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Abstract: Device-free localization (DFL) is a technique used to track a target transporting no electronic
devices. Radiofrequency (RF) tomography based DFL technology in wireless sensor networks has
been a popular research topic in recent years. Typically, high-tracking accuracy requires a high-
density wireless network which limits its application in some resource-limited scenarios. To solve
this problem, a geometric midpoint (GM) algorithm based on the computations of simple geometric
objects is proposed to realize effective tracking of moving targets in low-density wireless networks.
First, we proposed a signal processing method for raw RSS signals collected from wireless links
that can detect the fluctuations caused by a moving target effectively. Second, a geometric midpoint
algorithm is proposed to estimate the location of the target. Finally, simulations and experiments
were performed to validate the proposed scheme. The experimental results show that the proposed
GM algorithm outperforms the geometric filter algorithm, which is a state-of-the-art DFL method
that yields tracking root-mean-square errors up to 0.86 m and improvements in tracking accuracy up
to 67.66%.

Keywords: device-free localization; moving target; radio frequency tomography; received-signal
strength; wireless sensor networks

1. Introduction

Device-free localization (DFL) is a promising technology in wireless sensor networks
(WSNs) that focuses on the detection of the position information and other moving status
information of humans who do not carry any tractable electronic devices with them.
Compared with the conventional active localization and tracking schemes that demand the
target to carry devices, such as smartphones, radiofrequency identification (RFID) tags, or
others, the DFL technology has unique superiority in various application scenarios, such
as security safeguard systems of smart homes/buildings/factories, battle field surveillance
systems, patient and elderly monitoring systems in hospitals or geriatric homes, wherein
the targets rarely carry electronic devices which interact with monitoring system [1–7].
Limited by the disadvantage of being sensitive to illumination and by the poor performance
of penetrating through walls and other nonmetallic obstacles, infrared sensors can only
be used for restricted tasks [8]. Cameras can also be used in restricted scenarios because
of privacy protection and legal limitations [9–12]. UWB technology has been known for
its excellent detection accuracy in DFL, but its high cost is a limitation that renders it
impractical [13,14]. Hence, WSN-based DFL technology is a better solution for contactless
sensing and positioning.

Patwari et al. used the received-signal strength (RSS) variations relative to a vacant
scene as observation information and modeled the DFL as a radio-tomography-imaging
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problem to reconstruct the location [15–17]. Talampas et al. introduced a low-computational
geometric filter (GF) algorithm to achieve accurate tracking [18,19]. The disadvantage of
the above methods is that they make each wireless node of the high-density WSN, with the
density of network approximately 1.25 link/m2, broadcast signals in turn, which increases
the energy consumption, complexity, and radio interference. Wang et al. introduced a
lightweight robust Bayesian grid approach (BGA) to achieve robust location estimation [20].
Yang et al. developed a real-time radio-tomography-based DFL system with a compressed
sensing algorithm which significantly reduced the number of RSS measurements. However,
its high-computational complexity limited its application in scenarios with limited memory
and computational resources [21].

Generally, the targets in RF tomography based DFL are not cooperative with the
monitoring system. To realize high-tracking target accuracy, a high density of wireless links
is necessary owing to the limited sensing area of a single wireless link. However, a high
density of wireless links increases data redundancy, energy consumption, computational
complexity, and signal interference from multipath effects, especially, in indoor environ-
ments. To solve the conflict between the demand for high accuracy and the problems
mentioned above, we focus on the geometry of the intersection point among the links in
the wireless network and propose a geometric method.

In this study, a geometric midpoint (GM) algorithm was proposed. The middle point
of the segments formed by the intersection points among the links in the wireless network is
treated as the location estimate in the GM algorithm. The network initialization for building
segment information on each link should be completed before tracking the moving target.
The proposed algorithm calculates the current location estimate based on the previous
location estimate, including the determination of the segments on the triggered links and
the calculation of the distance-based weight, which can effectively reduce the error caused
by the false-positive detection. The location was estimated by the weighted mean of the
middle points of the nearest segments to the previous location estimate of the triggered
links. The weight was based on the distance from the middle point of the segment to
the previous location estimate. The performance of the proposed scheme was evaluated
using simulations and actual experiments. The results demonstrate that the proposed GM
algorithm is an accurate and robust method for device-free localization.

The main contributions of this paper are summarized as follows:

• We propose a GM algorithm that can achieve accurate localization when the density of
wireless network is 0.64 link/m2, much lower than the network density 1.25 link/m2

in conventional GF scheme [10]. The proposed algorithm uses the distance-weighted
geometric midpoint of the segments with endpoints, which are the intersection points
formed by the intersection of the links in the wireless network to estimate the position
of the target. The algorithm can be applied to resource-limited scenarios

• We proposed an effective wireless link detection method that can detect the fluctu-
ations caused by targets correctly, especially in indoor environments wherein the
multipath effect is severe. As this is the first step of the proposed GM scheme, it makes
important contributions to the final system tracking accuracy

The remainder of this paper is organized as follows. Section 2 reviews the related
work about the state-of-the-art RF tomography-based device free tracking and localization
schemes. Section 3 discusses the details of the proposed GM algorithm. In Section 4, the
performance analysis and experimental results are presented. The concluding remarks are
presented in Section 5.

2. Related Works

The RF tomography-based device-free tracking and localization has been attracting
more and more researchers’ concern recent several years. As the early researcher in this
field, J. Wilson, and N. Patwari proposed a radio tomography imaging (RTI) method to
solve the device-free target tracking problem [15–17]. They proposed a linear model to
obtain the images of moving target by using of received signal strength (RSS) data. A noise
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model based on real measurements is also provided. The mean-square error bound of RF
tomography image is proposed to calculate the accuracy of RTI localization system [15]. An
RSS variance related statistical model is introduced and is used to estimate the target motion
images. Kalman filter is applied to recursively track the coordinates of the moving targets
from the motion images [16]. Except tracking the dynamic moving targets, researchers
also proposed measurement-based statistical model to tracking the moving and stationary
targets in wireless network [17].

In addition to the imaging-based localization method, geometric based method with
the advantage of low computation also become a new trend. M. C. R. Talampas et al.
proposed a geometric filter (GF) algorithm to solve the device-free localization problem in
the resource-restrained scenarios [18], which is as the conventional scheme compared with
our proposed scheme. In GF scheme, accurate tracking is realized by using only operations
on simple geometric objects, such as treating the intersection points of shadowed links
as probable target locations. A circular prior region is defined and used to remove the
outlying links and points. The location estimate is generated by the weighted mean of
remaining points inside the circular prior region. The weights are based on the amount
of shadowing experienced by the links and the distances of the intersection point to the
prior location estimate. The updated multichannel geometric filter (MCGF) is proposed by
utilizing the line-of-sight-link (LOSL) fade level and RSS variance on different frequency
channels to detect the target triggering wireless links [19]. The Bayesian grid approach
(BGA) was proposed by Wang et al. to solve the DFL problem using only lightweight
operations on shadowing effect maps and employing prior and constraint information to
realize a location estimate [20]. Recently, a channel impulse response (CIR) based method
was proposed by Ninnemann et al. to locate the device-free targets combined with heatmap
generated by radar imaging [22].

Recent two years, more advanced techniques are applied in device-free localization,
such as machine learning and deep learning, etc. Zhang et al. provided a comprehensive
survey of the state-of-the-art research on wireless sensing for human detection with a focus
on wireless sensing systems (WSSs). A general structure of the deep learning (DL)-based
WSS is introduced in detail for hitherto unexpected applications and future wireless sensing
scenarios [23]. Zhao et al. formulated the DFL problem to an image classification problem
and designed a three-layer convolutional autoencoder (CAE) neural network to perform
unsupervised feature extraction from raw signals followed by supervised fine-tuning for
classification [24]. Alberto et al. proposed a novel recurrent neural network (RNN) model-
based adaptive indoor tracking framework combined with generative adversarial networks
(GAN) to solve the accurate tracking and positioning problem in indoor environment [25].
Ma et al. designed a deep neural network to recognize the human gestures which can
learn discriminative deep features and learn a transferrable similarity evaluation ability
from the training set, and apply the learned knowledge to the new testing conditions [26].
Zhou et al. proposed a one-dimensional convolutional neural network (1D CNN) based
method which exploits domain adaptation (DA) and semantic alignment (SA) to reduce
the work on labor-intensive and time-consuming recalibrating in device-free WiFi local-
ization [27]. Wang et al. designed an adversarial network (GAN) based mmWave FMCW
system which realized high accuracy under a small training sample in device-free human
gesture recognition [28]. Yan et al. proposed a novel decoupled convolutional neural
network (CNN) based device-free activity detection and position estimation scheme us-
ing channel state information (CSI) in WiFi environment, which realized competitive
performance in feature extraction compared with the state-of-the-art methods [29].

What’s more, some conventional techniques in wireless communication field have
been also updated and applied in device-free localization. Wang et al. proposed three
novel multiplexing mechanisms–angle division multiplexing sensing, range division multi-
plexing sensing, and source division multiplexing sensing to realize multi-target device-
free wireless sensing (DFWS) simultaneously [30]. Kaltiokallio et al. introduced a novel
Bayesian filter which augments the measurement model of a Bayesian filter with position
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estimates form an imaging approach. The filter nearly reach the posterior Cramer-Rao
bound and is superior with respect to imaging approaches in terms of localization accu-
racy [31]. Zhao et al. modeled and implemented an accurate and easy-to-deploy system for
indoor localization by combining with WiFi sensing technology and computer vision tech-
nology. This system enhances indoor localization with multimodal sensing vis two images,
IMU sensors reading and CSI of WiFi signal, which realized accurate tracking accuracy [32].
Guo et al. proposed a new algorithm under the compressive sensing (CS) framework to
track the time-varying target gestures in device-free localization (DFL) scheme [33]. Com-
pared with the new techniques in recent years, our proposed method is a light weighed
solution for low density wireless sensor network. The biggest advantages of our proposed
method are the reliable link triggering strategy and simple localization principle, which
makes it can be used in resource-limited scenarios and realize acceptable tracking accuracy.

3. Proposed GM Algorithm

The proposed GM algorithm scheme is presented in this section. Before starting, it is
necessary that we should briefly introduce the conventional state-of-the-art GF scheme.
In GF scheme, link filter (LF) and point filter (PF) are proposed to use the prior location
estimate to build a circular prior region to: (1) remove outlier links; (2) remove improbable
target locations; (3) assign distance-dependent weights to probable target locations ensuring
robust tracking performance. The entire GM algorithm can be divided into several sections:
detection the triggered links, intersection point algorithm, construction of link segments,
computation of the midpoint of the segment and distance-based weights, and generation
of the location estimate. All these aspects are introduced in the succeeding sections.

3.1. Detection of the Triggered Links

RF tomography based DFL is a technique used for the detection of a target carrying
no electronic devices by using of the fluctuation of wireless signals of the links among
sensors in a monitored area covered by a group of wireless sensors, as shown in Figure 1.
Only a part of the wireless links near by the position of the target is triggered by the target,
while all other links are not triggered. To enlarge the difference between the baseline and
measured RSS caused by the appearance of the target in the vicinity of the wireless links
and decrease the influence of environmental noise and sensor errors, we propose a robust
detection method to detect triggered links that use a window to slide over the RSS data to
capture the difference parts.
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Figure 1. Device-free localization (DFL) system made up of eight nodes.

By applying a sliding window filter with a rectangular window function of length
c + 1 (c� Z) on the RSS measurement sequence Ri = {Ri(z)|z = 0, . . . , Z− 1} of the i-th
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link Li, where Z is the measurement data length, we can obtain the subset of Ri which is
defined by,

Rn
i = {Ri(z)|z = n, . . . , n + c}, (1)

where n is the start index of the rectangular window function which ranges from 0 to
Z− c− 1.

The variance of the RSS subset Rn
i can be calculated as,

Vn
i =

1
c + 1

n+c

∑
z=n

(Ri(z)− µ)2, (2)

where µ is the mean value of Rn
i . In this way, after the application of a series of sliding

calculations on the RSS values of link Li, we can obtain a corresponding variance value
array Vi. Owing to the different variance values on different links, it is not convenient to
set an appropriate triggering threshold for different links. Hence, min-max normalization
is applied to the series of variance values. The minimum variance value is transformed to
a zero value, the maximum variance value is transformed to unity, and every other value is
transformed to a decimal value between zero and one. The normalized variance sequence
V′i is as follows,

V′i =
Vi −min(Vi)

max(Vi)−min(Vi)
, (3)

where max(·) and min(·) denote the calculation operations of the maximum and minimum
values. It should be noted that, the maximum and minimum of the variance values would
be updated continuously as the RSS measurements are collected.

The wireless link can then be triggered by the target if some value Vi in the corre-
sponding normalized variance sequence V′i is above the triggering detection threshold Vth.
The set Jt of the triggered links at time t is defined as the set containing all wireless links Li
that satisfy Vi > Vth, that is,

Jt =
{

Li
∣∣Vi > Vth, Vi ∈ V′i

}
, (4)

where Vth is determined by researchers based on the different tracking environments to
obtain the best tracking performance.

Figures 2 and 3 show that the raw RSS data collected from wireless sensors and the
normalized filtered variance data using a sliding window filter. It can be observed that the
proposed triggered link detection method can effectively capture the triggering time of the
target. The performance at different lengths of sliding window c and triggering detection
threshold Vth are discussed in Section 3.
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3.2. Intersection-Point Algorithm

The parametric forms of the links Lj and Lk, from the node location na
j to nb

j , and from

na
k to nb

k, respectively, are,

Lj =
[(

xa
j , ya

j

)
,
(

xb
j , yb

j

)]
,

Lk =
[(

xa
k , ya

k
)
,
(

xb
k , yb

k

)]
,

(5)

where
(

xa
j , ya

j

)
,
(

xb
j , yb

j

)
,
(
xa

k , ya
k
)
, and

(
xb

k , yb
k

)
are the coordinates of points, na

j , nb
j , na

k and

nb
k, respectively. The direction vector of the link Lj can be defined as,

gj = nb
j − na

j

=
[

xb
j − xa

j , yb
j − ya

j

]
,

(6)

Because the normal vector is perpendicular to the direction vector, the non-normalized
normal vector of the link Lj can be calculated as,

hj =
[
yb

j − ya
j , xa

j − xb
j

]
, (7)

For two links with limited length, there are five types of relationships between them,
as shown in Figure 4. The projection of the vector na

j (we use na
j as the notation of the

vector from the origin of coordinates to the current node coordinates na
j in the following

description) onto hj can be expressed as,

p1 = na
j ·hj, (8)

where (·) is the dot product. In the same way, p2 = na
k·hk. If the projection is from the

vector na
k to the normal vector hj, it can be expressed as,

p1a = na
k·hj, (9)
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Figure 4. Illustrations of five possible location relationships of two links. (a) Case in which the two
links are parallel with each other. (b) Case in which the two links are not parallel and do not intersect
with each other. (c) Case in which the two links are collinear but not coincident. (d) Case in which
the two links intersect but the intersection point does not exist at the endpoints. (e) A simplified
sketch map of (d). (f) The two links intersect, but the intersection point exists at endpoints.

Similarly, the projection of the vector nb
k to a normal vector hj is expressed as

p1b = nb
k·hj. Note that the subscript “1” is related to the normal vector hj, and “2” is

related to hk. Therefore, the projection of vector na
j and nb

j to the normal vector hk can be

written as p2a = na
j ·hk and p2b = nb

j ·hk, respectively.
To describe the link intersection algorithm concisely, we also define the projection of

the vector na
j onto the direction vector gj, which is expressed as,

q1a = na
j ·gj, (10)

Similarly, q1b = nb
j ·gj, the projection of vectors na

k and nb
k onto the direction vector gk

are q2a = na
k·gk and q2b = nb

k·gk, respectively.
As shown in Figure 4a, when the two links Lj and Lk are parallel to each other, the

normal vectors hj and hk of the corresponding links are parallel. The projection of vectors
na

k and nb
k of the link Lk on the normal vector hj are equal. The two values of |p1a − p1| and

|p1b − p1| are equal and nonzero, which can be a criterion for determining the parallelism.
In this case, there is no cross point between the two links. In Figure 4b, the two links are
not parallel to each other, and do not intersect with each other. Therefore, the projection
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values |p1a − p1| and |p1b − p1| are all nonzero and are not equal to each other. In this
case, there is no intersection point between the two links. As a special case of the parallel
orientation in Figure 4a, the collinearity of the two links is shown in Figure 4c. In this case,
the three values of p1, p1a and p1b are equal. To check whether there is an intersection
point, four values q1a, q1b, q2a and q2b should be considered: the projections of vector na

j ,

nb
j , na

k and nb
k on the common direction vector gj or gk, respectively. If the two links are

collinear and there is no coincidence, as shown in Figure 4c, it should meet at least one
of the two conditions that the product of q1a − q2a and q1b − q2b should be negative or
approximately equal to zero, and the product of q1b − q2a and q1b − q2b should be negative
or approximately equal to zero. Otherwise, the two links are collinear and overlap in part
with each other. Because the case of two overlapping links is not a realistic scenario, it is
omitted in Figure 4.

The most common case is shown in Figure 4d, where the two links intersect with each
other. Because of the existence of the intersection point, the projection value p1 should be
between p1a and p1b. Similarly, the projection value p2 should be between p2a and p2b. In
other words, the product of p1 − p1a and p1 − p1b should be negative or approximately
zero when the intersection point is infinitely close to any vertex of the corresponding link,
as shown in Figure 4f. The projection p2 should be calculated in a similar manner.

The method used to calculate the intersection point is shown in Figure 4e, which is a
related to Figure 4d. The triangle ∆na

j na
knb

k is congruent with the triangle ∆ACB, which is

easily known. The ratio with na
kO to Onb

k can be calculated as,

β =
Γ∆na

j na
kO

Γ∆na
j Onb

k

=
Γ∆ACO′

Γ∆AO′B
=
|p1 − p1a|
|p1 − p1b|

, (11)

where Γ is the area of the triangle. Therefore, the intersection point O can be calculated as

O = na
k +

(
nb

k − na
k

)
∗ β, (12)

The last case of the position relation of the two links is that some endpoint of the
link is the intersection point, as shown in Figure 4f. In this case, the ratio β = 0, and the
intersection point can be na

k. The intersection point algorithm is summarized in Algorithm 1.

Algorithm 1 Intersection Point Algorithm

Input: The two links Lj and Lk.
Output: The intersection points if it exists.
1. Calculate direction vector gj and gk using Equation (6).
2. Calculate normal vector hj and hk using Equation (7).
3. Calculate the projection of p1, p1a, p1b, p2, p2a and p2b using Equations (8) and (9).
4. if |p1a − p1| = 0 and |p1b − p1| = 0 then
5. q1a = na

j ·gj, q1b = nb
j ·gj B corr. to Equation (10)

6. q2a = na
k ·gk, q2b = nb

k ·gk
7. if (q1a − q2a)(q1b − q2b ) ≤ 0 or (q1b − q2a)(q1b − q2b) ≤ 0 then
8. return [−3,−3] B corr. to collinear and coincident
9. else
10. return [−2,−2] B corr. to Figure 4c
11. end
12. else if (p1a − p1)(p1b − p1 ) ≤ 0 and (p2a − p2)(p2b − p2) ≤ 0 then
13. β = |p1−p1a |

|p1−p1b |
14. cp = na

k +
(

nb
k − na

k

)
∗ β B corr. to Equation (12)

15. return cp B corr. to Figure 4d–f
16. else
17. return [−1,−1] B corr. to Figure 4a,b
18. end
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3.3. Build Segments of Links

Given the algorithm used to calculate the intersection point of links, we calculated
the intersection points pairwise among all members of L. The set Spj of link Lj stores
all the intersection points with other links. It should be noted that if an effective in-
tersection point cp between link Lj and Lk is calculated by excluding coinciding at the
endpoints of links, it will be stored in the two sets Spj and Spk in the cases of the two
corresponding links. Subsequently, the traversal loop is used to calculate and store the
intersection points for all the links in the network. For the link Lj, all the intersection
points in Spj together with the the two endpoints na

j and nb
j should be sorted by the x-axis

coordinate in ascending order. The two connected points in the merged set Spj form a
new segment. All segments on the link Lj are stored in the corresponding set Segj. A
summary of the procedure for building the segment of links is presented in Algorithm 2.

Algorithm 2 Calculate intersection point and segments of links

Input: The set of all the links L
Output: The set of all the links L with segments information
1. Initialize Sp and Seg for each link L to the empty set.
2. for all links Lj in L do
3. for all links Lk in L, j 6= k do
4. Solve the intersection point cpjk using Algorithm 1.

5. if cpjk /∈
{

na
j , nb

j

}
then

6. Spj ∪
{

cpjk

}
7. Spk ∪

{
cpjk

}
8. end
9. end
10. end
11. for all links Lj in L do

12. Sp′j = Spj ∪
{

na
j , nb

j

}
13. Sort the points in set Sp′j by x-axis coordinate.
14. for all links point pi in Sp′j do
15. Build new segment segi using {pi, pi+1}.
16. Segj ∪ {segi}
17. end
18. end

3.4. Compute the Segment Midpoint

The general equation of the link Lj from node na
j to nb

j is Ajx + Bjy + Cj = 0, where

Aj = yb
j − ya

j , Bj = xa
j − xb

j and Cj = xb
j ∗ ya

j − xa
j ∗ yb

j . The slope k j and intercept bj of the
link Lj were k j = −

(
Aj/Bj

)
, bj = −

(
Cj/Bj

)
, if Bj 6= 0. Draw a perpendicular to the link

Lj through the previous location estimate x̂t−1 with coordinates (xt−1, yt−1) as shown in
Figure 5a. The slope and intercept of the perpendicular can be estimated as,

k⊥ = − 1
hj

, (13)

b⊥ = yt−1 − k⊥ ∗ xt−1, (14)
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The intersection point p (O1 in Figure 5a) with coordinates
(
xp, yp

)
can be solved by

using the point-slope equations,

yp = k⊥ ∗ xp + b⊥, (15)

yp = k j ∗ xp + bj, (16)

For each segment in set Segj on link Lj, find the segment seg∗j in which the middle
point has the shortest distance with the intersection point p,

seg∗j = argmin
segi

d(mid(segi), p), (17)

where d(·) represents the Euclidean distance operation, the calculation mid(·) for the
middle point of the segment segi with two endpoints

[
pa

i , pb
i

]
is defined as,

mid(segi) =
1
2

[(
xpa

i
+ xpb

i

)
,
(

ypa
i
+ ypb

i

)]
, (18)

where
(

xpa
i
, ypa

i

)
and

(
xpb

i
, ypb

i

)
are the coordinates of the endpoints pa

i and pb
i , respectively.

The middle point qj of the segment (such as the middle point of segment S4 in Figure
5a) on the link Lj nearest to the previous location estimate x̂t−1 is given by,

qj = mid
(

seg∗j
)

, (19)

All the middle points of the nearest segment of links in Jt are stored in the set
Qt =

{
q1

t , q2
t , . . . , qK

t
}

, where K = |Jt| denotes the cardinality of the set Jt. For exam-
ple, the set Qt includes the middle point of segment S4 on link 1 in Figure 5a, the middle
point of segment S3 on link 2 in Figure 5b, and the middle point of segment S3 on link 6 in
Figure 5c, if links 1, 2, and 6 are triggered.

3.5. Distance-Based Weights

To decrease the tracking error caused by the multipath effect, weights which are
dependent on the distance from the middle point of the segment to the previous location
estimate x̂t−1 are proposed. Distance-based weight wi

d for the middle point qi
t ∈ Qt is

computed as,

wi
d =

1∣∣∣∣x̂t−1 − qi
t
∣∣∣∣ , (20)
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The middle points on segments which are closer to the previous location estimate are
assigned higher weights compared with the middle points which are farther away. The set
of distance-based weights wi

d for all middle points qi
t ∈ Qt is defined as,

Wd =
{

wi
d

∣∣∣qi
t ∈ Qt

}
, (21)

It is noted that when the first location estimate is calculated, that is, t = 1, all the
weights wi

d are set to one.

3.6. Generation of Location Estimates

Given the set of middle points Qt and the distance-based weight Wd, the location
estimate x̂t can be calculated as the weighted mean of all the middle points in Qt,

x̂t =
|Jt |

∑
u=1

wu
d

∑
|Jt |
v=1 wv

d

× qu
t , (22)

where |Jt| denotes the cardinality of the set Jt, and qu
t and wu

d represent the middle points
of the segment on the u-th link Lu on Jt and the corresponding weight value, respectively.
The GM algorithm is summarized in Algorithm 3, and an illustration is shown in Figure 5.

Algorithm 3 Geometric midpoint algorithm for DFL

1. Calculate the segments of among all the links L in the network using Algorithm 2.
2. After the initialization of network, collect the raw RSS data and store in R.
3. for t ≥ 1 do
4. Apply sliding window filter using Equations (1)–(3).
5. Determine the triggered links Jt using Equation (4).
6. Generate the set of middle points Qt using Equations (13)–(19).
7. Generate the set of distance-based weights Wd using Equations (20) and (21).
8. Calculate the location estimate x̂t using Equation (22).
9. end

4. Performance Analysis and Evaluation

In this section, we evaluate the performance of the proposed GM algorithm based on
the DFL system using simulation analyses and experimental evaluations.

Before the experiment, we performed a group of simulations to test the ideal perfor-
mance of the proposed algorithm. We designed a typical target path, as shown in Figure 6a.
We used a circle in two dimensions to represent the target. The vertical distance from
the center of the circle to the link represents whether the target can trigger the link. If
the vertical distance is lower than a threshold value, the link can be regarded as being
triggered. In other words, this process does not include the simulation for wireless signals,
but after the link triggering information is determined by the pure geometric distance
between target (circle) and links (lines), is then to feed the triggered link information to
the GM scheme and acquire the final target estimate. In this way, a dynamic simulation
process is performed, and the visualized tracking performance of the simulation and mean
tracking errors are shown in the Figure 7a,b.



Electronics 2021, 10, 2924 12 of 16Electronics 2021, 10, x FOR PEER REVIEW 12 of 16 
 

 

 
 

(a) (b) 

Figure 6. (a) Experimental setup. (b) Photograph of the experiment setup with the target travers-

ing the predefined path. 

The average error of the estimated target location is defined as, 

ε =  
1

𝐾𝑠
∑ √(𝑥𝑘 − �̂�𝑘)2 + (𝑦𝑘 − �̂�𝑘)2

𝐾𝑠

𝑘=1

, (23) 

where 𝐾𝑠 is the total number of samples, 𝑥𝑘 and 𝑦𝑘 are the actual target location coor-

dinates of the x-axis and y-axis, respectively, and �̂�𝑘 and �̂�𝑘 are the estimated x and y 

coordinates at sample time 𝑘. 

 

      

 
(a) (b) 

Figure 7. (a) Visualized tracking performance of the proposed GM algorithm. (b) Mean tracking 

errors between the predefined path and the estimated paths. 

4.1. Experimental Setup 

To evaluate the performance of our proposed GM algorithm in an actual indoor phys-

ical environment, we performed multiple experiments in different days to validate the 

practicality and robustness of the proposed scheme. The experiments are performed on a 

wireless peer-to-peer sensor network containing nine nodes. In the experiments, the target 

moved according to the predefined path. Eight of the nine nodes are distributed on both 

sides of the 5 𝑚 × 5 𝑚 square area, and each node is placed 2.5 𝑚 apart on a side. The 

wireless nodes operated on a 2.4 GHz industrial, scientific, and medical (ISM) band based 

on the IEEE 802.15.4 standard and were placed on tripods approximately 1.3 𝑚 above the 

ground. That is because the main localization target is human beings with height from 

1.6 𝑚 to 1.8 𝑚. Nodes 1–8 are normal nodes and broadcast signals sequentially at fixed 

time intervals. The node that broadcasted signals worked as a transmitter, and the remain-

ing seven nodes worked as receivers. The node 9 was the central node used to coordinate 

Figure 6. (a) Experimental setup. (b) Photograph of the experiment setup with the target traversing the predefined path.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 16 
 

 

 
 

(a) (b) 

Figure 6. (a) Experimental setup. (b) Photograph of the experiment setup with the target travers-

ing the predefined path. 

The average error of the estimated target location is defined as, 

ε =  
1

𝐾𝑠
∑ √(𝑥𝑘 − �̂�𝑘)2 + (𝑦𝑘 − �̂�𝑘)2

𝐾𝑠

𝑘=1

, (23) 

where 𝐾𝑠 is the total number of samples, 𝑥𝑘 and 𝑦𝑘 are the actual target location coor-

dinates of the x-axis and y-axis, respectively, and �̂�𝑘 and �̂�𝑘 are the estimated x and y 

coordinates at sample time 𝑘. 

 

      

 
(a) (b) 

Figure 7. (a) Visualized tracking performance of the proposed GM algorithm. (b) Mean tracking 

errors between the predefined path and the estimated paths. 

4.1. Experimental Setup 

To evaluate the performance of our proposed GM algorithm in an actual indoor phys-

ical environment, we performed multiple experiments in different days to validate the 

practicality and robustness of the proposed scheme. The experiments are performed on a 

wireless peer-to-peer sensor network containing nine nodes. In the experiments, the target 

moved according to the predefined path. Eight of the nine nodes are distributed on both 

sides of the 5 𝑚 × 5 𝑚 square area, and each node is placed 2.5 𝑚 apart on a side. The 

wireless nodes operated on a 2.4 GHz industrial, scientific, and medical (ISM) band based 

on the IEEE 802.15.4 standard and were placed on tripods approximately 1.3 𝑚 above the 

ground. That is because the main localization target is human beings with height from 

1.6 𝑚 to 1.8 𝑚. Nodes 1–8 are normal nodes and broadcast signals sequentially at fixed 

time intervals. The node that broadcasted signals worked as a transmitter, and the remain-

ing seven nodes worked as receivers. The node 9 was the central node used to coordinate 

Figure 7. (a) Visualized tracking performance of the proposed GM algorithm. (b) Mean tracking errors between the
predefined path and the estimated paths.

The average error of the estimated target location is defined as,

ε =
1

Ks

Ks

∑
k=1

√
(xk − x̂k)

2 + (yk − ŷk)
2, (23)

where Ks is the total number of samples, xk and yk are the actual target location coordinates
of the x-axis and y-axis, respectively, and x̂k and ŷk are the estimated x and y coordinates at
sample time k.

4.1. Experimental Setup

To evaluate the performance of our proposed GM algorithm in an actual indoor
physical environment, we performed multiple experiments in different days to validate
the practicality and robustness of the proposed scheme. The experiments are performed
on a wireless peer-to-peer sensor network containing nine nodes. In the experiments, the
target moved according to the predefined path. Eight of the nine nodes are distributed on
both sides of the 5 m × 5 m square area, and each node is placed 2.5 m apart on a side. The
wireless nodes operated on a 2.4 GHz industrial, scientific, and medical (ISM) band based
on the IEEE 802.15.4 standard and were placed on tripods approximately 1.3 m above the
ground. That is because the main localization target is human beings with height from
1.6 m to 1.8 m. Nodes 1–8 are normal nodes and broadcast signals sequentially at fixed time
intervals. The node that broadcasted signals worked as a transmitter, and the remaining
seven nodes worked as receivers. The node 9 was the central node used to coordinate
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the operation of the network, such as sending the transmit command to the transmitters.
The transmitters broadcasted signals to the receivers sequentially every 0.1 s to prevent
transmission collisions. Once the receiver received the signal from the transmitter, it
extracted the RSS and source address ID information from the frame, and fed the data
together with their ID information to a laptop computer via a universal asynchronous
receiver/transmitter port. An illustration and photograph of the experimental setup are
shown in Figure 6a,b.

The default parameters are summarized as follows: the speed of the target is ap-
proximately 0.5 m/s, the length of the sliding window filter c = 16, and the threshold
value for triggering detection Vth = 0.4. The performance of the proposed GM algorithm
is compared with that of the state-of-the-art GF algorithm. The algorithms were coded
in MATLAB (version R2021a, MathWorks, Natick, MA, USA), and ran on a 3.40-GHz
desktop computer.

4.2. Experimental Results and Analysis

The results of the experiment using the proposed GM algorithm are shown in Figure 7a,
and the mean tracking errors are shown in Figure 7b. The experiment result in Figure 7b
is realized under the parameter the length of sliding window filter c = 16, the triggering
threshold Vth = 0.4. As shown, our proposed GM algorithm can track moving targets with
small errors even in low-density wireless networks.

The performance of the proposed algorithm was evaluated subject to the two main
parameters sliding window length c and triggering detection threshold Vth, which are
related to the triggering of wireless links; relevant results are shown in Figure 8. All the
cases for various triggering detection threshold (from 0.1 to 0.9) and various length of
sliding window (from 5 to 39) are included to calculate the RMSE, and the vertical lines
show the range of the RMSE results. As shown in Figure 8a, if the length of sliding window
c is too short, the range of error is too large, and the system cannot track the target with
stable accuracy. The reason is that a very small c value cannot efficiently capture the
fluctuation caused by the target. As the length of the sliding window c increases, the
tracking errors also increase. This is because a larger c will increase the computation of
filtering by the sliding window and decrease the ability to detect the fluctuation of wireless
signals. Hence, the appropriate length of the sliding window c was between 16 and 20.
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Figure 8. Tracking errors as functions of the length of the sliding window and triggering detection
threshold for the proposed GM scheme (a) length of sliding window c and (b) triggering detection
threshold Vth. The central marks indicate the medians of tracking errors. The lower and upper bars
indicate the 0th and 75th percentiles, respectively.

Figure 8b shows that the mean tracking errors increase as the triggering detection
threshold Vth increases. A very large Vth causes the system to ignore some real but small
fluctuations caused by the target, and decreases the accuracy of the system. If the threshold
Vth is too small, it causes false triggering. Because this threshold is applied to the normal-
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ized variance signals, small values can still ensure that the system maintains good tracking
accuracy. The appropriate threshold value for this experiment was 0.4.

To demonstrate the advantages of the proposed GM algorithm in a low-density
wireless network, we used the same dataset to test the performance of the conventional
state-of-the-art device-free localization scheme (the GF scheme) [18], which can achieve
high-tracking accuracy in high-density wireless networks. The results are presented in
Figure 9. All the cases for various triggering detection threshold (from 0.1 to 0.9) and
various length of sliding window (from 5 to 39) are included to calculate the RMSE, and
the vertical lines show the range of the RMSE results. As shown in Figure 9a, the errors
associated with the GF scheme in the 3× 3 wireless network are much higher than the
mean error of the proposed GM scheme, which is approximately 3 m. The triggering
threshold value (which is below 0.3) can realize relatively high accuracy (approximately
equal to 0.8 m) as shown in Figure 9b. In GF scheme, the researchers performed the
experiments with 5× 5 wireless network (network density is about 1.25 link/m2) in outdoor
environment, which realized high tracking accuracy. Generally speaking, it is necessary
to build high density wireless network to realize high tracking accuracy. The accuracy of
wireless network-based tracking system in outdoor is higher than in indoor environment,
due to the severe multipath effect in indoor environment. Our proposed scheme is designed
for low density network (about 0.64 link/m2) and finally realized relatively higher tracking
accuracy than the conventional GF scheme when facing the two challenges–low network
density and indoor environment.
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Table 1 lists the statistical minimum, median and mean values for the tracking root-
mean-squared errors (RMSE) subject to Figures 8a and 9a. From Table 1, we can see that
even the minimum value is similar for the proposed GM scheme and the conventional
GF scheme. But the proposed GM scheme outperform GF scheme in median and mean
values, with 68.42% and 67.66% increase, respectively, which shows the GM scheme has
more advantages in low density wireless networks.

Table 1. Statistical characteristics of root-mean-square-errors (RMSE).

Algorithm Min (m) Median (m) Mean (m)

RSS based GM 0.4367 0.8603 0.8679
RSS based GF 0.4516 2.7241 2.6837
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Finally, we list some problems we meet during our experiment that we set to finish
in future. Limited by the hardware performance of our wireless module, users could not
modify the sampling rate, which caused the system cannot collected enough RSS data in
short time. However, the length of the sliding window is related to the input RSS data. If
the length of the sliding window is set to a very large value, the system will keep waiting
until enough RSS data is fed by serial port, which directly causes the decrease of tracking
performance in real-time localization application. What’s more, if the sampling rate of the
wireless modules can increase, the system delay will significantly decrease and get good
tracking accuracy.

5. Conclusions

In this study, we firstly proposed an effective wireless link detection method that
can detect the fluctuations caused by targets and then proposed a geometrical midpoint
algorithm that can track a target effectively in a low-density WSN. In this scheme, we used
the middle points of segments that were formed by the intersections among links as the
possible positions of the target. The target estimate was combined with all the distance-
based weighted midpoints of the related segments on the triggered links. This proposed
scheme realized the average tracking accuracy about 0.8 m level, while the conventional
GF scheme is about 2.6 m level when the size of monitored area is 25 m2. This method did
not require complex computations, such as particle filter-based or grid-based algorithms,
which made it suitable for use in resource-limited scenarios. Our future work includes:
perform more groups of experiment under different conditions to test the practicality and
robustness of the proposed scheme; calculate the computational complexity of the proposed
scheme and compare with conventional methods; test the performance of the proposed
method in wider monitored area and more nosier environment; test the possibility of the
proposed scheme for tracking multiple targets with acceptable accuracy; and expand the
proposed scheme to make it to be applied in 3-dimensional environment.
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