SE engine are proposed to improve computational
parallelism. A customized memory access strategy is designed to balance the parallelism
and memory bandwidth.

4.1. Hardware Architecture Overview

The accelerator consists of three functional modules: computing controller, on-chip
memory control logic, and computing engines. The processing system (PS) activates the
accelerator via AXI4-Lite, and then the Computation Controller will generate a series of
instructions. According to the instructions, the im_reader in the on-chip memory control
logic loads features maps titles, convolution kernel, and bias from external memory DDR
to on-chip memory BRAM, and dispatches the data to the specified computing engine.
Winograd Convolution Engine is the computing engine of DWC and SC in the proposed
network. The 2 × 2 Upsampling Engine, SE Engine, and PWC Engine are used to calculate
2 × 2 Upsampling of U-Net, SE module of MobileNetV3 and PWC, respectively, and
multiplier and adder resources can be shared between the engines. Max-pooling Engine is
used to calculate max-pooling operation in U-Net. The computation results are written
back into on-chip memory and are saved back to external memory by im_writer. Figure 7
gives an overview of the proposed FPGA accelerator.
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4.2. Winograd Convolution Engine

Winograd convolution engine shown in Figure 8, is used to compute 3 × 3 SC in U-Net
and 1-stride and 2-stride 3 × 3, 5 × 5 DWC in MobileNetV3-SSDLite. F(m × m, r × r),
which is described in Equation (2), can be divided into four independent parts. Wherein,
PE1 is used to transform the input feature map titles d into BTdB, and convolution kernel g
is transformed GgGT into by PE2. Results of PE1 and PE2 are conducted hadamard product
in DSP array, and hadamard product results z are transformed into ATzA by PE3. All PEs
in the Winograd convolution engine are designed with 2-cycle pipeline. Specifically, all PEs
perform pre-multiply of the transformation in the first cycle and post-multiply in the second
cycle. Since transformation matrix AT, G and BT are known constant matrices, the matmul
product of Winograd transformation in all PEs can be implemented by shifter and adder
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by doing an approximation (such as 1/6 ≈ 1/8 + 1/32). For a different convolution, PEs
will dispatch the input feature map titles and kernels to the corresponding transformation
module through DEMUX according to the instruction. In this paper, one Winograd engine
contains 150 DSPs with the mode of A × B. The output results of different rows of the
Winograd convolution engine are first stored in different FIFOs by im_writer, and are then
written back to the external memory to ensure that the output feature maps could correctly
store in the continuous space.
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For the case of DWC calculation followed by ReLU nonlinear activation, batch nor-
malization, or 2 × 2 downsampling, the accelerator would spend 3 to 6 cycles to process
the output results of the Winograd convolution engine before storing these results in FIFO.
Because the mean value and variance obtained during the training proposed network
are constant when applied to object detection task, batch normalization can easily be
implemented by the shifter and adder in a single cycle.

4.3. 2 × 2 Upsampling Engine

Upsampling in the U-Net is implemented by deconvolution. That is, a 22 upsampling
needs to expand and pad feature maps with 0-value elements to double the spatial size of
the input first, then perform 2 × 2 convolution with the stride of 1. However, due to the
large number of inserted 0-value element, 5/9 of multiplications are wasted while applying
Winograd 2 × 2 convolution to expanded feature maps.

An efficient upsampling engine shown in Figure 9 is presented in this paper. Since
only the middle element of all input feature map titles of F(2 × 2,2 × 2) is the non-0 element,
the upsampling can be converted to accumulate the results of element convolution of input
feature map titles and transformed kernel, as described in Figure 9. Each upsampling
engine contains 16 DSPs with the mode of A × B, channel-wise accumulator, and a post-
process module. To obtain the correct output feature maps, the post-process module is used
to control the order of storing the accumulator output results into on-chip memory. The
DSPs and adders in the accumulators of upsampling engines can be reused to implement
SE Engine and PWC Engine. In the decoder part of U-Net, results of the last SC in each stage
are sent to Winograd Convolution Engine to calculate 3 × 3 SC of the next stage after 2 × 2
upsampling instead of writing back to the external memory. 0 0 0

0 dk 0
0 0 0

 ∗
[

w11 w12
w21 w22

]
= dk ∗

[
w22 w21
w12 w11

]
=

[
dkw22 dkw21
dkw12 dkw11

]
. (6)
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4.4. SE Engine

The SE module is applied into the bottleneck of the partial layers of MobileNetV3. By
reusing the multipliers and adders in 2 × 2 Upsampling Engine, the FPGA implementation
of Global Average Pooling and the first full-connected (FC) layer in SE are optimized in this
paper. The details are shown in Figure 10.
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(1) Global Average Pooling: One Winograd Convolution Engine generates an output feature
map title, which sizes 2 × 2 × C/r (the value of C/r depended on the specific channel-wise
parallel process strategy in different layers). The output title needs to be copied before
being written back to the external memory. The copied data conducted channel-wise
accumulation until the C/r channels feature maps had been processed, and the results are
stored on the on-chip memory. Then, the accumulation results of the C/r channels feature
maps is multiplied by a constant 1/HW to obtain the global pooling result.

(2) PWC + ReLU: The first FC layer in SE is implemented by PWC and ReLU. Instead
of waiting until all the input feature maps had been pooled, the PWC of the first FC is
performed when the global average pooling results of C/r channels input feature maps
are obtained. The 1 × 1 × C/r channel description vector and corresponding kernel
elements are sent into PWC Engine, then PWC results are assigned to the accumulator to be
accumulated with the PWC results of the previous 1 × 1 × C/r channel description vector.
ReLU nonlinear activation is performed after obtaining the PWC results of C channels
input feature map.
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The SE output a 1 × 1 × C vector (hereinafter referred as v) after two consecutive FC
layers. v needs to be conducted in channel-wise multiplication with output feature maps
of DWC in bneck of MobileNetV3, but the output feature maps are stored in the external
memory when v is obtained. Therefore, the following strategy is adopted in this paper: v is
saved on the on-chip memory, and the feature maps titles read from the external memory
need to be multiplied with the corresponding elements in v before conducting the PWC
of bneck.

4.5. Memory Access

Since the computation engine could not work until all the needed data contained
feature maps titles and corresponding filter weights, the memory access delay has played
a pivotal role in the optimization of the FPGA accelerator. To reduce the latency caused
by data transfer among on-chip and external memory, we overlap data transfer and data
computation. To be specific, im_reader in Figure 7 employs two groups of FIFOs to load
the data. The second group memory receives the data while the computation modules
fetch the data in the first group memory to compute, and next time the first group memory
receive data while the computation modules fetch the data in the second group memory. A
similar way is used to write back the computation results.

5. Experiments and Results Analysis
5.1. Experimental Setup

The proposed underwater object detection CNN network is implemented on NVIDIA
Jetson Xavier NX and FPGA. Xavier NX contains 384-cores NVIDIA Volta GPU and
48 Tensor Cores. The FPGA is a Zynq XC7Z045 platform, which consists of a Kintex-
7 FPGA and dual ARM Cortex-A9 processor. One GB DDR3 SDRAM integrated in the PS
side is used as the external memory and 16-bit quantization strategy is chosen. The FPGA
accelerator runs at a frequency of 150 MHz while the ARM processor runs at 800 MHz.
Moreover, the bounding box predictors of MobileNetV3-SSDLite are implemented on PS
side to overlap it with other computation on PL side, which is illustrated in Figure 11.
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The testing image data set is PASCAL VOC dataset, which consists of 3375 images
collected from the underwater image open dataset Real-world Underwater Image En-
hancement (RUIE) Dataset provided by Dalian University of Technology [49], including
1715 near-field green images and 1660 far-field blue-green images.

5.2. Underwater Object Detection Accuracy

As shown in Table 1, we collect the mAP of the proposed network using an IoU
threshold from 0.5 to 0.75 with an interval of 0.05. In this paper, mAP@T is used to indicate
the mAP calculated with IoU threshold T, and mmAP is used to indicate mAP averaged
over all IoU values we collected. It can be found that no matter whether M3_Large
or M3_Small is used as the feature extractor of MobileNetV3-SSDLite, the mAP of the
underwater object detection with restored images is higher than that with the original
underwater images under a different IoU threshold. As illustrated in Figure 12, with the
increase of the IoU threshold, the mAP improvement of object detection between restored
underwater images and original underwater images is a growing tendency. This shows that
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it is necessary to apply the U-Net to pre-process the underwater images in high-precision
demand object detection.

Table 1. Object detection results on different IoU threshold based on PASCAL VOC dataset.

mmAP (%) mAP (%)
@0.5

mAP (%)
@0.55

mAP (%)
@0.6

mAP (%)
@0.65

mAP (%)
@0.7

M3_Large-SSDLite 56.82 65.3 61.9 57.4 52.3 46.0
U-Net + M3_Large-SSDLite 63.34 71.6 68.4 64.3 59.4 53.4

M3_Small-SSDLite 46.67 55.4 51.8 47.6 42.3 36.2
U-Net + M3_Small-SSDLite 53.66 62.1 58.8 54.6 49.5 43.3
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5.3. Performance Comparison

There is other rare yet similar research to this paper that focuses on implementing
a CNN network combined with U-Net and MobileNetV3-SSDLite on FPGA. To compare
the performance of our FPGA design and other platforms, we implemented the proposed
network among Xavier NX and Intel i7-8700 16 GB RAM CPU based on a PyTorch frame-
work [50]. CUDA and cuDNN are used for optimizing the GPU solution of Xavier NX. To
make a fair comparison, we implemented the proposed CNN network with 32-bit float
point precision and 16-bit float point precision, respectively, on Xavier NX and CPU. Table 2
shows the power consumption and performance of different platforms. Note that the Zynq
XC7Z045 is a product from 2021 and Xavier NX is from 2019. The generation difference
in production technology inevitably puts XC7Z045 at a disadvantage in performance
comparison. Using more recent FPGA should result in better object detection performance.

Our proposed FPGA design achieves 23.68 fps, which is considered to be sufficient in
many of the real-life underwater object detection demands of AUV. For the case of 16-bit
float point precision, compared to CPU, the FPGA accelerator achieves a higher object
detection speed (more than 7.5×) and a better energy efficiency (more than 52×) regardless
of whether it uses M3_Large or M3_Small as the feature extractor. For a comparison with
Xavier NX, our accelerator achieves about 0.64× energy efficiency and the object detection
speed of our design is nearly 0.43× that of Xavier NX.

5.4. Design Complexity Comparison

It is hard to quantify the design complexity of the proposed underwater object de-
tection CNN network on a different platform. There is no doubt that because of cuDNN
and CUDA provided by NVIDIA, which enable users to accelerate CNN with GPU conve-
niently, Xavier NX has a significant advantage due to design complexity for many special
applications such as implementing the CNNs model. However, although implementing
and debugging algorithms onto FPGA is cumbersome, FPGA-based schemes are more
efficient and offer low-complexity in many ways when it comes to designing a whole
hardware system instead of only one object detection task for AUVs.
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Table 2. Performance comparison of the CPU, GPU, and FPGA platform.

CPU GPU Our Work

Platform Intel i7-8700 Xavier NX Zynq XC7Z045

Compiler GCC 7.3.0 CUDA 10.2
cuDNN 8.0 Vivado 2019.2

Frequency 3.2 GHz 1.2 GHz 150 MHz
Power (W) 65 1 13.8 9.34
Technology 14 nm 12 nm 28 nm

Feature Extractor
Model M3_Large M3_Small M3_Large M3_Small M3_Large M3_Small

Precision 32-bit
float

16-bit
float

32-bit
float

16-bit
float

32-bit
float

16-bit
float

32-bit
float

16-bit
float

16-bit
fixed

16-bit
fixed

Speed (fps) 1.47 2.71 2.32 4.39 28.1 54.8 40.22 79.01 23.68 33.14
Energy Efficiency

(fps/W) 0.023 0.042 0.036 0.068 2.036 3.971 2.914 5.725 2.535 3.548

1 The power of CPU is referenced from thermal design power (TDP) of its specification [51].

5.5. FPGA Implementation Results

Table 3 shows the resource utilization of our accelerator on Zynq XC7Z045 clocked at
150 MHz. Although the Winograd algorithm reduces the cost of DSPs per convolution, we
used 89.1% of the DSPs on FPGA to achieve high throughput, which enables the accelerator
to acquire a higher giga operations per second (GOPS). Correspondingly, 166 K LUTs are
used in our design and most of them are used to implement the Winograd transformation
mentioned in Section 4.2. A total of 81.8% of the available BRAM is used to store the
input/output data and data reuse.

Table 3. FPGA resource utilization.

LUT DSP BRAM FF

Available 218,600 900 545 437,200
Used 166,403 801 446 159,141

Utilization 76.1% 89.1% 81.8% 36.4%

6. Conclusions and Future Work

This paper proposed a CNN network combined U-Net and MobileNetV3-SSDLite to
achieve high performance underwater object detection. The proposed network improves
the underwater object detection mAP under a multiple IoU threshold. To implement
the proposed network on our FPGA-based underwater robot, we optimize the FPGA
implementation of various convolution in the network, and propose an efficient upsam-
pling PE. Moreover, the FPGA implementation of the squeeze-and-excitation module in
MobileNetV3 is optimized in this paper.

The accelerator is implemented on the Xilinx Zynq XC7Z045 FPGA and runs at a clock
frequency of 150 MHz. When using M3_Large as the feature extractor, the average process-
ing speed of our accelerator is approximately 24 fps, which achieves 8.7× speedup and
60.4× energy efficiency compared to CPU and achieves 0.43× speedup but 0.64× energy
efficiency compared to GPU. For the case of using M3_Small as the feature extractor, the
object detection speed is about 33 fps, which achieves 7.5× speedup and 52.2× energy
efficiency compared to CPU and achieves 0.42× speedup but 0.61× energy efficiency
compared to GPU. Although there is a performance disparity in regards to processing
speed and energy efficiency between our accelerator and advanced GPU, our accelerator is
sufficient in the requirement of many FPGA-based customized underwater vehicles.

For future work, we plan to explore 12-bit and 10-bit quantization strategy into FPGA
implementation. Besides, since nonlinear activation will result in sparse output feature
maps, it is a large possibility on an implementation level to optimize convolution.
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