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Abstract: The impact of the constituent oxides of nitrogen, carbon, sulphur, and other particulate
matter which make up the gas emissions from diesel engines has motivated several control techniques
for these pollutants. Water-in-diesel emulsions provide a reliable solution, but the wear effects on
the fuel injection system (FIS) still pose remarkable concerns. Because pressure signals from the
common rail (CR) reflect the dynamics associated with varying emulsion compositions and at varying
engine RPMs, an investigative (and diagnostic) study was conducted on a KIA Sorento 2004 four-
cylinder line engine at various water-in-diesel emulsion compositions and engine speeds. Alongside
visual/microscopic inspections and spectral analyses, the diagnostic framework proposed herein
functions on the use of standardized first-order differentials of the CR pressure signals to generate
reliable continuous wavelet coefficients (CWCs) which capture discriminative spectral and transient
information for accurate diagnosis. The results show that by extracting the CWCs from the first-order
CR pressure differentials up to the 512th scale on a Mexican hat wavelet, adequate fault parameters
can be extracted for use by a deep neural network (DNN) whose hyperparameters were globally
optimized following a grid search. With a test accuracy of 92.3% against other widely-used ML-based
diagnostic tools, the proposed DNN-based diagnostics tool was empirically assessed using several
performance evaluation metrics.

Keywords: wavelet transform; CRD engine; water-emulsified diesel; damage severity; fuel injection
system; fault detection and isolation; spectral analysis

1. Introduction

Over the years, diesel engines have become a major power source for industrial and
personal use. In contrast to gasoline fuel engines, the high thermal efficiency, cost efficiency,
and durability of diesel fuel engines are some of the advantages associated with them;
however, the inherent emissions contribute significantly to air and water pollution with the
constituents nitrogen oxides (NOx), particulate matter (PM), and carbon monoxide (CO)
being primarily responsible for greenhouse effects and a wide array of human health and
environmental concerns [1,2]. Notwithstanding obvious environmental concerns, diesel
engines require scheduled (or predictive) maintenance schemes for ensuring optimum
engine performance and minimizing pollution from exhaust emissions [3]. On a global
scale, it is estimated that diesel emissions constitute about 30% of greenhouse emissions
and have ignited public concerns for alternative energy sources, including biodiesel and
renewable energy sources [1]. These alternatives are projected to replace combustible
energy sources soon; however, the resources required for the imminent switch are yet
to be fully harnessed on a global scale while the increasing energy demand remains. As
Kalghatgi [4] showed in his study, a 75% increase in energy demand for commercial
transportation is expected in 2040 with the highest demand for diesel expected to come
from the Asia-Pacific and European regions.
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The FIS of a CRD engine is designed to function ideally with clean diesel and high-
quality components, but the fact remains that the publicly available diesel fuels are not
100% pure, hence the need for regular engine maintenance and fuel quality monitoring.
Furthermore, the recent hike in fuel price accompanied by strict emission regulations has
provided valid research motivations for diesel emulsification in various compositions for
improving fuel quality, reducing emission severity, and minimizing costs [5–8]. Invariably,
the need for emission control, improving diesel fuel efficiency, and extending the useful
lifetime of engines have long motivated several improvement techniques. Among the
diverse techniques available, diesel emulsification (in the right composition) has shown to
improve the chemical properties of diesel fuels which in turn minimizes the quantity of
pollution-causing agents that include nitrogen oxides (NOx), particulate matter (PM), and
carbon monoxide (CO) [9]. The water in emulsified diesel fuel induces micro-explosions to
form many small-sized emulsion droplets that enhance mixing. This process invariably
minimizes NOx, CO, and PM emissions [10]. On the other hand, excessive emulsion
compositions may have adverse effects on the FIS and the engine at large; therefore, it
is necessary to employ reliable condition monitoring and diagnostic methodologies for
maintaining optimum engine performance on water-in-diesel (W/D) emulsified fuels [3].

Because the FIS of a CRD engine is the heart of the engine, a deviation from the ideal
fuel composition and running condition would reflect in the CR system. The informa-
tion provided by the CR system provides diagnostic parameters needed for condition
monitoring, fault detection and isolation (FDI), and accurate failure diagnosis [11]. As
a result, several techniques have been reported in the past for diesel engine CR systems
(and injectors) FDI and are broadly classified into model-based, data-driven, and hybrid
methods [12]; nonetheless, these methods aim to identify faulty operating conditions
or localize faults using intelligent and/or statistical techniques. On the bright side, re-
cent studies show a strong steer from purely physics-of-failure (PoF) methods towards
the artificial intelligence (AI)-based methods which learn and map the linear and com-
plex dependencies from input parameters for predicting target conditions [13,14]. To
achieve these, numerous time-domain, frequency-domain, time-frequency-domain, and
bio-inspired signal processing methods abound for feature extraction, and with fusion
techniques, multi-domain methods can be achieved in a comprehensive framework for
diversified representation [15]. On the flip-side, the curse of dimensionality and feature
redundancy opens up an even greater opportunity for the filter-based, wrapper-based, and
hybrid feature selection methods to flourish. These selection methods aim to isolate only
highly discriminative diagnostic parameters to achieve accurate cost-efficient diagnostic
performance and minimize classifier confusion [15,16]. Notwithstanding the approach
employed, identification of key diagnostic parameters from the inputs (CR signals) for
reliable diagnosis is critical, and this has provided the leeway for this study.

The remainder of this paper is structured as follows: Section 2 discusses some related
works to CRD characteristics and diagnosis, while Section 3 presents the materials and
methods employed in this study. Section 4 presents the experimental results and discussion,
while Section 5 concludes the paper.

2. Motivation and Literature Review on Related Works

W/D emulsion fuels have proven in many studies to improve the chemical properties
of diesel fuel and minimize the pollution-causing effects from engine emissions [17]. This
is because the presence of water in emulsified fuels causes micro-explosions that enhance
fuel quality. When exposed to high temperature, emulsion droplets undergo preferential
evaporation, triggering puffing and micro-explosion to form several smaller-sized droplets
that enhance mixing. This invariably reduces NOx, CO, and PM emissions [10]. These
benefits associated with diesel emulsification have motivated several investigative studies
for verification and possible recommendations. For instance, Senthur et al. [18] conducted
diverse experiments for finding the right substitute fuel(s) to diesel by preparing different
W/D emulsions and using them for comparing emission performance and combustion
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parameters in conventional CRD engines. Their results reveal that increased W/D emul-
sion correlates with diminished emission parameters with the best meeting point at 15%
water content. In conclusion, the study validates the superiority of W/D emulsion over
conventional diesel. Similarly, Fahd et al. [19] compared the efficiency of a 10% W/D emul-
sion with conventional diesel by evaluating the engine exhaust gas performance under
changing engine speed conditions. Their findings revealed that even though the engine
efficiency was reduced under the 10% W/D emulsion (in comparison with pure diesel), at
higher engine speeds, the engine efficiency under the emulsified fuel condition was similar
to when pure diesel fuel was used. In addition, a higher brake-specific fuel consumption
(BSFC) (accompanied with a reduction in exhaust gas temperature) was observed at all
rotation speeds [19]. Other studies [20,21] also validate the benefits associated with diesel
emulsification, yet the high oxidation potential of water on metal components means that
W/D emulsion adoption still poses strong concerns [22].

The increasing demand for emission reduction in the automotive industry has mo-
tivated manufacturers on directing their innovative solutions towards achieving higher
power densities from mass-produced automotive diesel engines [23,24]. Although most
of the recent efforts (in simulated environments) are geared towards realizing lower com-
pression ratio combustion systems, engine downsizing (to minimize engine emissions),
enhancing the air charging system efficiencies, designing FISs capable of more than 2700 bar,
and optimizing/controlling operating parameters at these higher FIS outputs [25–27], ac-
tualizing them is still open to further investigations considering that these innovative
solutions focus on maintaining (rather than reducing) engine emission levels on a global
scale. With the corrosion/wear effect on engine components parts by W/D emulsion fuels,
meeting such high-power design expectations may take some time [28–30]. Although
available studies reveal encouraging paradigms for the use of water-emulsified diesel
fuels, the reliability of such methods remains open for continued discussions. Issues
of stability, mixing conditions, temperature, and mixing compositions greatly influence
the reliability of water-emulsified diesel fuels [28,31]. Most studies suggest the use of
surfactants to enhance emulsion fuel stability and physio-chemical properties, yet their
efficiency still depends on achieving appropriate hydrophilic–lipophilic balance (HLB)
value [31]. Consequently, these phenomena have motivated several research studies on the
quest for proper condition monitoring techniques for emulsified diesel fuel engines using
the CR system [1,3,4,9,11]. By leveraging the vulnerabilities of CR systems to emulsified
fuels, reliable condition monitoring frameworks can be developed. This shall help ensure
a safe emulsion composition is maintained for retaining acceptable engine efficiencies.
Krogerus and Huhtala [1] explored a signal filtering and normalization technique of CR
pressure signals for determining a fault/failure threshold of the CR system. Their results
showed that the derivative of the filtered signals provides reliable diagnostics character-
istics, and they are suitable for injection duration identification. Song [11] proposed the
use of an improved variational mode decomposition (VMD) processing algorithm and
hierarchical dispersion entropy on CR pressure signals for achieving a time-series condition
monitoring on water-emulsified high-pressure diesel engines. Above the efficiencies of
traditional statistical-based diagnostics schemes, the reliability of these methods is limited
by expensive statistical assumptions and trade-offs during the modeling process [12,13].

On-going research suggests the use of bio-inspired mathematical models with deep
architecture—traditional machine learning (ML) and deep learning (DL) methods—for
optimal diagnostic performance; however, identifying the key diagnostic parameters from
CR signals (inputs) remains open for continued studies. Beyond the limitations of tradi-
tional machine learning techniques such as random forests and decision trees, DL methods
such as convolutional neural networks (CNN), recurrent neural networks (RNN), etc., are
designed for large-scale systems designed with big data and demand for automated perfor-
mance with little/no domain knowledge; however, the inherent issues of interpretability,
high dependence on excessive parameters, overfitting/underfitting, need for high computa-
tional power, feature evaluation complexity, and their magical defiance from fundamental
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statistical principles often raise strong concerns for cost-aware and safety-critical applica-
tions [12,32–34]. Particularly, due to the high stochasticity and complexity in their learning
process, feature evaluation/selection (from an empirical perspective) is often limited; hence,
this limits the explainability of the diagnostic model(s) based on feature importance/impact.
On the other hand, although they demand a significant amount of domain knowledge, sev-
eral established time-frequency-domain signal processing/feature extraction methods are
available for use. These tools, including wavelet transform (WT), empirical mode decom-
position (EMD), Mel frequency spectral coefficients (MFCC), short-time Fourier transform
(STFT), etc., provide dependable avenues for identifying key diagnostic parameters [15],
and with appropriate feature selection/dimensionality reduction techniques, salient feature
selection can be achieved for optimum diagnostic results. Against the limitations of these
methods, continuous wavelet transform (CWT) has superior efficiencies for non-stationary
signal processing; however, its efficiency depends on the choice of mother wavelet [15].
Notwithstanding, the Shannon entropy of the corresponding wavelet coefficients provides
an efficient criteria for choosing the befitting mother wavelets when rightly extracted.
These coefficients invariably can be used as reliable diagnostics parameters on an ML-
based classifier for diagnosis [15,35,36]. In our quest for investigating the characteristics of
CR fluctuations in a W/D emulsion fuel using CR pressure signals, this study makes the
following contributions:

• An investigative study was conducted on the CR system of a KIA Sorento 2004 diesel
engine operating on varying W/D emulsion compositions and engine speeds. The
effect and damage severity of W/D emulsion fuels on critical FIS components were
explored, presented, and via a degradation/wear assessment, empirical judgements
were made on the correlations between fuel conditions and engine performance.

• A DNN-based diagnostic scheme is proposed for condition monitoring which exploits
the rail pressure sensor (RPS) signals by a wavelet-based signal processing technique.
Against the poor efficacies of the raw RPS signals, their first-order differential provides
standardized inputs for CWC extraction which provide discriminative inputs for
DNN-based classification.

• Extensive descriptive and empirical conclusions are drawn. The research results are
expected to provide a modern paradigm for condition monitoring, failure diagnostics,
design, and decision-making for CRD engines with W/D emulsion fuels.

3. Background of Study

This section presents in detail the background of a typical FIS, the test engine and
preparation procedure, and the diagnostic methodology employed in this study.

3.1. Common Rail Injection System

Typically, the CR injection system consists of a high-pressure pump (HPP), CR pipe,
fuel injector, and electronic control unit (ECU). Figure 1 illustrates these components and
the fuel/energy flow directions whereby the blue lines indicate a low-pressure fluid flow,
while the red lines indicate a high-pressure fluid flow.

As illustrated in Figure 1 in yellow, from the reservoir, the low-pressure pump delivers
fuel through a filter to the HPP which then delivers fuel at high pressure through the CR
pipe to the CR. Some high-pressure CR system configurations may contain a restrictor
valve/pressure control valve (PCV) between the CR pipe outlet and the fuel injector
accumulator chamber. The throttling effect of the PCV helps curtail abnormal fuel flow in
the CR pipe; however, as illustrated in red in Figure 1, an ideal injection process entails a
flow through the CR pipe, to the accumulator of the injector, and the injector body before
being injected into the cylinder. The ECU controls the opening and closing of the injector.
Every time fuel is injected into the cylinder, an instant pressure drop is witnessed in the CR
pipe, but this is immediately compensated by the HPP and its regulator.
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Figure 1. A typical common rail diesel fuel injection system.

These fluctuations in pressure are captured by the rail pressure sensor—a transmitter
for capturing and storing the pressure measurements digitally for analysis and condition
monitoring. The accelerator pedal, when pressed down, decreases the injection duration,
thereby increasing the combustion process to generate more engine power. As shown in
Figure 1, the whole process is controlled by the ECU.

3.2. Test Engine and Fuels

To investigate the proposed study, a KIA Sorento 2004 four-cylinder line engine
(passenger car), whose specification is detailed in Table 1, was used to acquire experimen-
tal data.

Table 1. Test engine specifications.

Car Model Engine Bore × Stroke Maximum Power Maximum Torque Compression Fuel Injection AspirationType (mm) (Nm/RPM) Ratio

KIA Sorento 2004 In-line, Four (4) 91 × 96 138 hp @ 3800 RPM 343 Nm @ 1900 RPM 17.6 Common Rail Turbocharged, inter-cooled

The experiment was conducted as shown in Figure 2 in the following manner: first,
different water compositions are mixed with petroleum diesel to form different emulsion
compositions represented as “EM-x%” (where x represents the water concentration by
volume in (100 − x)% of diesel. For instance, EM-5% contains 5% of water and 95% of
diesel. First, the car’s fuel tank was isolated and an external custom reservoir was designed
for the experiment. To avoid phase separation, the water-emulsified fuels were constantly
stirred by an overhead stirrer (OSA-10 made by LK LABKOREA, Namyangju-si, Korea)
and tested for stability with a centrifuge.

Figure 2. A view of (a) the actual experiment setup, (b) schematic view of the experimental setup.
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As shown in Figure 2b, the pressure signals were collected from the pressure sensor
via an NI 9228 at 200 Hz sampling rate via the engine’s rail pressure sensor (RPS)–Bosch 0
281 002 405 via a NI 9228 module (connected to a NI cDAQ 9178 and LabView software)
produced by National Instruments CORP. The RPS outputs a maximum of (5± 0.25)V
at 2200 bar with a response time (τ10/90) ≤ 5mSecs and a maximum overpressure of
1800 bar (rupture pressure = 3000 bar). Alongside the pressure signals, the real-time
engine temperature data were also collected via NI 9214 module at 1 KHz with an RTD
thermocouple affixed to the exhaust manifold.

Before data collection for the operating conditions (emulsion composition and varying
engine speeds), the engine is allowed to run smoothly for at least 30 min to ensure an
even distribution of the particular emulsion composition through the injection system.
Moreover, this ensures that the engine temperature for the particular temperature is stable.
To collect data for another operating condition, the engine is flushed for at least 1 h with
the emulsion composition of interest.

3.3. Proposed Diagnostic Method

RPS signals are usually non-stationary due to the fluctuations from the PCV and vary-
ing engine speeds (from the accelerator control), and this demands the use of non-stationary
signal processing techniques for identifying characteristic (and fault) parameters. On the
one hand, since these pressure signals are influenced by the periodic fuel injection from the
injector, as proposed in [1], extracting the time-dependent derivatives of the CR signals
not only helps to better identify injection duration, but also to identify fault characteristic
parameters from the signal. On the other hand, choosing a befitting mother wavelet for
extracting CWCs from a signal remains one of the inhibiting factors for employing wavelet
transforms; however, because the level of similarity between a wavelet is directly pro-
portional to the corresponding energy concentration, they provide reliable paradigms for
mother wavelet selection. Figure 3 shows the diagnostic pipeline employed in this study.

Figure 3. Proposed diagnostic pipeline.
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As shown in Figure 3, the model initiates by standardizing the raw RPS signals
to improve the stationarity and discriminance of the inputs. Given the raw CR signals
a(t) = {a(t)1, a(t)2, . . . , a(t)N}, the standardized outputs are computed using Equation (1):

x(t)i =
a(t)i − µ

σ
(1)

where µ and σ represent the mean and the standard deviation of a(t), respectively.
This is then followed by extracting the first-order derivatives of the standardized

signals using Equation (2)

x′(t)i =
x(ti+1)− x(ti−1)

2 ∗ ∆t
(2)

3.3.1. Diagnostic Feature Extraction and Selection

Motivated by the robustness of the wavelet transform for time-frequency-domain
signal processing, the computed differentials are further processed for feature extraction.
The wavelet transform represents a signal in the form of wavelet series—a representation
of a square-integrable (real or complex-valued) function by a certain non-orthogonal
series generated by a wavelet [15,35,36]. Unlike the Fourier transform-based methods
(STFT, MFCC, etc.), this robust technique projects a signal into wavelets which invariably
offer better localization in the frequency domain and provide more reliable spectral (and
transient) information for diagnostics.

Given the finite energy differentials x′(t), the wavelet transform WT(a, b) is the
convolution of x′(t), with a scale and conjugated wavelet ψ(t), as shown in Equation (3).

WT(a, b) =
1√
a

∫ ∞

−∞
x′(t)ψ(t)∗

(
t− b

a

)
dt (3)

where ψ(t)∗ is the complex conjugate of the single function ψa,b(t) obtained by translation
and dilation of the mother wavelet ψ(t), as shown in Equation (4).

ψa,b(t) =
1√
a

ψ

(
t− b

a

)
(4)

where a is the scaling parameter (a > 0), b is the localization parameter (b ∈ R) and | 1/
√

a
is a normalization factor for energy preservation.

Although reliably efficient, choosing the befitting mother wavelet becomes a challenge;
nevertheless, a befitting wavelet is expected to extract the maximum amount of energy
while minimizing the Shannon entropy of the corresponding wavelet coefficients [37].
Consequently, the energy–Shannon entropy ratio (E-SER) defined in Equation (5) provides
an efficient paradigm for choosing the right wavelet.

E− SER(j) =
E(j)

Sentropy (j)
(5)

where E(j) and Sentropy (j) are the energy wavelet coefficients and Shannon entropy at jth
scale, respectively. They are obtained by Equations (6) and (7), respectively:

E(j) =
k

∑
k=1
|WT(j, k)|2 (6)

Sentropy (j) = −
k

∑
k=1

pk loga pk (7)

where k is the total number of wavelet coefficients, WT(j, k) is the k-th wavelet coefficient of
j scale, and pk is the energy probability distribution of wavelet coefficients. Consequently,
by using non-orthogonal wavelets, the outputs—continuous wavelet coefficients (CWCs)—



Electronics 2021, 10, 2922 8 of 20

can be used as fault features/parameters since they capture both transient and spectral
information.

Quite often, not all features are optimally useful for diagnostic problems, and as the
number of classes increase beyond binary cases, the need for salient feature extraction
increases. Although there are numerous filter-based, wrapper-based, and hybrid methods
available for exploration, as a pre-processing step, the Pearson’s correlation filter-based
techniques provides a reliable, cost-efficient, and unsupervised (unbiased) solution for
salient feature selection, dimensionality reduction (to mitigate the curse of dimensionality),
and avoidance of classifier confusion for diagnostics [32,38]. In this context, this step
ensures that only highly uncorrelated CWCs are retained, while the highly correlated
CWCs are eliminated by comparing their p-values; however, being a statistical approach
which functions on the basis of a threshold for elimination/retention, the choice of an
optimal threshold remains. Nonetheless, a high threshold (at least 90%) offers a very
generous paradigm whereby only the highly correlated CWCs (above 90% correlation)
are eliminated.

3.3.2. ML/DL-Based Diagnosis

The predominance of AI across most disciplines has motivated the high discrimination
against the traditional statistical model-based approaches for FDI. Theoretically, DL meth-
ods are quite popular for high detection accuracy; however, issues of interpretability, high
dependence on excessive parameters, overfitting/underfitting issues, computational cost
(and complexity), and the magical defiance from fundamental statistical theory make them
practically unreliable for cost-aware industrial applications [12,32–34]. On the other hand,
most Bayesian ML methods come with benefits ranging from ease-of-use, interpretability,
and computational efficiency on few data and provide reliable diagnostic results when
provided with the right input—fault parameters/features.

In the quest for methodology generalization of ML algorithms for classification, a
recent study by the authors of [37] provides an intuitive paradigm for the choice of (and
discrimination against) ML classifiers for FDI. Although the results therein favored the ran-
dom forest (RF) against the other classifiers including k-nearest neighbor (KNN), gradient-
boosting classifier, (GBC) support vector machines (SVM), decision tree (DT), etc., the
deduction remains questionable considering that: the features used for the comparison
may be insufficient/inadequate, the study lacks a reliable parametrization paradigm for
the classifiers which may result in over-fitting and/or under-fitting, issues, and the impact
of discriminative feature selection was not considered. Clearly, each of these methods
has their unique architecture and parameterization methods; however, from a global per-
spective, minus the less optimal random selection of parameters, other reliable methods
including the exhaustive search, meta-heuristic optimization, and grid search methods
exist for optimal parameter search.

On the brighter side, against the limitations of the other traditional ML-based algo-
rithms, the MLP preserves superior potentials of improvement to form a DNN. For better
learning, a typical MLP can be improved to form a DNN by increasing the number of
hidden layers to two (2) or more hidden layers [32], and with appropriate optimization
methods, its diagnostic/prognostic efficiencies can further be enhanced. The automatic (su-
pervised) learning process of DNN (or MLP) is done via a backward propagation of weights
by gradient descent (following a forward propagation process). This provides the avenue
for error minimization between the predicted and actual outputs. To achieve this cost
minimization, several weight optimization algorithms exist including the quasi-Newton
methods [39], Adam [40], stochastic gradient descent (SGD) [41,42]; and the popular SGD
improvement—the Adam [40] weight optimizer. While the SGD serves fairly for most
problems and the quasi-Newton methods are popularly efficient on small datasets, the
Adam optimizer comes with faster convergence, faster learning, and improved validation
accuracy for large datasets.
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In this study, to ensure an in-depth comparative analysis of the classifiers, the grid
search technique was employed on each algorithm since the meta-heuristic techniques
come with higher computational costs and extra modeling processes which require extra
parametrization in addition to the diagnostic model. On the other hand, different activation
functions—Tanh, recurrent linear units (ReLU), Sigmoid, and SoftMax—were explored for
each of the DNN and MLP architectures designed.

3.3.3. FDI Performance Evaluation

For evaluating the diagnostic capabilities of the proposed diagnostic scheme, visual,
spectral, and empirical investigations are conducted alongside popular diagnostic evalua-
tion metrics. These metrics—confusion matrix, test accuracy, sensitivity, etc.—provide a
strong paradigm for evaluating the classifier’s efficiency for diagnosis. A detailed explana-
tion of these metrics can be found in [36].

4. Experimental Results

Primarily, the major goal of the test was to understand the CR characteristics at varying
W/D emulsion compositions at varying engine speeds and more in-depth results/analyses
found in [21]. Overall, the investigation results revealed that as the water composition
is increased in the different W/D emulsions, exhaust temperature is reduced at lower
engine speeds and the viscosity increased proportionally, and this induced some wear (as a
result of oxidation) on the critical FIS components—injector valve ball seats, injector nozzle
needles, and injector valve pistons. Moreover, the spectral analysis presented therein
suggests that a fatal adverse effect on the FIS may be observed for W/D emulsions beyond
10% composition of water. Figures A1–A3 (Appendix A) present the damage severity
comparison between healthy and worn FIS componentsas a result of diesel emulsification.

4.1. Signal Processing and Feature Extraction

At the end of the experiment, the RPS signals for the various W/D emulsion conditions
were cleaned, standardized, and processed (following the first-order differential process).
Figure 4a shows a view of standardized RPS measurements acquired for the respective
W/D emulsion conditions (across the rows in unique colors) at the increasing engine speeds
(down the columns), respectively, while Figure 4b shows their corresponding first-order
differentials.

Figure 4a reveals the high non-stationarity of the signals across the respective emulsion
and speed conditions; however, as Figure 4b shows, the non-stationarity is significantly
reduced by computing the first-order differentials. As observed, the differentials are
stationary with zero mean values across the conditions. This better represents the signals
for online/offline diagnostics purposes and ensures unbiasedness in their distributions.
Furthermore, the respective wave-forms in Figure 4b are observed to be unique across each
emulsion composition (and engine speed), which invariably ushers in a soft landing for
the wavelet transform to flourish.

To extract the CWCs from these differentials, the suitable mother wavelet was selected
by searching exhaustively amongst the non-orthogonal mother wavelets for the befitting
wavelet (with maximum E-SER). Consequently, the CWCs were extracted up to the 512th
scale on a Mexican hat wavelet from the training dataset which contains most of the
CR pressure signals from the experiment. By so doing, both high- and low-frequency
components can be captured along the time-dependent differentials, thereby ensuring a
more comprehensive spectral and transient representation of the signals. Figure 5 presents
the wavelet spectra (CWCs) from the first-order differentials in Figure 4b.

As shown, not only are the frequency (scale) components captured, but their respec-
tive transient fluctuations are also captured, thereby providing a reliable feature set for
ML/DL-based feature learning for diagnostics. A closer observation of the spectra reveals
the underlying CR dynamics of each W/D emulsion composition at different speeds (rep-
resented by varying color maps). The superior advantage of the wavelet transform for
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time-frequency representation of the signals is reflected by the different scales (with diverse
magnitudes) over increasing speeds. More obviously, the impact of diesel emulsification
is observed at engine idling conditions (the first figure in the left of each row) by the
appearance of high-magnitude scales at every 50th scale. Interestingly, our suspicion of the
engine’s FIS fault at EM-10% emulsion in Figure 5f (at 2000 RPM) and beyond (all engine
speeds at EM-10% emulsion) is confirmed by the numerous magnitudes in virtually all the
scales in Figure 5g.

(a)

(b)

Figure 4. Visualization for (a) CR signals for different W/D emulsions (across the rows in unique colors) at the increasing
engine speeds (down the columns). (b) The normalized first-order differentials of the CR pressure signals at different
emulsion compositions.
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Figure 5. Wavelet spectra of the first-order differential of CR pressure signals for different emulsion compositions and
increasing engine speeds (from left to right: 900, 1200, 1700, 1500, 2000 RPMs). (a) EM-0%, (b) EM-1.3%, (c) EM-1.5%,
(d) EM-2.0%, (e) EM-5.0%, (f) EM-10.0%, and (g) EM-20.0%.
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4.2. ML/DL-Based Diagnosis

Next, the CWCs in the training dataset are labeled respectively in the range {0, 1, . . . , 6},
representing the respective emulsion compositions. In addition, the test dataset was also
prepared with a similar approach and preserved for validation of the proposed diagnostic
method.

The MLP retains its robustness for multi-class problems, and with nonlinear activation
functions in its architecture, reliable unsupervised feature learning/testing can be achieved
after a supervised training process. Furthermore, as this study would later validate,
stacking two or more MLPs to form a DNN has even better predictive accuracies for
diagnosis with marginal additional computational costs. Consequently, different DNN and
MLP architectures with various parameters were designed from which the best performing
architecture is chosen from a grid search for optimal parameters after a five-fold cross
validation. More emphatically, considering that the study entails a seven (7) class diagnostic
problem statement, each of the designed DNN and MLP architectures in Table 2 has seven
neurons in the input and output nodes, respectively, for accepting the extracted features—
CWCs—as inputs, while the hidden layers (and numbers of neurons per layer) are varied
based on Table 2.

Contrary to the MLP and DNN architecture, the learning rules of the other ML-based
classifiers are respectively unique. To avoid digression, it would be futile to discuss
their respective theoretical backgrounds in this study; however, for each of the ML-based
classifiers employed in this study, a five-fold cross validation process was implemented
to ensure that the optimal performances were recorded during performance evaluation.
Following an exhaustive process, the algorithm-specific parameters summarized in Table 2
were respectively achieved for each of the classifiers and were respectively trained using the
salient CWCs for comparative performance evaluation with the DNN and MLP classifiers.

As shown, each classifier is unique to their parameterization, which requires domain
knowledge; however, the grid search algorithm provided an extensive and comprehensive
avenue for discovering each classifier’s best-performing parameters to avoid unbiased
comparative assessments. Invariably, the different sets’ respective parameters uniquely
produce different classifiers of varying diagnostic capabilities; however, a grid search
provides an avenue for evaluating their individual performances. Ideally, increasing the
number of hidden layers of an MLP (to form DNN) beyond three (3) usually leads to
over-fitting and computational cost inflation. It should be noted that the motivation behind
the choice of the grid space values was purely based on prior experience in the domain
since it would be futile to assess all the possible combinations of all integers (number of
nodes) for all possible architectures (number of layers).

The grid search results on the DNN and MLP architectures summarized in Table 2 are
presented in Figure 6 which show the validation scores (using 20% of the training data)
over 100 epochs/iterations with 20 mini batches per epoch. An adaptive learning and
Adam weight optimizer were employed considering the large amount of the dataset.

The results above reveal the validation scores of the 960 different (DNN and MLP)
architectures (15 DNN Architectures each having 64 unique parameter instances) over a
five-fold validation process for 50 iterations/epochs, as shown in Figure 6a. Particularly,
the DNN architecture with three hidden layers with (35, 70, 14) neurons in the hidden
layers returned the highest mean validation score of 98.06%. Its accompanying parameters
are a ReLU activation function, an Adam weight optimizer, and a constant learning rate
of 0.001. On a different note, the overall comparison of each of the 15 DNN architecture’s
performance are presented as box-plots. For each architecture, Figure 6b presents the
median (in red) of each architecture’s validation scores. As the boxplots show, not only are
the DNNs (multiple layers) more accurate in comparison with the MLPs (single layer), but
particularly, the DNN with three hidden layers with (35, 70, 14) neurons in the hidden layers
returned the highest median validation score of 90%. This suggests that even with different
parameters (activation functions and regularization parameters), the DNN architecture
is quite reliable. Overall, it is observed that for the DNNs, higher validation scores are
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achieved. It is also observed that as the number of layers in the hidden layer decreases, the
validation scores also decrease. In sharp contrast to the DNNs, the MLPs returned the least
validation scores. The MLP architecture with 70 neurons in its single hidden layer returned
the highest validation score (amongst the MLPs) of 96.7%— a comparatively lower score,
but reliable nonetheless.

Table 2. Optimal parameters for classifiers.

Algorithm Dependent Parameter Grid Search Space Best Grid Values

RF Estimators (n)
Maximum depth (m)

n = {10, 20, . . . 200}
m = {10, 20, . . . 100}

n = 120
m = 30

Logistic regression (LR) Regularization strength
inverse (C) C = {0.001, 0.01, 0.1, 1, 10, 100, 1000} C = 10

GBC
Estimators (n)

Maximum depth (m)
Learning rate (α)

n = {100, 200, . . . 1000}
m = {10, 20, . . . 100}

α = {0.0001, 0.001, 0.01, 0.05}

n = 500
m = 30

α = 0.001

Linear SVM (SVM-Lin) Regularization (C) C = {1, 10, 100, 1000} C = 100

Gaussian-kernel SVM
(SVM–RBF)

Regularization (C)
Kernel coefficient (γ)

C = {1, 10, 100, 1000}
γ = {1, 10, 100, 1000}

C = 100
γ = 10

Adaboost classifier (ABC)
Estimators (n)

Maximum depth (m)
Learning rate (α)

n = {100, 200, . . . 1000}
m = {10, 20, . . . 100}

α = {0.0001, 0.001, 0.01, 0.05}

n = 200
m = 20

α = 0.01

Gaussian process classifier
(GPC) Kernel (K) K = RBF K = RBF

DT Maximum depth (m)
Pruning (p)

m = {10, 20, . . . 100}
p = {2, 4, 6, 8, 10, 12}

m = 50
p = 12

KNN Number of neighbours (k)
Weight function (w)

k = {1, 2, 3, . . . 100}
w = {uniform, distance}

k = 5
w = uniform

MLP classifier

Number of Layers (h)
Number of nodes (a)

Activation function ( f )
Learning rate (α)

h = 1
a = {70, 35, 14, 7, 1}

f = {Tanh, ReLU, Logistic, Sigmoid}
α = {0.0001, 0.001, 0.01, 0.05}

a = 7
f = ReLU
α = 0.001

DNN classifier

Number of Layers (h)
Number of nodes (a)

Activation function ( f )
Learning rate (α)

h = {2,3}
a = {(70,35,14), (70,14,35), (35,70,14),
(35,14,70), (70,35), (35,70), (70,14),

(14,70), (35,14), (14,35)}
f = {Tanh, ReLU, Logistic, Sigmoid}

α = {0.0001, 0.001, 0.01, 0.05}

h = 3
a = (35,70,14)

f = ReLU
α = 0.001

Naive Bayes classifier (NBC) Gaussian – –

Quadratic discriminant
analysis (QDA)

Regularization strength
inverse (C) C = {0.001, 0.01, 0.1, 1, 10, 100, 1000} C = 0.01
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(a)

(b)

Figure 6. Validation scores of different DNN architectures over a five-fold cross validation. (a) A
complete assessment view; (b) boxplot of each DNN architecture’s performance.

4.3. Diagnostic Performance Evaluation

Performance metrics for monitoring fault detection and diagnostic systems are well
established, including accuracy, precision, sensitivity, recall, F1-score, support, etc. These
metrics, at zero false alarm rate, return a value of 1, while at a 100% false prediction,
they return a value of zero. Detailed definitions of these metrics can be found in [15];
however, they are calculated from true positives (TP), false positives (FP), false negatives
(FN), and true negative (TN) values. In addition to the above evaluation metrics, the
hardware computational cost is also another factor worth considering in the choice of
diagnostic model acceptance/rejection. This is because some algorithms may have superior
predictive capabilities for diagnostics but come with significantly higher computational
costs, while others may not be as inexpensive as they are prediction-capable. Therefore, a
wider perspective of algorithm reliability assessment ensures that as much as possible, the
choice of diagnostic model is backed up by practically acceptable factors.

Following a successful training of the classifiers, the test data were simultaneously de-
ployed on the respective models for testing. Figure 7 shows the comprehensive diagnostic
performance evaluation results of the classifiers.
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Figure 7. Diagnostics performance (test score) comparison of ML-based classifiers on the test data.

As shown, against high training accuracies (in green dots), the relatively poorer
performance of most of the other classifiers can be attributed to their limited efficiencies
for highly indiscriminate cases similar to the one presented in this study. In contrast,
the superior learning capabilities of the DNN are revealed by the highest test accuracy,
precision, recall, and F1-scores. Arguably, the performance of the other classifiers may be
further improved (marginally) with other optimization methods apart from the grid search
technique; however, this is sure to increase the probability of over-fitting which may not
be realistically reliable for safety-critical applications. On the other hand, their respective
computational costs presented by the red dotted lines reveal the cost contribution (in
percentage, the total training time in seconds) of each algorithm to the whole training
time. For reference, all analyses were done in Scikitlearn Python 3.7 library on a desktop
computer with the specifications: AMD Ryzen 7 (manufactured in Taiwan), 2700 Eight-core
3.20 GHz processor, and 16 GB RAM.

With a test accuracy of 92.3% from the DNN model, it is clear that increasing the
number of layers of an MLP to form a DNN enhances its learning and predictive capabilities;
however, the lower costs (85.6%) of the MLP in comparison with the DNN’s cost (13.4%)
allow us to verify the cost implications of the DNN initiative. Overall, the RF ranks second
to the DNN with a test score of 88.5%; however, since it is clearly the most expensive
(with a computational cost of 21.6%) and is naturally affected by high dimensional inputs
and noise, its reliability for practical use remains questionable. Sadly, the SVM variants
(SVM-Lin and SVM-RBF, respectively) were the least effective with test accuracies of 58.41%
and 57.66%, respectively.

4.4. Discussions and Drawn Insights

The results reported so far reveal the robustness of the wavelet transform and DNN
for CRD FIS monitoring/diagnostics under W/D emulsion conditions alongside an inves-
tigative discussion on the water-induced damage severity on critical injector components.
These results are expected to support the campaign for greener energy, emission and cost
reduction, and environmental health by fuel emulsification. Although all hopes seem high
when only the benefits are considered, the inherent wear/oxidation (long-term) effects
from diesel emulsification may impede on-going plans (if any exist) for global adoption.
Contrary to diesel emulsification, engine downsizing also seems like a promising solution;
nonetheless, achieving a globally acceptable engine design on which costs, environmental
concerns, wear issues, etc., are well addressed seems impossible since the realization of
one may imply forfeiting the other(s) [21].

While the empirical validations presented herein support the proposed methodology,
it is important to highlight that three major challenges affect the usability of CR pressure
signals for condition monitoring—the non-stationarity of the signals, choice of wavelet,
and uncertainties. Interestingly, computing the first-order time-dependent derivatives of
the signals not only stationarizes the signals but also provides an unbiased standpoint for
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extracting discriminative features for diagnosis/FDI. On the other hand, recent solutions
on uncertainty modeling (when properly harnessed) may offer reliable solutions [43].
Particularly for wavelet choice, it may be exhaustive to discover an optimal wavelet
considering the numerous wavelets (and their variants) available for exploration; however,
non-complex wavelets offer a reliable kick-start to choose from (if the E-SER approach
seems time-consuming/computationally expensive).

Particularly for the proposed DNN classifier, it can be observed from the test perfor-
mance (confusion matrix) presented in Figure 8 that the model’s class-specific prediction
performance was quite reliable considering the significant inter-class similarities in the
emulsions and varying engine speeds.

Figure 8. Class-specific diagnostics performance by DNN: confusion matrix.

As shown in Figure 8, 717 inputs from EM-2% were wrongly classified as EM-5%,
whereas only 578 samples were accurately classified. This implies that most EM-2% CWCs
have a high similarity with EM-5%; however, a look at the other classes will reveal reliable
diagnosis outputs, with EM-1.3% and EM-20% being the most accurately diagnosed with
2037 and 2016 TPs, respectively. From a different perspective, it can be observed that from
EM-5% to EM-20%, the false alarm rate of detection is significantly reduced. This implies
that the impact of these excessive water compositions in diesel is quite significant and can
be easily detected by the diagnostic model. As much as the model was able to diagnose all
the classes (emulsion compositions) reliably, as observed, with relatively few FNs and FPs
for each class except EM-2%, the proposed framework is validated.

5. Concluding Remarks

Although existing studies reveal encouraging paradigms for the use of water-emulsified
diesel fuels for improved fuel efficiency and a more eco-friendly environment, the relia-
bility of such methods remains open for continued discussions. Issues of stability, mixing
conditions, temperature, and mixing compositions greatly influence the reliability of water-
emulsified diesel fuels; however, this study proposes the use of CR system characteristics
for drawing valid conclusions on a safe emulsion composition for the commercial diesel-
fuel engine. The presented experimental studies suggest that beyond a water-emulsion
composition of 10% water by volume of emulsion, the reliability of the emulsified fuel for
optimum engine efficiency is threatened.

From the investigative assessments presented in the study, a reliable ML-based diag-
nostics scheme was proposed and validated on the RPS signals across various water-in-
diesel emulsions at various engine speeds. This diagnostic framework functions on the
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assumption that the standardized first-order differentials of CR pressure signals not only
eliminate the issues of nonstationarity in the inputs, but they also provide reliable discrimi-
native properties for use by wavelet transform which returns discriminative spectral and
transient information for diagnosis. The results show that by extracting the CWCs from
the first-order differentials up to the 512th scale on a Mexican hat wavelet, adequate fault
parameters can be extracted from which highly salient features can be selected for use by
the DNN classifier whose hyperparameters were globally optimized. With a test accuracy
of 92.3% against other widely-used ML-based diagnostic tools, the proposed DNN-based
diagnostics tool was empirically assessed using several performance evaluation metrics.

Although the study presented here was validated with strong arguments, its potential
for improvement remains healthy for continued research. For instance, the impact of
feature-selection techniques for improved diagnostics accuracy and computational costs
were only considered form a correlation-based perspective only. Obviously, the numer-
ous wrapper-based and hybrid methods still remain unexplored, and this could motivate
continued research paths for investigation. From a deeper perspective, because passive
control improves a diagnostics scheme (since the W/D emulsions were pre-designed)
while introducing more conservativeness, online performance is limited. Therefore, con-
tinued research studies would be aimed at exploring real-time diagnostic solutions while
considering costs and interpretability for industrial applicability.
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Appendix A. Damage Severity Analysis on Injector Components

Ideally, the smooth reciprocating movement of the plunger in a fuel injector of a CRD
engine relies on little/no friction between the plunger and the valve, which under realistic
conditions is ensured by the lubricating effect and low viscosity of diesel. Unfortunately,
W/D emulsions increase the viscosity values of the fuel which results in higher friction
between reciprocating components in the injector [21]. In addition, the water molecules
induce oxidation of the metal components which further results in corrosion, increased
friction, and inevitably, component wear.

Following a back-leak test and microscopic analysis of the injectors after conducting
the W/D emuslion test on the cases study, Figures A1–A3 reveal, respectively, the water-
induced wear severity on the injector pistons, needles, and ball seats, respectively.
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Figure A1. Comparison of injector valve pistons between (a) normal injector, (b–e) the worn injectors
after the experiment, and (f–j) the surface profiles for the respective injector valve pistons.

Contrary to the normal injector valve piston shown in Figure A1a–j reveal that injector
valve pistons were worn as a a result of the W/D emulsion fuels; these are highlighted in
red rectangles. Figure A2b–e,g–j also reveal the wear effects of the W/D emulsions on the
injector needles in comparison with a normal needle (see Figure A2a).

Figure A2. Comparison of injector nozzle needles between (a) normal injector, (b–e) the worn
injectors after the experiment, and (f–j) the surface profiles for the respective injector valve pistons.

Observing the piston valves in Figure A2b–e,g–j better reveals the wear effects com-
pared to the normal needle in Figure A2a,f. In addition, a microscopic observation of the
valve ball seat shows in Figure A3 the oxidation/corrosion effects of the W/D emulsions
on them.

Unlike in Figure A3a,f which shows a smooth circumference (and non-oxidized na-
ture) of the ball seat edge of a normal injector valve ball seat, the whiteness (highlighted
in red circles) and roughness of the ball seat edges in Figure A3b–e,g–j reveals the oxida-
tion/corrosion effect of the W/D emulsion fuels.
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Figure A3. Comparison of injector valve ball seats between (a) normal injector, (b–e) the worn
injectors after the experiment, and (f–j) the surface profiles for the respective injector valve pistons.
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