
electronics

Article

Multi-Layer Hybrid Fuzzy Classification Based on SVM and
Improved PSO for Speech Emotion Recognition

Shihan Huang 1, Hua Dang 1, Rongkun Jiang 1,2,3 , Yue Hao 1, Chengbo Xue 1,2 and Wei Gu 4,*

����������
�������

Citation: Huang, S.; Dang, H.; Jiang,

R.; Hao, Y.; Xue, C.; Gu, W.

Multi-Layer Hybrid Fuzzy

Classification Based on SVM and

Improved PSO for Speech Emotion

Recognition. Electronics 2021, 10, 2891.

https://doi.org/10.3390/

electronics10232891

Academic Editor: Ahmad Taher Azar

Received: 12 October 2021

Accepted: 20 November 2021

Published: 23 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Integrated Circuits and Electronics, Beijing Institute of Technology (BIT), Beijing 100081, China;
huangshihan@bit.edu.cn (S.H.); hua_dang@163.com (H.D.); jiangrongkun@bit.edu.cn (R.J.);
hy@bit.edu.cn (Y.H.); xue_chengbo@163.com (C.X.)

2 BIT Chongqing Innovation Center, Chongqing 401120, China
3 BIT Chongqing Center for Microelectronics and Microsystems, Chongqing 401332, China
4 School of Information and Electronics, Beijing Institute of Technology (BIT), Beijing 100081, China
* Correspondence: bitguwei@163.com

Abstract: Speech Emotion Recognition (SER) plays a significant role in the field of Human–Computer
Interaction (HCI) with a wide range of applications. However, there are still some issues in practical
application. One of the issues is the difference between emotional expression amongst various
individuals, and another is that some indistinguishable emotions may reduce the stability of the SER
system. In this paper, we propose a multi-layer hybrid fuzzy support vector machine (MLHF-SVM)
model, which includes three layers: feature extraction layer, pre-classification layer, and classification
layer. The MLHF-SVM model solves the above-mentioned issues by fuzzy c-means (FCM) based on
identification information of human and multi-layer SVM classifiers, respectively. In addition, to
overcome the weakness that FCM tends to fall into local minima, an improved natural exponential
inertia weight particle swarm optimization (IEPSO) algorithm is proposed and integrated with fuzzy
c-means for optimization. Moreover, in the feature extraction layer, non-personalized features and
personalized features are combined to improve accuracy. In order to verify the effectiveness of the
proposed model, all emotions in three popular datasets are used for simulation. The results show
that this model can effectively improve the success rate of classification and the maximum value of a
single emotion recognition rate is 97.67% on the EmoDB dataset.

Keywords: speech emotion recognition; fuzzy c-means; particle swarm optimization; support vector
machines

1. Introduction

With the gradual enrichment of material life, people’s attention has gradually shifted
from the physical world to the spiritual world [1]. Research on human–computer inter-
action (HCI) for emotion recognition is increasingly becoming a hot topic. In the field
of emotion recognition, it is necessary to develop machines that can understand human
emotions better. In the field of HCI, the computer can recognize emotions through gesture,
audio signals, body poses, facial expression, physiological signals, and neuroimaging
methods, etc. [2,3]. Apart from expressing emotions and communicating, speech is the
most natural and fastest method for speakers to convey emotions by intonation, volume,
and speed compared to others. Speech emotion recognition (SER) is a method of emotion
identification by extracting the emotional state of speakers from their speech signals [4–6].
In recent decades, SER, as the main form of emotional display, has focused on achieving a
more natural interaction between people and machines and has become deeply involved
in a wide bank of real-life applications, such as public safety [7], diagnosis of psychiatric
diseases [8], adjustment of driving behavior from the state of drivers [9], web games,
emergency call centers [10], and so on.

The wide application of SER depends on the rapid development of its technology. With
the extensive expansion of deep learning research [11–16], SER technology has gradually
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been applied beyond the use of basic methods such as hidden Markov model (HMM), the
Gaussian mixture model (GMM), support vector machine (SVM), and k-nearest neighbor
(KNN) [17–20]. Deep learning and its various variants also optimize the system from the
aspects of feature extraction and classifier performance [21–25], which are the forms of
SER model become increasingly diverse. In addition to analyzing only speech signals, the
emotion recognition system based on deep learning also uses the multimodal recognition
method to analyze emotions combined with attributes such as text, facial expression,
gesture, and electrocardiography [26–28]. Meanwhile, researchers have also studied the
SER system on contextual dependencies of speech signals by optimizing recurrent neural
networks (RNN) and long short-term memory (LSTM) networks [29,30]. However, speech
signal is still one of the most relevant attributes of emotion recognition, and SVM is still
widely used in classification models because it provides quite good performance for SER
system with less complexity. Therefore, the importance of the most common method
cannot be ignored.

The aforementioned studies improve recognition accuracy by extracting more ap-
propriate speech emotion features and training better models, but there are two easily
overlooked reasons affecting the recognition accuracy of the SER system. One is that the
low recognition accuracy of one or several emotions will result in a decline of overall
accuracy when the number of emotions is large. It can be observed from existing studies
that the recognition rate of neutral emotion is low, and it is difficult to distinguish fear
and disgust [31,32]. The other is the impact of identification information on emotional
understanding. People of different gender, nationality, and age express the same feelings
in different ways.

In order to solve above problems, this paper proposes an SER model called multi-layer
hybrid fuzzy support vector machine (MLHF-SVM) to improve the overall recognition
rate. This model uses SVM-based integrated classifier to train specific emotions that are
difficult to recognize. The pre-classification layer assisted on enhanced fuzzy c-means
(FCM) is added to classify speech features according to the identification information, and
the classified features will be sent to the corresponding classifier. Moreover, we propose
an improved particle swarm optimization (PSO)-based FCM clustering method called
improved natural exponential inertia weight PSO (IEPSO) to enhance the ability of pre-
classification feature parameters and the overall accuracy of the system. Meanwhile, in
the feature extraction layer, feature parameters incorporate non-personalized features
to ameliorate the universality and adaptability of speech signals. We train and test the
model on three commonly used speech emotion databases, and the ability of the model to
distinguish emotions has been greatly promoted.

The main contributions of this paper are as follows:

• We propose an MLHF-SVM model, which adopts FCM based pre-classification layer
and multi-layer SVM ensemble classifier to increase the recognition accuracy of some
specific emotions and reduce the impact of identification information. This method
effectively increases the overall emotion recognition accuracy of the SER system.

• We present an improved natural exponential inertia weight PSO (IEPSO) to alleviate
the situation that FCM is easy to fall into local minima because of the initial value.
This hybrid method (FCM-IEPSO) is used as the pre-classification layer to enhance
the effect of pre-classification feature parameters.

• We select three databases for comprehensive simulations, compare the recognition
ability of KNN and SVM as the base classifier, and contrast the performance of PSO
aided on other inertial weights. The results show that this model efficiently promotes
the overall performance of the system.

The remainder of this paper is organized as follows. Section 2 discusses the related
studies and tries to reveal the differences and similarities between them. Section 3 briefly
introduces the basic structure of the SER system, including feature extraction, feature pre-
classification, and feature classification. Section 4 elaborates on the proposed model, other
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innovative parts, and their application in this system. Section 5 provides the simulation
results and explanation. Section 6 makes the final conclusion.

2. Related Work

The amount of research on speech emotion recognition has grown with the extensive
applications of SER and accessibility of speech datasets. In order to highlight the research
focus and fully compare and analyze the existing literature, we reviewed the following
related literature. We particularly focus on the research on emotion recognition based on
speech signal rather than multimodality.

In [33], mel-frequency cepstral coefficients (MFCC) and liner predictive cepstral co-
efficients (LPCC) features were extracted from input speech signals as speech feature
parameters, and HMM and SVM were used as classifiers to distinguish emotions according
to characteristic parameters. In addition to extracting spectral features such as MFCC
and LPCC, reference [31] also extracted other acoustic features such as zero crossing rate
(ZCR), energy, and fundamental frequency. The fused features contain more information on
speech emotion, which makes the trained classifier more accurate. They utilized SVM and
Linear Discriminant Analysis (LDA) assisted classifiers to classify speech signal emotions
and tested the model in Berlin Database of Emotional Speech (EmoDB) and RML Emotion
Database (RED). Considering that the use of all the features extracted will increase the total
workload of SER system and that the influence of existing features on the final recognition
rate is not clear, reference [34] refined the existing features by a feature reduction method
after feature extraction, and the model increased the success rate of emotion recognition.
Reference [35] adopted a bagged ensemble classifier comprising SVM in order to classify
reduced features. The results showed that ensemble learning performs more superior than
single estimators. Gradually, the design and implementation of deep learning have been
more and more feasible. The feature parameter extraction and classification of signals in
speech emotion recognition system have relied on deep learning.

In [21], a convolutional neural network (CNN) filter distributed in all spectrum ranges
extracted more concentrated frequency domain features to accurately identify emotions,
and the average accuracy was 66.1%. In order to improve classification accuracy, some
papers optimize the architecture of CNN. Reference [25] modified the pooling strategy of
CNN as a filter to learn depth frequency characteristics. The new lightweight effective
SER model was trained on the extracted speech frequency features, and the recognition
result was 77.01%. Issa et al. [36] extracted MFCC, chromagram, Tonnetz representation,
and spectral contrast features from the speech signals as the input of CNN and used an
incremental method to optimize SER model. One discovery is that the information of
speech emotions is embedded in the long temporal context, and contextual information
can assist in judging emotions [37]. Motivated by GoogleNet, Li et al. [24] proposed an
attention pooling based model for SER, which utilized two groups of filters to obtain the
features with context information in time domain and frequency domain and then fed the
features to CNN for classification. In [23], the combination model of CNN and LSTM was
used to consider the contextual information in the data. They stacked two layers of LSTM
on the top of CNN and conducted end-to-end training. Similarly, Zhao et al. [30] designed a
network composed of CNN and LSTM to learn long-term dependencies from the extracted
features. A 1D CNN LSTM and a 2D CNN LSTM were constructed to learn local and global
features from speech and a log-mel spectrogram, respectively. However, the problem that
has not been considered in the above literature is that the recognition accuracy of single
emotion or some confusing emotions is lower than that of other emotions, which affects
the overall recognition rate.

The recognition accuracy of neural emotion is relatively low, and it is difficult to dis-
tinguish fear and disgust when the SER system recognizes speech emotions [32]. Badshah
et al. [38] presented a deep CNN composed of three convolutional layers and three fully
connected layers to train voice signals. The simulation results showed that the recognition
accuracy of fear was still low. The bottleneck features extracted by DNN were trained
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by SVM to reduce the confusion of emotion recognition in [39]. This method extracted
different bottleneck features for training according to different emotions and effectively
reduced the confusion between emotions and increased the accuracy of fear. Reference [40]
created a hybrid feature vector composed of acoustic features and depth features extracted
from depth network architecture. The hybrid feature vector described speech features more
accurately and could improve the success rate of single emotion classification. In order
to increase the speech emotion recognition accuracy of fear by extracting more accurate
features, K. Zvarevashe and O. Olugbara [41] extracted prosodic features, spectral features,
and others to form a hybrid acoustic feature vector. They verified the effectiveness of the
features in two benchmark datasets and trained the features on the integrated classifier
based on random forest. The review of numerous literature has revealed that there is
little literature on training SER model for increasing the recognition accuracy of a single
emotion, and most of them optimized the model from the perspective of diversification of
characteristic parameters and development of a classification model.

Different from the perspective of the above paper, we add a pre-classification layer
to classify the feature parameters according to the identification information and assist
pre-classification by using the proposed FCM-IEPSO. Then, the integrated classification
is used to train and classify emotions in parallel so as to improve the recognition rate of
each emotion.

3. Materials and Methods
3.1. Emotional Speech Database

Three databases were adopted to improve the universality and reliability of the study,
and all speech samples in the databases were used.

The Berlin Database of Emotional Speech (EmoDB) [42] contains seven emotions,
which are anger, boredom, disgust, fear, happiness, sadness, and neutralness. The speech
samples were recorded in a studio by ten professional German actors (5 actors and 5 ac-
tresses) at a sampling frequency of 16 kHz. The Surrey Audio-Visual Expressed Emotion
(SAVEE) Database [43] records the speech samples of four native English-speaking male
graduate students and researchers from Surrey University, aged from 27 to 31. The database
contains seven emotions: anger, disgust, fear, happiness, neutral, sadness, and surprise.
The eNTERFACE’05 [44] is an audio-visual emotion dataset, which contains 42 subjects
from 14 different nationalities. The distributions and types of databases are shown in
Table 1.

Table 1. Distribution and types of datasets used in this paper (Ang—anger; Bor—boredom;
Dis—disgust; Fea—fear; Hap—happiness; Neu—neutral; Sad—sadness; Sur—surprise).

Database Type
Distribution

Ang Bor Dis Fea Hap Neu Sad Sur

EmoDB Acted 127 81 46 69 71 79 62 -
SAVEE Acted 60 - 60 60 60 120 60 60
eNTERFACE’05 Elicited 126 - 68 196 198 - 182 205

3.2. Basic Methods

Generally, SER is composed of three steps: preprocessing, feature extraction, and clas-
sification. Considering the identification information, this system adds a pre-classification
part before the classification step. This process uses FCM to cluster the database into
multiple subclasses and then feeds each of them into the feature classification module,
respectively. The flow diagram is shown in Figure 1.

In the figure, it is assumed that FCM divides speech signals into two categories
according to gender, male and female, and the classifier divides emotions into seven
categories based on EmoDB. The specific structure of the classifier is shown in Section 4.
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Figure 1. Speech emotion recognition (SER) flow diagram including pre-classification layer.

3.2.1. Feature Extraction

Feature extraction is one of the important aspects in the SER system, and the features
extracted should accurately reflect the emotional information of the speech. Two feature
groups in this paper have been investigated. One is based on fundamental frequency
(F0) value, zero-crossing rate (ZCR), and root-mean-square (RMS) signal frame energy.
The other originates from MFCC. Meanwhile, in order to reduce excessive computation
caused by feature redundancy and to improve the universality of feature parameters, seven
statistical functions of each frame speech signal are calculated in this paper. The statistical
functions obtained are presented in Table 2.

Table 2. Extracted emotional speech features and statistical functions.

Group Features Statistical Functions

Prosodic features

Spectrum features

F0, ZCR, RMS

1–16 MFCC

maximum value
minimum value

mean value
standard deviation

skewness value
kurtosis value
median value

Group 1: F0, ZCR, and RMS energies are the most widely used prosodic features as
features that can be perceived by human beings [45–47]. Compared with common features
such as LPCC and format, taking features in Group 1 as the feature parameters performs
better [48]. F0 reflects the rhythm and intonation of speech in which contour and mean
values will change with different emotion. ZCR shows the situation that adjacent samples
have different algebraic symbols. RMS energy is highly correlated with emotional state.
The energy of high-level arousal emotions (anger, happiness, and surprise) is much higher
than that of low-level arousal emotions (sadness and disgust). In addition to these prosodic
features, this paper also extracts the spectral features based on MFCC.

Group 2 : MFCC is a spectrum feature that can simulate human auditory perception
mechanism, and it extracts parameters through human ear perception of frequency sig-
nals [49]. The features based on MFCC have a higher success rate in the classification than
those based on other spectral feature linear prediction coefficients (LPC). MFCC provides
an envelope that is the real logarithm of the short-term energy spectrum provided. In this
paper, sixteen MFCC coefficients were extracted for classification and recognition.



Electronics 2021, 10, 2891 6 of 20

3.2.2. FCM Based Pre-Classification

Identification information has an important influence on the understanding of emo-
tions. People with different identification information express their emotions in different
ways (i.e., gender, age, and region). Moreover, preliminary classification of speech signal
based on identification information is the purpose of pre-classification.

In training the pre-classification model, input data B all proceed through the feature
extraction of speech signal, where B = {b1, b2, . . . , bN}. bj represents the j-th speech feature
vector, which contains all its features. After clustering, N speech signals are clustered into
C subsets. Let the set of subsets be S = {s1, s2, . . . , sC}, and each subset has a cluster center
si. Each subset contains several speech signals in B for which its characteristics are the most
similar. This clustering process means that the voice signals with the same identification
information are pre-classified into the same subset. In the process of testing, the trained
pre-classification model will detect the clustering center closest to the input feature, and
the corresponding subset of the center is the result of input speech signal pre-classification.
Suppose b2 is a speech feature vector, the pre-classification result of b2 can be expressed as
follows.

b2 ∈ arg min
si∈S

‖b2 − si‖2. (1)

FCM is the most commonly used clustering method that utilizes the concept of weight
to improve the defects of hard clustering [50]. The clustering process of FCM is classified
according to the membership degree of each data. The flow chart of FCM pre-classification
is shown in Figure 2.

Figure 2. Pre-classification flow chart based on FCM.

The following steps briefly describe the pre-classification of FCM. Firstly, C cluster
centers are randomly initialized according to the preset identification information types,
and the membership degree uij from data point bj to the cluster center si is calculated in
order to obtain a fuzzy partition matrix U = [uij]. The value function of FCM is defined as
follows:

J(U, S) = ∑C
i=1 ∑N

j=1 um
ij d2

ij = ∑C
i=1 ∑N

j=1 um
ij ‖bj − si‖2

s.t.
C
∑

i=1
uij = 1 ∀j ∈ 1, 2, . . . , N; ∀i ∈ 1, 2, . . . , C,

0 <
N
∑

j=1
uij < N ∀j ∈ 1, 2, . . . , N; ∀i ∈ 1, 2, . . . , C,

(2)
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where dij is the Euclidean distance between bj and si, and m ∈ [1,+∞) is the fuzzification
parameter that affects the membership degree and adjusts the clustering fuzziness degree.
In the iterative process, the algorithm ends only when |J(t) − J(t−1)| < ε, where ε is the
known sensitivity threshold, and t is the number of iterations. When the termination
condition of the algorithm does not satisfy, the membership matrix uij and clustering center
si are recalculated according to the following formulas, and the iteration continues until
the J value is small enough.

uij =



C
∑

k=1

dij
dkj

, t = 1,

1(
C
∑

k=1

dij
dkj

) 2
m−1

, 1 < t ≤ MG,
(3)

si =

N
∑

j=1
um

ij xj

N
∑

j=1
um

ij

. (4)

After FCM clustering, each subclass is placed into its subclassifier for the following
emotion classification.

The ability of FCM to process high-dimensional data flexibly is very suitable for pre-
classification, that is, to classify characteristic parameters according to prior knowledge
(identification information). Nevertheless, in the initialization step, FCM randomly selects
initial values for iteration, which will affect the final classification results once a bad initial
value is selected.

3.2.3. Classifier

As shown in Figure 1, the sub-feature sets after pre-classification are used to train
corresponding sub-classifiers, respectively, and each sub-classifier trains all features and
emotions at the same time. SVM and KNN are the classifiers used in this paper.

SVMs are supervised classifiers based on the idea of binary classification, which find
the optimal hyperplane for the linearly separable dataset. The method of SVM is to find
the hyperplane that separates the two kinds of data with the largest distance between the
classification edges, and this hyperplane is the support vector plane. It can also be applied
to multiple classification issues. If the dataset is linearly inseparable, the kernel function
is introduced to map the input data to a higher dimensional space for further processing.
The definition of the polynomial kernel function is shown below.

K(xi, xj) = (ax>i xj + c)d. (5)

In the kernel function K(xi, xj), xi and xj are any two vectors in the training sample,
a and c are hyperparameters, and d represents the degree of the polynomial. In speech
emotion recognition, the recognition ability of this technology is relatively strong.

KNN is a basic instance-based supervised learning method, and the distance is cal-
culated by Euclidean distance. Instead of looking at the nearest neighbor category, KNN
takes into account the votes ofk nearest neighbors. Specifically, this method selects k with
the smallest distance between test data and training sample, that is, the closest k sequences,
and endows the classification result category to the class with the highest frequency among
the k sequences.

4. Proposed Multi-Layer Hybrid Fuzzy Support Vector Machine for SER

A multi-layer hybrid fuzzy support vector machine is presented for emotions that are
difficult to classify, and it is optimized in the feature extraction layer and pre-classification
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layer to improve its emotion recognition performance. Under the preset conditions in
Figure 1, the rough flow of this model is shown in Figure 3. In this section, we will introduce
in detail the improved feature extraction layer, pre-classification layer based on proposed
FCM-IEPSO, and the classification layer based on multi-layer SVM.

Figure 3. Architecture of multi-layer hybrid fuzzy support vector machine for SER. (The improved
operation is marked with blue box).

4.1. Improvement of Feature Parameters

In speech emotion recognition systems, the processing of characteristic parameters
usually involves reducing unnecessary parameters or training better parameters However,
the parameters obtained by using these methods are specific to the speech sample and are
only generated according to the manner of individual emotion expression, which is not
representative and universal. In this paper, derivative-based non-individualized features
are added to increase the common ground and regularity of the same category of feature
parameter vectors.

Assume that m-frame data are obtained after a certain speech sample is preprocessed,
and the m-frame data will be extracted through the following steps:

(1) Extract 19 feature parameters (16 MFCC, F0, ZCR, and RMS) for each frame of input
data to obtain 19×m parameters. Then, calculate the statistical data of each feature
according to Table 2 to obtain 19× 7 personalized features;

(2) Calculate the derivative of the input data, and its size is m− 1. Operate Step 1 to
extract the characteristic parameters and corresponding statistical data and obtain
19× 7 non-personalized features;

(3) A combination of non-personalized and personalized statistical features lead to 19× 14
features per sample.

The operation of this process is presented in Figure 4. It is obvious that the extracted
feature is high dimensional, and it can describe the speech signal more accurately. The
following hybrid method based on FCM and IEPSO has a good effect on processing
high-dimensional features.
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Figure 4. The feature extraction process combines personalized features and non-personalized
features (red box represents extraction steps, and white box represents feature number).

4.2. Hybrid Clustering Method Based on FCM and IEPSO

In order to solve the defect that FCM is easy to be affected by initial parameters, which
reduces the accuracy of pre-classification, this subsection proposes a hybrid method called
FCM-IEPSO. An improved natural exponential inertia weight PSO (IEPSO) is presented to
ameliorate the above problem. This method is described in detail below.

4.2.1. Improved Natural Exponential Inertia Weight PSO (IEPSO)

PSO is a population-based optimization algorithm that simulates bird foraging be-
havior [51]. It seeks the optimal solution through cooperation and information sharing
among individuals in the group based on iteration. In each iteration of the algorithm, the
optimal particle is searched by updating the particle velocity and position, and the fitness
of the particle is determined by the fitness function. Updates of particle velocities require
two best positions: personal best position pbest and global best position gbest, where pbest
is the best position visited by the current particle and gbest is the best position visited by
all particles. In addition, the inertia weight ω and the acceleration constant c also affect
particle velocity. Based on statistical theory analysis, inertia weight has a greater effect [52].

In general, larger inertial weights have better global search capabilities, while smaller
inertial weights are more focused on local exploitation. In order to balance exploration
capability and development capability, an improved natural exponential inertia weight
adjustment strategy based on fitness difference before and after iteration is introduced into
PSO, which is IEPSO, and its function is as follows:

ω(t) =


ωmin + (ωmax −ωmin) · e−z· t

MG , t = 1,

ωmin + (ωmax −ωmin) · e−z· t
MG ·e

θ(t)
, 1 < t ≤ MG,

(6)

θ(t) = f (t)− f (t− 1), (7)

where ωmin and ωmax are the minimum and maximum of the inertial weight, and ω(t) is
expressed in the inertia weight value of the tth iteration. z is a parameter representation
for finetuning the inertia weight, taking 20 from experience.

By using this improved inertial weight, the velocity and position of particle p are
updated as follows.

Vp(t + 1) = ωVp(t) + c1R1(pbestp(t)− Xp(t)) + c2R2(gbest(t)− Xp(t)), (8)

Xp(t + 1) = Xp(t) + Vp(t + 1). (9)

In the above formula, c1 and c2 are acceleration factors; R1 and R2 are the random
numbers in the range [0, 1] and are independent of each other.

4.2.2. FCM-IEPSO Strategy

FCM always has the disadvantage of being seriously affected by the initial value,
which will cause the result to fall into the local minimum value. In this paper, a hybrid
fuzzy algorithm combining FCM and IEPSO is proposed, which uses the searching ability
of particle swarm to find the appropriate initial value for FCM and avoids falling into the
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local optimum. The results indicate that this method optimizes the fitness of FCM and
reduces convergence time. The pseudo code of this process is described in Algorithm 1.

As shown, the algorithm consists of two stages, including particle search and cluster-
ing. In the first stage, the objective function of FCM updates the position of the particle as
the fitness function: fp = Jmin. Then, the appropriate particles are fed to the next step as
initial values, and the optimal clustering centers are obtained by iteration. According to
the membership degree, the initial dataset is grouped into class C.

Algorithm 1 FCM-IEPSO Algorithm

Input: The extracted feature parameter set B and the number of clusters C
Output: clustering results {S1, . . . , SC} and minimum fitness value Jmin
1: Initialize parameters: MG, c1, c2, ωmin, ωmax and number of particles P for IEPSO; m, ε

and maximum number of iterations Tmax for FCM;
2: Calculate the particle position range [Xmin, Xmax];
3: Initialize each particle (p = 1, 2, 3, . . . , P) position Xp, velocity Vp, pbest and pbest;
4: while (t ≤ MG) do
5: Calculate fitness function f , which is FCM objective function J by (2);
6: Update ω , Vp and Xp by (6)–(9);
7: Update particle position boundary;
8: Update pbestp using fitness function;
9: Store gbest after traversing all p;

10: t = t + 1;
11: end while
12: Obtain particle p∗ as the initialization one for the next iteration;
13: Calculate the membership degree matrix u and initial cluster centers s(p∗) by (3)

and (4);
14: while (t ≤ Tmax) do
15: Calculate the objective function J(t) by (2);
16: if [(t > 1) ∩ (J(t)− J(t− 1) < ε)] then
17: break
18: else
19: t = t + 1;
20: end if
21: Calculate u and s, respectively;
22: end while
23: The dataset B is divided into C parts by the final cluster centers and membership

matrix;
24: Output clustering results {S1, . . . , SC} and Jmin.

4.3. Multi-Layer Hybrid Fuzzy SVM

For the situation where certain emotions are difficult to classify, this paper presents
a multi-layer SVM algorithm to increase the recognition accuracy of poorly behaved
emotions. The algorithm uses prior information to divide the classification difficulty of
each emotion El(l = 1, 2, . . . , L) and trains classifiers containing different categories. Each
classifier cl fm(m = 1, 2, . . . , M) distinguishes at least two classes. It should be noted that
the class that is the most difficult to separate needs to be trained first. The priority of
classifier training is determined by the difficulty of emotion classification, and its priority
also determines the order of test data entering the sub-classifiers. In order to reflect the
actual structure of multi-layer classifiers, EmoDB database containing seven emotions is
taken as an example. Neutralness and fear, as emotions that are difficult to distinguish, are
trained with a separate classifier, while other emotions are trained with another classifier.
Since anger and happiness are easiest to distinguish, the classifier trained on them is the
lowest level. In order to display the emotion classification of all subclassifiers, the specific
structure of multi-layer classifiers based on EmoDB is shown in Figure 5.
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Figure 5. The structure of multi-layer support vector machine for hard separated emotions. (The
categories of emotions are marked in red and the subclassifiers are in blue box).

In this system, SVM is selected as the base classifier of multi-layer classifier model.
Combined with above improved methods, the entire process of multi-layer hybrid fuzzy
SVM (MLHF-SVM) is shown as follows:

(1) The training data from the EmoDB database are preprocessed, and then 19 × 14
characteristic parameters from each sample are extracted by using the combined
method of non-personalization and personalization;

(2) Characteristic parameters are clustered into C subclasses using FCM-IEPSO, and
the number of particles is defined as particle number × the dimension of feature
parameter;

(3) Train each subdata using multi-layer SVM, and each sub-classifier trains different
data;

(4) Verify the trained model with test data, and integrate the results of the sub-classifiers.
The final classification results are obtained by a 5-fold cross-validation method.

5. Simulations and Results
5.1. Data and Environment Setting

In order to validate the proposed MLHF-SVM model, we have carried out extensive
simulations and specific analyses. All the speech samples in these three datasets have
been used for simulations. For the purpose of realizing the model independent of speaker
and environment, personalized features and non-personalized features of speech were
extracted respectively. Sixteen MFCC, F0, ZCR, and RMS features were extracted as feature
parameters of each speech, and seven statistical features were calculated with a total
quantity of 19 ∗ 14. Since the gender labels of the three databases were known, we chose
gender as a prior information for pre-classification. According to prior knowledge, people
of different genders have different methods of expressing emotions. Thus, in the pre-
classification stage, the data generated by the feature extraction layer were clustered into
two subsets by FCM-IEPSO according to gender, that is, C = 2. Each subclass was divided
into data for training and testing. According to the benchmark database, neutral and fear
emotions are often confusing and have low recognition rates. As a result, in the training
stage, the classifier of neutral and fear emotions sets and the other five emotions sets were
trained first. Then, neutral and fear emotions were trained separately, and the remaining
emotions were trained simultaneously. SVM and KNN were used as base classifiers to
observe the influence of base classifiers on the results.

In order to verify the validity of the proposed model, k-fold cross-validation was used
for training and testing all data. Considering the amount of data, the cyclic variable k is set
to 5, and the final result is the average value of five cycles. All simulations are implemented
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in MATLAB R2018a and run on a Windows 10 operative system with 64-bit support using
an Intel Core i5 CPU at 2.30 GHz and 7.85 GB of RAM.

5.2. Impact of FCM-IEPSO Based Pre-Classification Layer

In order to analyze the effect of the proposed pre-classification layer, in this subsection,
we evaluate the impact of the proposed IEPSO on FCM and the impact of the new pre-
classification layer on the overall system recognition accuracy. We test the combination of
four types of PSO with FCM: the original PSO, the proposed IEPSO, and two inertia weight
variants of PSO. The first variation of the inertia weight, linearly decreasing inertia weight
PSO (LPSO) [53], adopts the strategy of monotonically decreasing inertia weight with the
number of iterations. The second is natural exponential inertia weight PSO (EPSO) [54],
which combines the idea of diminishing inertia weight with a natural exponent to improve
convergence speed. The inertia weight is the only variable. When setting parameters, all
other parameters except inertia weight are set to the same. Parameter settings are shown in
Table 3.

Table 3. Parameter settings of PSO and its variants.

Parameter Value

Popsize 100
Acceleration factors (c1, c2) 1.49445
The maximum of inertial weight (wmax) 0.9
The minimum of inertial weight (wmin) 0.4
Sensitivity threshold (ε) 10−5

Fuzzification parameter (m) 2

Tables 4 and 5 compare the J value [55] calculated from formula (2) and operation
time of different clustering algorithms, respectively, on three databases. We compare the
system using FCM-PSO, FCM-LPSO, FCM-EPSO, and the proposed FCM-IEPSO method
as pre-classification. The smaller the J value, the better the clustering effect, and the higher
the fitness of the algorithm. In order to intuitively observe the results and ensure the
randomness of calculation, the average value of the results of 50 runs is calculated, and the
best and worst values are selected as auxiliary values. The best values calculated by the
different algorithms are highlighted in bold.

Table 4. J value of pre-classification algorithm on three databases. (The best results are highlighted
in bold).

Algorithm
EmoDB SAVEE eNTERFACE’05

Ave Best Worst Ave Best Worst Ave Best Worst

FCM-PSO 4656.6 4160.3 4789.9 3546.9 3278.3 3741.6 6231.2 5956.6 6435.2
FCM-LPSO 4236.8 3979.5 4336.9 3215.4 3035.7 3541.5 5796.6 5564.1 6156.3
FCM-EPSO 4196.7 4319.4 4264.5 3054.6 2978.5 3255.6 5642.6 5314.0 5956.3
FCM-IEPSO 4127.1 3959.1 4319.4 2960.9 2890.6 3221.5 5456.8 5134.2 6054.1

Table 5. Running time of pre-classification algorithm on three databases.

Algorithm
EmoDB SAVEE eNTERFACE’05

Ave(s) Best(s) Worst(s) Ave(s) Best(s) Worst(s) Ave(s) Best(s) Worst(s)

FCM-PSO 46.68 43.63 47.65 35.64 33.45 37.75 88.61 82.34 90.53
FCM-LPSO 57.17 53.70 58.20 50.03 43.12 53.68 92.68 87.35 94.02
FCM-EPSO 49.88 46.94 52.67 37.98 36.19 42.89 90.32 86.94 92.48
FCM-IEPSO 48.99 47.33 51.12 36.35 33.93 40.68 90.15 85.16 91.44
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It can be observed from Table 4 that the J value and running time are affected by
different databases and pre-classification algorithms. However, on average, the FCM-
IEPSO method in this paper obtains the smallest J value, and its running time is relatively
short in three different datasets. In terms of operation time, the FCM-IEPSO algorithm
performs better on SAVEE, which takes only 0.71 seconds more than the original PSO.

In order to verify the impact of pre-classification layer based on different algorithms on
SER system, we evaluate accuracy, F-score, average recall, average precision, and average
specificity based on three datasets, as shown in Tables 6–8. In addition to the algorithms
covered in Tables 4 and 5, we also compared the system without a pre-classification layer to
analyze the impact of this layer. For more comparable results, Tables 6–8 also demonstrate
the performance of the pre-classification model from [56].

Table 6. Classification test for different pre-classification algorithm on EmoDB.

Algorithm
Index

Accuracy (%) F-Score Ave Recall Ave Precision Ave Specificity

NONE 77.60 0.77 0.77 0.77 0.95
FCM [56] 84.30 0.84 0.84 0.85 0.87
FCM-LPSO 83.27 0.81 0.81 0.84 0.87
FCM-EPSO 86.36 0.85 0.85 0.87 0.89
FCM-IEPSO 90.00 0.90 0.90 0.90 0.91

Table 7. Classification test for different pre-classification algorithm on SAVEE.

Algorithm
Index

Accuracy (%) F-Score Ave Recall Ave Precision Ave Specificity

NONE 65.40 0.66 0.66 0.65 0.67
FCM [56] 73.85 0.74 0.73 0.74 0.75
FCM-LPSO 74.54 0.74 0.74 0.75 0.77
FCM-EPSO 78.39 0.78 0.79 0.78 0.80
FCM-IEPSO 80.66 0.81 0.82 0.81 0.84

Table 8. Classification test for different pre-classification algorithm on eNTERFACE’05.

Algorithm
Index

Accuracy (%) F-Score Ave Recall Ave Precision Ave Specificity

NONE 58.65 0.59 0.59 0.60 0.62
FCM [56] 64.30 0.64 0.65 0.65 0.67
FCM-LPSO 63.65 0.64 0.64 0.65 0.67
FCM-EPSO 70.96 0.70 0.70 0.70 0.75
FCM-IEPSO 72.47 0.72 0.73 0.72 0.78

Obviously, the accuracy of the system without pre-classification is much lower than
that of the system with pre-classification. Compared with the model from [56], our model
increases 5.70%, 6.81%, and 8.17%, respectively, on EmoDB, SAVEE, and eNTERFACE’05.
The results of FCM derived from LPSO are slightly worse on EmoDB and eNTERFACE’05
and slightly better on SAVEE than that of [56]. Although FCM-LPSO has little impact on
system performance, proposed FCM-IEPSO still performs well.

5.3. Impact of the Proposed Multi-Layer SVM

The purpose of this subsection is to observe the impact of the proposed multi-layer
SVM on the recognition accuracy of individual emotions and the overall recognition rate of
the system.

The pre-classification method in this subsection uses the proposed FCM-IEPSO.
Figures 6–8 show the confusion matrix of each emotion using multi-layer SVM and SVM [57]
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as classifier, respectively. Among the seven emotions on EmoDB, six emotion accuracies
increase, and one emotion accuracy (sadness) decreases in Figure 6. The success rates of
anger, boredom, disgust, fear, happiness, and neutralness increased by 0.07, 0.01, 0.06,
0.09, 0.01, and 0.11. The recognition accuracies of all seven emotions on SAVEE increased
in Figure 7. The values 0.03, 0.04, 0.06, 0.01, 0.04, 0.03, and 0.05 are increased emotion
recognition accuracies of anger, disgust, fear, happiness, neutral, sadness, and surprise.
Among the six emotions on eNTERFACE’05, the recognition accuracies of five emotions
increased, and happiness decreases by 1% in Figure 8. The success rates of anger, disgust,
fear, sadness, and surprise increased by 0.07, 0.14, 0.07, 0.05, and 0.04. Moreover, the use of
multi-layer SVM greatly reduces the recognition confusion of fear and neutral and improve
their success rate, respectively. In EmoDB, the success rate of fear increased from 0.77 to
0.86 and that of disgust with multi-layer SVM reached 0.98.

Ang Bor Dis Fea Hap Neu Sad

Ang

Bor

Dis

Fea

Hap

Neu

Sad

0.85

0.00

0.01

0.03

0.12

0.00

0.00

0.02

0.90

0.02

0.00

0.00

0.03

0.03

0.00

0.03

0.92

0.00

0.03

0.03

0.00

0.12

0.00

0.05

0.77

0.05

0.05

0.00

0.11

0.00

0.03

0.03

0.83

0.00

0.00

0.03

0.12

0.04

0.02

0.00

0.78

0.01

0.00

0.00

0.01

0.06

0.00

0.00

0.93

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)
Ang Bor Dis Fea Hap Neu Sad

Ang

Bor

Dis

Fea

Hap

Neu

Sad

0.92

0.00

0.00

0.00

0.08

0.00

0.00

0.01

0.91

0.00

0.01

0.00

0.06

0.00

0.00

0.02

0.98

0.00

0.00

0.00

0.00

0.03

0.00

0.00

0.86

0.06

0.02

0.03

0.08

0.00

0.03

0.05

0.84

0.00

0.00

0.01

0.07

0.01

0.01

0.00

0.89

0.00

0.00

0.03

0.01

0.06

0.00

0.00

0.90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 6. Confusion matrix with support vector machine (SVM) as classifier on EmoDB. (a) SVM [57],
(b) multi-layer SVM.
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Figure 7. Confusion matrix with support vector machine (SVM) as classifier on SAVEE. (a) SVM [57],
(b) multi-layer SVM.
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Figure 8. Confusion matrix with support vector machine (SVM) as classifier on eNTERFACE’05.
(a) SVM [57], (b) multi-layer SVM.

Table 9 compares the impact of using SVM classifier [57] and our proposed multi-layer
SVM classifier on overall performance. It can be observed that the accuracies based on
EmoDB, SAVEE, and eNTERFACE’05 improved by 4.67%, 3.73%, and 6.04%. Moreover, the
classification model has obtained good average specificity on three databases, which are
0.91, 0.84, and 0.78, respectively. Therefore, multi-layer SVM as a classifier improves the
recognition accuracy of some indistinguishable emotions so as to make the overall system
perform better.

Table 9. Classification success rate based on different SVM classifiers.

Classifier Accuracy (%) F-Score Ave Recall Ave Precision Ave Specificity

EmoDB

SVM [57] 85.33 0.85 0.86 0.85 0.87
multi-layer SVM 90.00 0.90 0.90 0.90 0.91

SAVEE

SVM [57] 76.93 0.77 0.78 0.77 0.81
multi-layer SVM 80.66 0.81 0.82 0.81 0.84

eNTERFACE’05

SVM [57] 66.43 0.66 0.67 0.66 0.74
multi-layer SVM 72.47 0.72 0.73 0.72 0.78

5.4. Impact of Base Classifier

In the classification layer, we chose SVM as a base classifier. Considering the influence
of classifier on SER system, we switch the base classifier of classification layer to KNN for
comparison; that is, the classifier becomes multi-layer KNN. Meanwhile, we also compared
the impact of using KNN [58] as a classifier and multi-layer KNN on system performance.

The pre-classification method in this subsection uses the proposed FCM-IEPSO. The
confusion matrix results of the multi-layer KNN are shown in Figures 9–11, and the overall
success rates are shown in Table 10 on three data sets. It can be observed from the confusion
matrix that on EmoDB, the success rate of five emotions increased and two emotions
decreased; the recognition accuracy of all emotions on SAVEE and eNTERFACE’05 both
showed an upward trend.



Electronics 2021, 10, 2891 16 of 20

Ang Bor Dis Fea Hap Neu Sad

Ang

Bor

Dis

Fea

Hap

Neu

Sad

0.85

0.00

0.01

0.05

0.09

0.00

0.00

0.01

0.74

0.07

0.01

0.04

0.07

0.04

0.08

0.04

0.73

0.00

0.06

0.08

0.02

0.14

0.00

0.01

0.74

0.04

0.00

0.06

0.23

0.01

0.01

0.06

0.65

0.02

0.00

0.04

0.10

0.03

0.00

0.00

0.83

0.00

0.01

0.05

0.00

0.09

0.01

0.03

0.80

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)
Ang Bor Dis Fea Hap Neu Sad

Ang

Bor

Dis

Fea

Hap

Neu

Sad

0.89

0.00

0.00

0.03

0.08

0.00

0.00

0.01

0.83

0.03

0.01

0.00

0.06

0.05

0.00

0.08

0.80

0.02

0.06

0.04

0.00

0.06

0.00

0.06

0.75

0.10

0.00

0.03

0.23

0.00

0.06

0.02

0.64

0.03

0.00

0.01

0.08

0.02

0.01

0.00

0.84

0.02

0.01

0.04

0.01

0.10

0.01

0.05

0.78

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 9. Confusion matrix with K-nearest neighbor (KNN) as classifier on EmoDB. (a) KNN [58],
(b) multi-layer KNN.
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Figure 10. Confusion matrix with K-nearest neighbor (KNN) as classifier on SAVEE. (a) KNN [58],
(b) multi-layer KNN.
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Figure 11. Confusion matrix with K-nearest neighbor (KNN) as classifier on eNTERFACE’05.
(a) KNN [58], (b) multi-layer KNN.

In Table 10, the success rate using the multi-layer KNN classifier increases by 2.94%,
6.09%, and 6.02% on three databases, respectively, compared with a single KNN classi-
fier. Although the accuracy of multi-layer KNN has greatly improved compared that of
KNN [58], the overall accuracy of multi-layer KNN is still lower than multi-layer SVM.
Therefore, using a multi-layer can enhance the system’s performance, and SVM performs
better than KNN as the base classifier.
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Table 10. Classification success rate based on different KNN classifiers.

Classifier Accuracy (%) F-Score Ave Recall Ave Precision Ave Specificity

EmoDB

KNN [58] 76.33 0.76 0.77 0.76 0.81
multi-layer KNN 79.27 0.77 0.78 0.77 0.83

SAVEE

KNN [58] 65.11 0.65 0.66 0.65 0.73
multi-layer KNN 71.20 0.71 0.72 0.71 0.77

eNTERFACE’05

KNN [58] 59.40 0.61 0.64 0.59 0.69
multi-layer KNN 65.42 0.61 0.64 0.60 0.70

5.5. Impact of Model Performance

In order to evaluate the performance of the proposed MLHF-SVM model, we compare
the accuracy of our model with the accuracies of others from [56,57]. Table 11 shows the
processes, methods, and recognition accuracies of these models based on EmoDB, SAVEE,
and eNTERFACE’05.

Table 11. Performance and method comparison with other literature.

Approach Feature Extraction Pre-Classification Classifier Database Accuracy (%)

[57] Spectral features
with FCM - SVM

EmoDB 80.62
SAVEE 74.20
eNTERFACE’05 63.38

[56] Prosodic features
Spectral features FCM Random forest

EmoDB 77.97
SAVEE 72.85
eNTERFACE’05 64.39

Proposed method Prosodic features
Spectral features FCM-IEPSO SVM

EmoDB 85.33
SAVEE 76.93
eNTERFACE’05 66.43

Proposed method Prosodic features
Spectral features FCM-IEPSO multi-layer

SVM

EmoDB 90.00
SAVEE 80.66
eNTERFACE’05 72.47

It can be observed from Table 11 that the accuracies of model from [57] reach 80.62%,
74.20%, and 63.38%, and the accuracies of model from [56] reach 77.97%, 72.85%, and
64.39% on three databases. Ref. [57] selected MFCC features using FCM clustering and used
an original SVM classifier to recognize speech emotion. They did not consider the impact
of certain emotions and identification characteristics on overall performance. Compared
with [57], the results of our model with original SVM improved by 4.71%, 2.73%, and 3.05%
on EmoDB, SAVEE, and eNTERFACE’05 due to the pre-classification of our FCM-IEPSO
algorithm. After adopting multi-layer SVM as the classifier, our model performs better.

Ref. [56] extracted spectral features and prosodic features, preprocessed features
with original FCM, and identified emotions with random forest. They did not consider
that FCM can easily fall into local minima. The results of our MLHF-SVM model are
12.03%, 7.81%, and 8.08% higher than the model of [56]. Therefore, the FCM-IEPSO
algorithm we presented performs better in pre-classification. Compared with these state-
of-art technologies, our model has more comprehensive consideration, higher recognition
accuracy, and better performance.

6. Conclusions

An MLHF-SVM model based on clustering and classification was proposed for speech
emotion classification. In MLHF-SVM, in order to alleviate the classification error caused
by identified information, the proposed FCM-IEPSO divides the feature datasets into
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corresponding subclasses according to prior information, and multi-SVM is presented to
distinguish the emotional information of each subset. Meanwhile, in the process of feature
extraction, the personalized features and non-personalized features of the speech sample
are extracted simultaneously to render the speech signal more representative. The validity
of the model is simulated by comparing different clustering algorithms and two classifier
models on the EmoDB database. It is observed that the proposed IEPSO performs better
than PSO, LPSO, and EPSO in alleviating the initial value and local minimum of fuzzy
clustering. When IEPSO and FCM jointly serve for the pre-classification step, FCM-IEPSO
performs better than other methods in the speed term, indicating that MLHF-SVM will
not induce additional efficiency burdens. When the multi-classifier method is used for
classification, the success rate is improved regardless of classifier used. By using the
method we suggested, the maximum accuracy rate was achieved at 90.00% with SVM
classifiers.

Our future studies will focus on more intelligent algorithms and methods of training
classifiers in order to improve the performance of emotion recognition. In recent years,
adversarial training, as one of the fields of machine learning, is a new training method
for emotion recognition. Furthermore, we will examine techniques for labeling phonetic
emotions more accurately in a more natural context.
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