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Abstract: Since the technology of remote sensing has been improved recently, the spatial resolution
of satellite images is getting finer. This enables us to precisely analyze the small complex objects
in a scene through remote sensing images. Thus, the need to develop new, efficient algorithms
like spatial-spectral classification methods is growing. One of the most successful approaches is
based on extinction profile (EP), which can extract contextual information from remote sensing
data. Moreover, deep learning classifiers have drawn attention in the remote sensing community
in the past few years. Recent progress has shown the effectiveness of deep learning at solving
different problems, particularly segmentation tasks. This paper proposes a novel approach based
on a new concept, which is differential extinction profile (DEP). DEP makes it possible to have an
input feature vector with both spectral and spatial information. The input vector is then fed into a
proposed straightforward deep-learning-based classifier to produce a thematic map. The approach is
carried out on two different urban datasets from Pleiades and World-View 2 satellites. In order to
prove the capabilities of the suggested approach, we compare the final results to the results of other
classification strategies with different input vectors and various types of common classifiers, such
as support vector machine (SVM) and random forests (RF). It can be concluded that the proposed
approach is significantly improved in terms of three kinds of criteria, which are overall accuracy,
Kappa coefficient, and total disagreement.

Keywords: extinction profile (EP); deep learning; segmentation; spatial-spectral classification; remote
sensing image

1. Introduction

With the increased spatial resolution of recently produced imaging sensors, a consid-
erable amount of remote sensing satellite images, especially very high-resolution (VHR)
images, are available. These images provide us with more information in greater detail
about the land surface. The fine spatial optical sensors with metric or sub metric resolution,
such as QuickBird, GeoEye, Pleiades, and World-View, allow detecting fine-scale objects,
such as residential housing elements, commercial buildings, and transportation systems
and utilities. However, the large-scale nature of these datasets introduces new challenges
in image analysis.

Many applications, such as land resource management, urban planning, precise agri-
culture, and crisis management [1–6], rely on very high-resolution remote sensing imagery.
One of the most crucial tasks for accurate information extraction from these images is
classification, which classifies the scene’s objects into meaningful categories. Unfortunately,
these categories are almost identical to each other in many cases, such as pastureland and
agricultural farmland or trees and grass. So, we have difficulty distinguishing similar types,
especially in a complex scene with many details. Accordingly, it is crucial to find a proper
classification method that enables us to address this issue.
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It is now proven that spatial information integration can improve accuracy, particularly
with VHR images [7]. The spatial information can determine the shape and size of the
objects in the image, which is very helpful to reduce the noisy appearance of classified pixels
in the final result. This happens a lot when the classifier uses only spectral information
without considering spatial arrangements.

There are two common strategies to extract spatial information from VHR images: the
crisp neighbourhood system [8–10] and the adaptive neighbourhood system [11–13]. The
former considers a predefined neighbourhood system with a static shape, while the latter
is based on modifying the neighbourhood system.

Markov random field (MRF)-based approaches and artificial neural networks (ANN)
are examples of the first group [9,10,13,14]. Although these methodologies can lead to an
increase in final accuracy, they suffer from some shortcomings. For example, a predefined
neighbourhood system cannot characterize the specifications of objects with different sizes.
The smaller items may disappear in the final map, or the larger ones may turn into pieces.

The other family of methods are based on sparse representation (SR) [15,16]. These
methods are primarily pixel-wise sparse models but they usually incorporate the spatial
context to the joint sparse model (JSM) [17–19]. Using multiple-scale regions for each pixel
and shaping a multiscale SR model is proposed in [20] to contain complementary spatial
information. However, optimal integration of spatial information is still a big challenge in
this area of study.

To address the above issues, methodologies based on adaptive neighbourhood system
are suggested, such as segmentation-based [21,22], morphological profiles (MPs) [23,24],
attribute profiles (APs) [13,25], and extinction profiles (EPs) [26,27]. These approaches have
their own limitations too. For example, segmentation algorithms extract image objects and
generate relevant results according to specific criteria. Image objects in a scene, especially
in urban areas, generally show multiscale or multilevel features. Therefore, they appear at
different scales of analysis. So, the procedure for choosing the best scale is very complicated
and time-consuming [21].

The other contributions that use adaptive neighbourhood systems are based on mor-
phological profiles (MPs). MPs are usually composed of applying opening or closing by
reconstructions with a structuring element (SE) of different sizes. The introduction of the
MP concept leads to creating the morphological spectrum for each pixel [28–32]. Another
study in this area is based on the derivative of MP introduced in [33], which has more
promising results. However, as an SE’s shape is fixed, different objects with different shapes
cannot be accurately modelled. Besides, MPs are unable to extract information related to
grey-level specifications of the objects in the image.

One can use the morphological attribute profile (AP) instead of morphological profile
to address the shortcomings mentioned above. The concept of AP has been introduced first
in [25] to generalize MPs. This new concept uses sequential morphological attribute filters
(AFs). So, it can provide a multilevel characterization of the image.

APs work based on connectivity rules. Thus, they only consider connected compo-
nents in the image. Compared to the MPs, APs are more flexible because they can view
different attributes to model the image’s structural information. Several studies are based
on the APs, which can be found in [25,34] for classification and building extraction tasks. If
multiple attributes have been taken into account, an extended AP (EAP) can be created.

The other different variant of MPs, known as extinction profiles (EPs), is introduced
in [7], and they have shown promising results. EP’s implementation is based on the
tree-representation (max-tree) [35]. This concept will be thoroughly discussed in the
next section.

The EP can create features for every pixel in the image with contextual information.
Different methodologies have been tested to classify these features efficiently. Various
studies, such as [13,36,37], have been undertaken in this area. They mostly use support
vector machine (SVM), random forest (RF), or artificial neural networks (ANNs) for spatial-
spectral classification purposes, but they all have some limitations. For example, advanced
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SVMs with kernels like Gaussian or radial basis functions (RBFs) can handle the imbalance
of the size of the image and the number of training samples. However, kernel SVMs cause
overfitting in the case of sparse feature space [38]. They also require several parameters to
be set.

Random forest is another option for classification purposes that has been vastly used
in different studies [38–41]. Although random forest-based methods are fast and yield
stable results, their performance is easily influenced by the size of training samples [42].

Another classification method that has been used more recently in the remote sensing
community is artificial neural networks. ANNs are biologically inspired and multilayer
classes of deep learning models that use a single neural network trained end to end from
input vector obtained from image to classifier outputs [43]. However, the standard ANNs
are limited when dealing with multidimensional images because they need to adjust
many parameters for neurons in the layer to reach satisfactory accuracy [44]. Lately, deep
networks have been demonstrated to achieve significant empirical improvements in most
of the remote sensing fields like spatial-spectral classification [22,45–48]. Many spatial-
based techniques including semantic segmentation continuously advance. They have been
employed to address remote sensing problems that are diverse and data-rich in nature [49].
Examples of these researches include environmental monitoring [50], crop cover and
analysis [51,52], types of trees in forests [53], and building detection [54]. Deep learning
methods automatically extract features that are tailored for the classification tasks, which
makes such methods better choices for handling complicated approaches [55]. The unique
structure of the deep learning network may be able to learn features in different layers
and adjust the parameters, at running time, based on accuracy, giving more importance to
one layer than another depending on the problem [47]. As the deep networks show great
robustness and effectiveness in image classification, they have the potential to cope with
the difficulties of non-linear spatial-spectral image analysis.

In this paper, a robust, precise approach is proposed to automatically extract spatial-
spectral information from VHR images and classify them into thematic classes. In more
detail, the main contributions of the paper are listed below:

1. The paper applies a morphological spectrum, including differential extinction pro-
file (DEF) and spectral information, to address the pixel specifications for further
classification.

2. The differential extinction profile (DEF) used in the study is processed using morphology-
based filters such as top-hat and bottom-hat filters. This leads to producing a concise,
informative feature vector.

3. As the extinction profile automatically used a different number of extrema to make a
complete profile, there is no need to set any parameters in the proposed approach. So,
it can be used for different datasets with different characteristics.

4. A simple, straightforward, yet accurate deep learning-based neural network has been
developed for classification purposes.

5. The proposed approach is applied to different datasets. The entire process is fully
automatic and speedy.

The remainder of this paper is organized as follows. The mathematical foundations
of EP and deep-learning-based classifiers are addressed in the Section 2. The proposed
approach is explained in detail in the Section 3. The experimental analyses, evaluations, and
comparisons are presented in Section 4, and the last section is attributed to the conclusion.

2. Mathematical Background

The concept of morphological profile (MP) was introduced in [23]. It has been widely
applied as a powerful approach to extract contextual information from the image by mod-
elling structural features (e.g., size, geometry etc.). In this section, we first explain the
so-called tree representation of the image (max-tree), which is essential for the implementa-
tion of the extinction profile (EP), a very recent variant of MPs. Then, we discuss EPs and
their equations. The last part is dedicated to deep learning classification.
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2.1. Max-Tree

Max-tree is a data structure representing a grey-scale image as a tree based on the
hierarchical property of threshold decomposition [56]. It was first introduced in [57] to
implement connected filters.

Informally speaking, if we have a grey-scale image, a specific threshold leads to a
binary image, where each white island (with value 1) is a connected component. The
higher the threshold value, the smaller the size of connected components. The component
tree shows the hierarchical relationship of its connected components which are obtained
through threshold decomposition, and the max-tree is a compact representation of this
component tree. The max-tree nodes store only the pixels that are visible at a specific
threshold (or grey level). Therefore, the connected components that remain unchanged for
a sequence of thresholds are represented in a single node, called composite node [35,58].

There are four major steps in the max-tree algorithm: (1) tree creation usually using
maxima, (2) marking the nodes that do not meet the criteria, (3) filtering the nodes, and
(4) image recovery [25]. The underlying concept of max-tree has been displayed in Figure 1.
Imagine a 1-D image with gray levels: f = {0, 5, 4, 2, 3, 1, 4, 3, 5, 0} [56]. The double circles are
max-tree composite nodes, and the leaves of both component tree and max-tree are related
to regional maxima. Efficient implementations of extinction filters, and thus extinction
profiles, are needed to take advantage of the max-tree concept.

Figure 1. (a) Component tree and (b) Max-tree of sample image f = {0, 5, 4, 2, 3, 1, 4, 3, 5, 0}. The
composite nodes are depicted by double circles and the filled pixels in each horizontal connected
component represent the pixels each node stores.

2.2. Extinction Profile

Extinction filters (EF) are connected filters that preserve the leaf node or the extrema
of the image related to the connected component of the image. The connected filters are
idempotent, i.e., they do not blur the image and only make alternations to the image
the first time they applied [56,59]. If extinction filters have been implemented using
max-tree structure, the number of maxima (max-tree leaves) with the highest extinction
values, according to chosen attribute, are selected. All other nodes have been cut from
the tree. Therefore, there are three parameters to be set in order to apply extinction
filters on the image: the kind of extrema chosen to be filtered (usually the maxima of the
image), the attribute filter, and the number of extrema to be kept. Imagine that Max(X) =
{M1, M2, . . . , MN} shows the regional maxima’s set in the image X, and N represents the
number of regional maxima. Mi(i = 1, . . . , N) is the obtained image of the same size of
X, with zero in all other positions except for the pixels that compose the regional maxima.
Each Mi has the extinction value according to the selected attribute. The extinction of X set
to keep the n extrema that has the highest extinction values is given by [60]:

EFn(X) = Rδ
X(G) (1)

where Rδ
X(G) is the reconstruction by dilation [61] of the mask image X from the marker

image G. The marker G image can be obtained by:

G =
n

Max
{

M′i
}

i=1
(2)
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where Max is the pixel-wise maximum operation for the regional maxima related to the
extinction value, M′1 is the regional maxima with the highest extinction value, M′2 has the
second-highest extinction value, and so on. Figure 2 displays the EF concept visually.

Figure 2. (a) The original tree; the yellow nodes show the nodes with the highest extinction values
(b) Blue nodes represent the path from the three leaf nodes with the highest extinction values to the
root (c) Results of the modification of nodes is not marked in blue.

Extinction profile (EP) can produce a precise analysis of the input image. EPs are a
series of thinning and thickening transformations, i.e., EFs, applied on a grey-scale image
with progressively higher threshold values. In this manner, spatial and contextual informa-
tion can be extracted from image comprehensively. If Twµk and Tbµk denote the thinning
and thickening morphological transformations, EPs can be described as a concatenation of
them, as given by:

EP(X) =

{
Twµk , k = (s− i + 1), ∀i ∈ [1, s];
Tbµk , k = (i− s), ∀i ∈ [s + 1, 2s]

}
(3)

where µk is the criteria or threshold that will change in each iteration and s is the number of
them. The set of ordered µ is µi, µj ∈ µ and j ≥ i µ = {µ1, µ2, . . . µs}. For µi, µj ∈ µ and j ≥
i, the relation µi ≤ µj holds for thickening and µi ≥ µj holds for thinning. The total
number of images produced by EP will be (2s + 1), including the original grey-scale image.

EPs can be obtained using different types of attributes like area, volume, or height
with a different number of extrema values. The higher number of values preserve more
details, while a smaller number produces smoother results. The more the number of
extrema decreases, the more unnecessary information is omitted. Please note that, for the
EP, the feature produced by the higher number of extrema is placed closer to the input
image in the profile. The hierarchical relationship between the images generated by the EP
is Twµ1 ≥ Twµ2 ≥ . . . ≥ Twµs ≥ Tbµs ≥ Tbµs−1 ≥ . . . ≥ Tbµ1 .

Unlike MPs that can only model the size and the structure of objects in the scene,
EPs are flexible and have different types. Thus, multiples EPs (MEP) can be created by
concatenating various kinds of EPs (i.e., area height and volume).

MEP =
{

EParea, EPvoulme, EPheight

}
(4)

Since MEP considers different types of attributes, it can extract more contextual
information than a single EP.

2.3. Deep Learning for Classification

Deep learning or, strictly speaking, deep neural network (DNN), refers to a kind of
neural network with two or more hidden layers aside from the input and output layer [56].
Like other neural networks, DNNs consist of neurons that implement mathematical func-
tions with trainable parameters.
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A typical DNN learns hierarchical image features by stacking different types of layers.
The neuron including linear or nonlinear transformations is formulated as follows [62]:

a = f (WX + b) (5)

where a is the activation function of the neuron, X is the input vector, W is the weight
vector, b is the bias term, and f is the nonlinear activation function. Typically, an activation
function can be a logistic sigmoid function sigmoid(x) = 1/1 + e−x or rectified linear units
(ReLU) ReLU(x) = max(0, x) [63]. Neural networks with at least one nonlinear activation
function can represent any complex function [64]. For classification purposes, one neural
network can take an image as an input and output class scores. The label of each pixel can
be obtained with the class scores [65]. The goal of training is to find optimal parameters
(i.e., vector weights) to predict the right labels. The loss function (i.e., cost function) aims
to evaluate the performance of the system by comparing predicted class scores and the
corresponding ground truth. In this study, we used the cross-entropy loss function to
evaluate the performance of the neural network, which is defined as follows

Lscore = −log(
e f j

∑
i

e fi
) (6)

where fi is the ith class score and f j is the score related to the ground truth label. In most
cases, a regularization loss is added by penalizing a large number of parameters using L2
regularization. Then, the total loss is defined as follows:

L = Lscore + λ∑
i

W2
i (7)

where Wi means the ith element in weight vector and λ is a parameter which controls the
importance of regularization loss. Using the regularization loss, the loss function will be
strictly convex with a unique solution.

The process of network training is an optimization problem that aims at minimizing
the loss function. Usually, the gradient descent methods are used for this purpose. There
are two steps in the process of optimizing: (1) computation of the gradient of the loss
function with respect to the weight vectors; (2) updating the parameters following the
gradient. The parameters can be obtained as follows for one iteration:

Wi = Wi−1 − lr× ∂L
∂Wi−1

(8)

where Wi is the ith element of the weight vector, lr is the learning rate, and ∂L/∂Wi−1 is the
derivative of parameters. The gradient is calculated by backpropagation which recursively
computes the derivative of parameters according to the chain rule.

3. Deep-Learning-Based Approach for Spatial-Spectral Classification
3.1. The Framework of the Proposed Approach

The first step in the proposed approach is to extract contextual information. A practical
concept based on EP that can enrich the input feature vector of classification is differential
extinction profile (DEP), which is the difference between two subsequent images in MEP. In
fact, instead of using the original pixel value of each MEP image, the derivative of them will
be applied. The number of DEP feature vectors is one less than MEP and can be computed
by [7]:

DEP(X) =

{
∆Twk (X), k = (s− i + 1), ∀i ∈ [1, s]
∆Tbk

(X), k = (s− n), ∀i ∈ [n + 1, 2s]

}
(9)

where ∆Twk (X) and ∆Tbk
(X) are the derivatives of thickening and thinning profile, respec-

tively. Here, in this study, top-hat and bot-hat transformations were applied to produce a
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thickening and thinning profile. The attributes used for the computation of DEP are area,
height, and volume.

After the computation of DEP, the spectral information, which is the information of
RGB channels, is added to the contextual information. The final feature vector is created to
be fed to the deep-learning-based network. Figure 3 is a thematic display of the proposed
approach.

Figure 3. The framework of computation of input feature vector.

The deep network designed for the classification is straightforward. Inspired by [66],
it constitutes an input layer, which, in this case, has 14 channels. The next two layers are
fully connected layers. A fully connected layer is a layer in which the neurons connect to
all the neurons in the next layer. The second fully connected layer combines the feature
obtained by the first one to classify the image. Then, a softmax classification layer is used.
The softmax activation function normalized the output of the previous layer. The outcome
of this layer can be interpreted as classification probabilities by the final layer. The last
layer is the classification layer that assigns each input to the mutually exclusive classes and
computes the loss. The architecture of the proposed DNN is displayed in Figure 4. The
final thematic map result is the output of this network.

Figure 4. The architecture of the proposed DNN.

3.2. Algorithm Setup

The number of maxima used in this study to compute DEP for each attribute is 10,
which are s = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}. All profiles were calculated using the
4-connectivity condition. DEP was calculated using the derivative of three consecutive
images in the MEP vector instead of two sequential images to have a compressive input
vector. The whole process’s implementation was done through the “siamxt” python
toolbox [67] using Google Colab.
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To have a fair comparison, first, the input feature vector was introduced into two
different classification methods, namely SVM and RF. The SVM classifier has a one-versus-
one coding design with L1QP solver. The random forest classifier has 50 trees.

Second, in addition to the input feature vector produced using the mentioned proce-
dure in the previous section. The differential morphological profile (DMP) was applied.
The DMP concept was used for different applications, such as image segmentation and
classification [61,68]. Analogous to the DEP-based feature vector, the DMP-based feature
vector was classified using SVM and RF besides deep learning. We test all classification
methods using only spectral information (RGB) too. This part of the proposed approach
was done through Matlab 2020a. The experiments were run on a system with two 2.3 GHz
eight-core CPUs and 16 GB memory.

For DNN implementation, we use the stochastic gradient descent with momentum
(SDGM) solver, with momentum 0.8 and gradient threshold 10. The size of the mini-batch
to use for each training iteration is 128. We also shuffle the training data before each
training epoch and shuffle the validation data before each network validation.

Eventually, the final classification map was modified using a 5 × 5 median filter to
remove salt-and-pepper noise from the classification result.

4. Experimental Analysis
4.1. Data Description

Two VHR images were selected to illustrate the proposed approach’s operation: a
Pleiades dataset and a World-View 2 dataset.

The first dataset was acquired by Pleiades image. It is a subset of a pan-sharpened
product from Pleiades image over Commerce City, CO, USA. The dimension of this data is
999 × 999 and the spatial resolution is about 0.5 m. The ground reference for this image is
obtained by manual photo interpretation. The reference data contain six different classes
of interest: trees, grass, asphalt, soil, roof type 1 and 2. The number of test and train
pixels selected for the classification step is tabulated in Table 1. The original image, ground
reference, and index of classes are displayed in Figure 5.

Table 1. The number of test and train pixels of Pleiades image.

Name of the Class No. Test No. Train

Trees 94,827 2292
Grass 9124 832
Road 34,743 1242
Soil 10,478 574

Roof type 1 2957 344
Roof type 2 6339 520

Figure 5. (a) Pleiades subset (b) Ground reference (c) Index.
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The second dataset was captured of the city of Riyadh, Saudi Arabia, by World-View 2.
The size of the image is 1080 × 1920 at spatial resolution of 0.46 m. Similar to the Pleiades
dataset, the ground reference of eight different classes was distinguished manually: Trees,
grass, asphalt, roof type 1, 2, and 3, soil, and shadow. The roof classes were separated into
three different types since they have different colours. The number of test and train pixels
selected for the classification step has been tabulated in Table 2. The original image, ground
reference, and index of them are displayed in Figure 6.

Table 2. The number of test and train pixels of World-View 2 image.

Name of the Class No. Test No. Train

Trees 46,580 4952
Grass 6937 782

Asphalt 7874 1302
Roof type 1 3542 651
Roof type 2 8490 1032
Roof type 3 11,025 1664

Soil 11,130 2144
Shadow 7178 1506

Figure 6. (a) World-View 2 subset (b) Ground reference and (c) Index.

4.2. Results and Discussion

In this study, three different classifiers have been used, i.e., SVM, RF, and newly
proposed DNN, which were implemented using three different input vectors. Two of them
have both spatial and spectral information (DEP and DMP). The third one has only spectral
information (RGB).

The classification accuracies are evaluated through four measures, namely overall
accuracy (OA), kappa coefficient (K), f-score (F), and total disagreement (T). the first three
ones were applied widely in remote sensing applications. The last one is the sum of two new
criteria named quantity and allocation disagreements introduced in [49]. It is claimed that
they can provide a more precise accuracy assessment for RS images than Kappa families.
Since the Kappa indices may be useless, misleading, or flawed for practical applications
in remote sensing, it is recommended that instead of using the Kappa coefficient, the
professionals summarize the confusion matrix with two more specific summary parameters
of quantity and allocation disagreements. The allocation disagreement is described as the
amount of difference between the reference map and a comparison map, which is less than
an optimal match in the spatial allocation of the categories, with respect to the available
classes in the reference and comparison maps. The quantity disagreement is defined as
the amount of difference between the reference map and a comparison map that is less
than a perfect match regarding the available categories in the reference and comparison
maps. The sum of these two measures is called total disagreement (T). T is calculated for
two experimental datasets.

Tables 3–5 represent classification accuracy measures (K, OA and T) for the Pleiades
dataset. The OA for a deep-learning-based classifier with DEP + RGB input vector is about
93%, which is at least 3% better than the following best method.
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Table 3. Kappa coefficient for Pleiades dataset.

DEP + RGB DMP + RGB RGB

Deep learning 0.87928 0.7709 0.7386
SVM 0.83090 0.7945 0.7806
RF 0.82647 0.8206 0.7928

Table 4. Overall accuracy for Pleiades dataset.

DEP + RGB DMP + RGB RGB

Deep learning 93.0505 86.2551 84.5200
SVM 89.9259 87.3406 86.3814
RF 89.4630 88.9565 87.2837

Table 5. Total disagreement for Pleiades dataset.

DEP + RGB DMP + RGB RGB

Deep learning 0.0694 0.1374 0.1548
SVM 0.1007 0.1265 0.1361
RF 0.1053 0.1104 0.1271

As can be seen, the proposed approach outperforms other methods’ results in terms
of all criteria.

DEP + RGB can produce a more accurate result regardless of the classifier type in
terms of total disagreement. The overall accuracy and Kappa coefficient for DEP + RGB
column confirm this fact. On the other hand, each table’s last row shows that only spectral
information is not enough if high accuracy is intended. Looking at the second column,
we find that the input vector constructed with DEP’s help in all cases has a better result
than the input vector constructed with the help of DMP. This is due to the fact that DEP
can consider different types of attributes and preserve regions suitable for distinguishing
classes.

As observed in Figure 7, only the DNN classifier with DEP + RGB input vector
successfully distinguishes the correct class around the sports field, soil and not the asphalt
or roof. In fact, a deep learning strategy was able to make the most of spatial-spectral
information to connect the training samples to their correspondence classes. The asphalt
and soil are visually similar, and an amateur interpreter may make a mistake recognizing
these classes. So, it is not enough to have an informative input feature vector, and it is
crucial to choose a robust classifier.

Considering the information in Table 6 proves that the proposed approach outperforms
all other methods for three classes: trees, roof type 2, and soil. For class asphalt, the SVM
method with RGB is slightly better. The difference between the two numbers is 0.0011.
For class roof type 1, the SVM classifier with DMP + RGB has a more accurate result
(about 0.05). However, it does not have an accurate f-score for classes grass, soil, and
roof type 2. Likewise, the RF classifier with DEP + RGB has the best result for class grass.
However, its performance for soil and roof type 2 is poor. Thus, they cannot be considered
outstanding classifiers.
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Figure 7. The classification results of (a) Deep learning with DEP + RGB (b) Deep learning with DMP + RGB (c) Deep
learning with RGB (d) SVM with DEP + RGB (e) SVM with DMP + RGB (f) SVM with RGB (g) RF with DEP + RGB (h) RF
with DMP + RGB (i) RF with RGB for Pleiades dataset.

Table 6. The f-score measure for all classes in the Pleiades dataset.

Trees Grass Asphalt Roof Type 1 Roof Type 2 Soil

Deep learning with DEP + RGB 0.9719 0.5189 0.9443 0.9390 0.7691 0.7882
Deep learning with DMP + RGB 0.9244 0.2598 0.9191 0.9591 0.0112 0.7027

Deep learning with RGB 0.9429 0.3494 0.8789 0.9619 0.4099 0.7251
SVM with DEP + RGB 0.9559 0.5176 0.9313 0.9116 0.6664 0.6837
SVM with DMP + RGB 0.9315 0.4626 0.9325 0.9925 0.6307 0.5587

SVM with RGB 0.9150 0.4455 0.9454 0.9808 0.6009 0.5325
RF with DEP + RGB 0.9457 0.5381 0.9345 0.9078 0.7173 0.6910
RF with DMP + RGB 0.9421 0.5248 0.9197 0.9768 0.7262 0.7505

RF with RGB 0.9310 0.4475 0.9249 0.9806 0.6890 0.7141

Tables 7–9 provide information about the classification accuracy attained by different
strategies for the second dataset here, World-View 2. Like the Pleiades case, the proposed
approach outperforms the other methods. In this manner, the overall accuracy is about
2%, and total disagreement is about 0.02 better than the best results of other different
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strategies. Moreover, the classifiers fed with only spectral information show the least
accurate results, expectedly.

Table 7. Kappa coefficient for World-View 2 dataset.

DEP + RGB DMP + RGB RGB

Deep learning 0.8594 0.8291 0.80311
SVM 0.8026 0.8415 0.8258
RF 0.8135 0.8242 0.7204

Table 8. Overall accuracy for World-View 2 dataset.

DEP + RGB DMP + RGB RGB

Deep learning 89.5052 87.3379 85.4023
SVM 85.5959 87.9646 87.5285
RF 85.7156 86.6645 77.6898

Table 9. Total disagreement for World-View 2 dataset.

DEP + RGB DMP + RGB RGB

Deep learning 0.1049 0.1266 0.1459
SVM 0.1440 0.1203 0.1218
RF 0.1428 0.1333 0.2231

Table 10 shows the f-score measure for the World-View2 dataset. The proposed
approach’s superiority can be found when considering the roof classes type 1, 2, and 3.
Although these three classes are similar to each other, the deep learning classifier with
DEP + RGB input vector can have promising outcomes: about 84, 94, and 94 in terms
of f-score. The other strategies may have a precise result for one of the classes, but they
perform poorly in distinguishing the other ones. For example, SVM with the DMP + RGB
method distinguishes the grass class successfully, but it performs poorly in distinguishing
class roof types 1 and 3. It can be said that inadequate training samples can reduce accuracy
when the image classes are made up of small, similar objects. For this reason, a classifier
that can extract all classes with high accuracy is of particular importance. With its spatial
information, the proposed approach compensates for the lack of training data and allocates
spatial-spectral information to the correct class with DNN. Figure 8 displays all thematic
maps yielded from different classifiers.

Table 10. The f-score measure for all classes in World-View 2 dataset.

Trees Grass Asphalt Roof Type 1 Roof Type 2 Roof Type 3 Soil Shadow

Deep learning with DEP + RGB 0.9490 0.6968 0.9619 0.8493 0.9368 0.9403 0.7701 0.7433
Deep learning with DMP + RGB 0.9507 0.8176 0.7804 0.6537 0.7610 0.8693 0.9116 0.7086

Deep learning with RGB 0.9303 0.7163 0.9878 0.9409 0.8835 0.3900 0.6995 0.6783
SVM with DEP + RGB 0.9175 0.6243 0.9999 0.9085 0.5622 0.7971 0.9137 0.6659
SVM with DMP + RGB 0.9562 0.8501 0.9979 0.4911 0.9086 0.5692 0.9674 0.8420

SVM with RGB 0.9237 0.6275 0.9997 0.5711 0.9134 0.6483 0.9497 0.7633
RF with DEP + RGB 0.8922 0.6365 0.9999 0.8729 0.7923 0.8463 0.8536 0.8431
RF with DMP + RGB 0.9396 0.8688 0.9977 0.8235 0.7191 0.6677 0.8723 0.7503

RF with RGB 0.8064 0.5358 0.9999 0.5457 0.8990 0.6935 0.8593 0.7496
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Figure 8. The classification results of (a) Deep learning with DEP + RGB (b) Deep learning with DMP + RGB (c) Deep
learning with RGB (d) SVM with DEP + RGB (e) SVM with DMP + RGB (f) SVM with RGB (g) RF with DEP + RGB (h) RF
with DMP + RGB (i) RF with RGB for World-View 2 dataset.

Finally, considering all the classes in the image, the proposed method is superior to
the competing methods.

5. Conclusions

This paper proposes a novel approach for the spatial-spectral classification of very
high-resolution remote sensing data. The proposed approach is based on the differential
extinction profile (DEP) concept. The DEP is the derivative of extinction profile (EP) that
can be made by applying top-hat and bottom-hat transformation on a grey-scale image.
The DEP extracts geometrical information from an image with different kinds of attributes
such as area, height, and volume. The spectral information, which is the RGB channels,
have been added to DEP to build an input feature vector. This vector is incorporated in
a straightforward deep learning classifier that does not contain complicated architecture
with so many parameters.

The proposed approach has been performed on two VHR datasets: the Pleiades and
the World-View 2 urban images. The obtained results have been compared with two of
the most robust methods in the literature, i.e., support vector machine (SVM) and random
forest (RF). We have also tested all mentioned classifiers through different types of the
input vector, which are DMP + RGB and only RGB bands. To have a fair comparison, four
types of criteria have been applied in this study, which are: overall accuracy (OA), Kappa
coefficient (K), f-score (F), and total disagreement (T).

With respect to the experiments, it can be concluded that the newly proposed approach
yields a more accurate final classification map than other methods. All four measures
verified this claim. According to this research, the following points can be noted: (1) DEPs
are capable of extracting contextual information so they can improve the classification
accuracies due to their ability to preserve more correspondences in the image. (2) Our
method includes different types of image attributes, like area, height, and volume, so
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it provides more promising results than other types of morphological profiles like MPs.
(3) Incorporating spatial and spectral information in a robust, straightforward deep neural
network makes the whole approach easy-to-use and implement. (4) The proposed approach
is fully automatic and there is no need to set additional parameters.

In the future, it will be helpful to add an edge detection algorithm to the proposed
approach to exclude edge pixels from the classification process. In this way, the final
thematic map will be finer for practical use.
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