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Abstract: Advanced sensors are becoming essential for modern factories, as they contribute by
gathering comprehensive data about machines, processes, and human-machine interaction. They
play an important role in improving manufacturing performance, in-factory logistics, predictive
maintenance, supply chains, and digitalization in general. Wireless sensors and wireless sensor
networks (WSNs) provide, in this context, significant advantages as they are flexible and easily
deployable. They have reduced installation and maintenance costs and contributed by reducing
cables and preinstalled infrastructure, leading to improved reliability. WSNs can be retrofitted
in machines to provide direct information from inside the processes. Recent developments have
revealed exciting possibilities to enhance energy harvesting (EH) and wireless energy transmission,
enabling a reliable use of wireless sensors in smart factories. This review provides an overview of
the potential of energy aware WSNs for industrial applications and shows relevant techniques for
realizing a sustainable energy supply based on energy harvesting and energy transfer. The focus is
on high-performance converter solutions and improvement of frequency, bandwidth, hybridization
of the converters, and the newest trends towards flexible converters. We report on possibilities to
reduce the energy consumption in wireless communication on the node level and on the network
level, enabling boosting network efficiency and operability. Based on the existing technologies,
energy aware WSNs can nowadays be realized for many applications in smart factories. It can be
expected that they will play a great role in the future as an enabler for digitalization in this decisive
economic sector.

Keywords: energy harvesting; vibration converters; energy saving; wireless power transfer; wireless
communication; WSN

1. Introduction

Several trends of digitalization [1], Internet of Things (IoT), and 5G Networks address
massive sensing and admit that wireless sensors deliver measurement data directly to a
server or a cloud reliably and easily so that a big data basis can support decisions and
several novel services can be realized. In industry 4.0, smart factories are supposed to build
a linked and flexible production environment, with a comprehensive data stream through
production at different levels, and easily adapt to changing demands, manufacturing pro-
cesses, and manufacturing conditions [2]. Devices are needed to have seamless connectivity,
interoperability, visualization, and high-performance capabilities. For the realization of
this high intelligence level, factories should gather and process diverse data from physical,
operational, and human resources to manage manufacturing systems’ material supply,
production, operations, and maintenance. Here, it comes the main role of sensors, which
can automatically gather the necessary data in abundance. Sensors play a great role, as
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they support the tracking of the entire manufacturing process and contribute to improving
production performance, quality management, improving precision in production machin-
ery, optimizing production tasks by the enhancement of automation and regulation, and
detecting and identifying faults.

In smart factories, where a high level of system reliability and reactivity is demanded,
the use of autonomous wireless sensors did not find a high acceptance initially because
of general skepticism about reliable communication and energy supply, especially if they
are battery driven. Energy supply becomes gradually essential, as flexible positioning and
easy maintenance are critical features for accepting the massive use of wireless sensors [3].
Nevertheless, recent developments have revealed exciting possibilities to enhance energy
harvesting (EH) efficiency by designing suitable converters, combining converters in hybrid
solutions, and adopting opportunities for wireless energy transmission. Developments
in microelectronics enable significant energy savings, making an energy supply from
ambient sources increasingly practicable. Wake-up receivers switch unnecessary system
parts entirely off and reduce energy consumption during sleeping phases [4,5]. Data
aggregation techniques [1], clustering, and intelligent routing realized significant energy
savings on the network level. The system design provides interesting chances to optimize
EH-based solutions.

Recently, WSNs that use ambient energy for smart factories have attracted more
attention from academia. The scientific publications on energy harvesting for industrial
applications have been significantly increasing for 20 years now (see Figure 1). The
distribution on ambient sources shows that most of the investigations were dedicated
to vibration converters, as vibration is one of the essential ambient sources in machinery,
from movements and shocks.
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Various valuable reviews have given insights into industrial wireless networks in
the context of Industry 4.0 [6]. Some of them deal with energy harvesting technologies
to supply wireless sensor nodes by using a certain type of ambient sources such as vi-
bration [7], sound [8], and electromagnetic [9] and carbon nanocomposite-based energy
generators [10]. Another type of review focused on the study of different energy harvesting
sources to achieve self-power wireless sensor nodes for specific industrial applications,
such as in machine condition monitoring [11], railway applications [12], and aeronautical
industries [13].

This review reports on recent development trends that enable the practical use of
wireless sensors in the industrial field. For this purpose, the crucial aspect is to increase
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the energy income from ambient sources and reduce the energy consumption of the
sensor node, especially for communication purposes. Therefore, we report possibilities for
improving energy income at the node level and energy efficiency at the network level.

After an overview of the specific challenges for WSNs in industrial applications and
the elaboration of the particular design requirements of WSNs in this field, we review
supply strategies for energy-aware wireless sensor nodes from ambient energy in general
that enables a long battery-free operation time in industrial environments. In the next
part of the contribution, we focus on recent developments in key technologies that allow
the applicability of WSNs in industrial settings, such as the use of hybrid conversion
for increasing energy income and reliability. Then, we focus exemplarily on vibration
energy harvesting as one of the primary ambient sources in industrial applications by
introducing performance improvement techniques and novel trends in this field. Especially
in industrial applications, wireless energy transfer is essential because of the possibility
of coupling energy to moving parts and overcoming time intervals and conditions where
usual ambient energy sources are not available. For this purpose, we focus, in Section 6,
on wireless energy transfer and novel trends in this field. In the last part of the paper, we
report on energy saving possibilities on the node and network levels, a key technology for
enabling WSNs in the industry.

2. Chances and Challenges for WSNs in Smart Factories

Intelligent surveillance, condition monitoring, and predictive maintenance are tremen-
dously important in smart factories. Several processes, such as tracking materials in
transportation, logistics, and production, must be continuously monitored. The modern in-
dustry needs digitalization to improve adaptability, resource efficiency, and the integration
of supply and demand processes (see Figure 2).
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Wireless sensor networks have significant advantages in this context, as they can be
quickly and flexibly deployed and can optimize costs and reliability by reducing cables and
preinstalled infrastructure. They can be easily installed and retrofitted in machines and
utensils. Nevertheless, WSNs need to fulfil several requirements before their actual use in
the industry, including communication security, real-time processes, reliability, longevity,
and privacy controls. These requirements should be fulfilled even under dynamic operating
conditions or by interferences due to electromagnetic fields or radio obstacles, such as
metallic pipes and walls. A relatively high sending power may be needed in this case for
communication, and energy consumption becomes critical.
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The energy consumption of different WSNs depends on the application, associated
hardware circuits, and network communication. The supply of the WSN can be principally
cable-based [14], battery-based [15], energy harvesting-based or can use contactless supply
circuits [16]. The battery-based system can be with primary batteries and rechargeable
batteries that use wire-based chargers. In this field of applications, cables are not practical,
especially in production chains. Batteries have a limited lifetime, limited capacity, need
to be replaced, and are not environmentally friendly, making them not sustainable. As an
alternative, energy harvesting [17] or contactless power transmission (CPT) [18] systems
can overcome these challenges and ensure the network’s autonomy for a long time. Table 1
shows potential applications for WSNs supplied by energy harvesting and energy transfer
in smart factories. The appropriate energy harvesting solutions can be selected accordingly,
depending on the sensor position, application, and prevailing environmental conditions.
Nevertheless, harvesting energy from ambient sources has several challenges, including
the limited power density and the instability of the generated energy, which depends on
the ambient sources’ characteristics.

Table 1. Use of energy harvesting in WSNs for smart factories.

Converters Example for Applications

Solar cells

- Stationary nodes
- Warehouse management and localization
- Environments with few contaminations
- Logistics

Vibration
converters

- Monitoring and retrofitting of machines and tools
- Monitoring of conveyor systems
- Monitoring of transport systems
- Predictive maintenance

- Sensors attached to robot applications

Thermoelectric
converters

- Heat dissipating machines and heat pipes
- Monitoring on pipes and ducts in dark places
- Industrial waste heat recovery
- Thermoelectric conversion from solar energy
- Wearable devices in human-machine interaction

Wireless power transfer

- Rotating and moving parts (e. g., conveyor systems)
- Covered/sealed applications
- Additional supply for interrupted sources
- Systems with high power demand
- Localization of tools and goods

Hybrid converters
- Systems with increased power demand
- For systems needing a fallback option (e. g., security)
- To support weak sources

In the next sections, we provide an overview of relevant energy harvesting solutions
for industrial applications and smart factories, including solar and vibration energy har-
vesters as well as modern polymer composite-based flexible nanogenerators, which will
play a big role in factories for gathering energy from manifold ambient sources, including
movements, friction, chocks, and vibrations. Wireless energy transfer is also extremely
interesting for coupling energy to moving objects and hard-to-contact components and
elements. Overall, we focus on a selection of technologies with high potential and a realistic
chance for use in smart factories. In particular, technologies that enable the development
of energy-aware wireless sensor network are summarized in this paper. Figure 3 presents
an overview of the energy effect on wireless sensor networks.
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3. Special Considerations for Solar Energy Harvesting

Solar energy harvesting is a well-known and developed power supply method for
sensors in outdoor scenarios. The estimation of the power delivered for outdoor appli-
cations can be made by a characterization of the solar cell using standard test conditions
(STC) with a reference spectrum (typically ASTM G-173-03 [19]). Afterwards, the required
size of the solar cell can be estimated concerning the position, tilt angle, and estimated
weather conditions.

For indoor scenarios, the situation is different, as the energy density and type of light
can be diverse. Also, the risk of mechanical damage is always present, and the energy
income is strongly dependent on environmental conditions, as well as shadows and dust
exposure. Therefore, it may be necessary to protect the cell itself, as light sources are
limited to energy-saving, LED, or fluorescent lamps. Classical light bulbs and halogen
lamps are obsolete. The spectrum of these sources is very different from regular sunlight,
with lower amplitude and narrower bandwidth. This relationship can be seen in Figure 4.
It shows the measured output of the three different lamp types (LED/fluorescent/halogen)
in comparison to the AM0 spectrum, which represents the sunlight without the influence
of the atmosphere. Huge parts of the sunlight spectrum are missing in artificial light. For
example, the fluorescent lamp shows only peaks. These peaks have a very high amplitude,
but if the sensitivity of the solar cell in this part of the spectrum is weak, the output will be
low anyway. This issue for artificial light is a general problem. Even if the total amount
of illumination is similar, the spectral composition still is not. This limits the output and
results in low-light conditions. STC for outdoor applications means 1000 W/m2, and
artificial light indoors usually means less than 10 W/m2 [20].

Several strategies can be applied to overcome these challenges. The type of solar cell
can be matched to the available light sources. If the spectral sensitivity reaches the peak(s)
of the light source, then the output can be maximized. Cells that can better collect diffuse
light are also more suitable, because depending on the building structure, there may be
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more reflections. The positioning of the solar cells is also essential. The alignment is more
critical than outdoors, as the total power is already low anyway. A wrong position or tilt
angle can result in non-usable voltage and current values. This is also important for another
aspect: electronics for energy management. In general, a DC/DC converter is required
to reach a stable output voltage for the load. The main focus of this converter should not
be efficiency, such as for outdoor applications, but the maximum range of operation. As
the output of the solar cell can reach very low values, especially the voltage, the DC/DC
converter should be suitable and able to use these voltages. It is better to have a conversion
with bad efficiency than nothing at all. Therefore, a low minimum operating voltage is the
target. Of course, losses should be minimized too.
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In general, indoor light energy harvesting results in a strongly reduced output perfor-
mance of the solar cells. In [22], this issue is shown for a cell with typical dimensions for
IoT devices (1.9 cm × 5.0 cm). The power density for four different application positions
varies in the range of 10–30 µW/cm2 at the maximum power point. As soon as indirect
solar illumination is present, this value increases by the factor of 20. This demonstrates
the problem of the low light situation indoors. Common light bulbs with their broad-
spectrum are not available anymore. Halogen lamps show a wide spectrum but are also
outdated. In [23], a comparison of the output performance between STC and illumination
with halogen lamps having a power density of 1000 W/m2 was shown. The results clearly
showed that, even with the same irradiation, the output performance with artificial light is
worse due to the different spectral behavior of the source and the cell’s sensitivity. Other
research groups have worked on automated test setups to further characterize this issue.
For example, Verbelen et al. demonstrated in [24] an automated test chamber with an array
of different light sources for testing. Hamadani and Campanelli showed a test chamber
in [25] for testing reference cells with varying spectra of the LED light. Both agree that even
with similar irradiances, artificial light does not deliver the output performance of sunlight
due to spectral dependence.

Therefore, selecting suitable cells is essential in designing energy harvesting solutions
for indoor artificial light applications. Crystalline silicon cells show low efficiencies with
artificial light; thin films (esp. CdTe) are better for weak and diffuse light [26]. Still, their
efficiency indoors is worse compared to outdoors. The III-V-cells, especially GaAs, are
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promising and can keep their good efficiencies for indoor use. Unfortunately, their high
costs are a significant drawback [27]. Emerging technologies such as IPV and perovskite
cells already show comparable results and might be a suitable solution in the future [28].

Fouling with dirt, dust, or other substances is a problem in general. It reduces the
output power dramatically and brings the necessity of cleaning. In IoT applications,
cleaning is not feasible, of course. Still, the problem exists and might be even worse in
the industrial field, as various sources of pollution are available. In [29], the problem was
described for 30 continuous days, showing the degradation due to dust. This reduces the
output to 50%, which is a considerable decline that cannot be neglected. It is also possible
to simulate the effect of shading due to dirt with reasonable accuracy, as shown in [30].

Without the option to clean small IoT devices, this effect cannot be avoided. Still, it is
helpful to consider the possibility to tilt the cell during installation or switching to a safer
place out of the reach of potential pollution sources.

The last aspect to consider is the available active time of the source(s), determined by
potential light through windows and the ON-time of the artificial light, which is usually
limited by the work time. If all aspects have been respected, a solar cell’s necessary size
and type can be determined, and a safe supply is possible.

4. High-Performance Vibration Converters

There are many moving, rotating, and reciprocating machines in industrial environ-
ments that produce enough vibration energy even after damping and strengthening, which
can supply wireless sensor nodes in smart factories. For this, there are different types of
transduction mechanisms, such as electromagnetic [31], piezoelectric [32], electrostatic [33],
and magnetoelectric [34], as shown in 0So far, numerous vibration converters have been
reported in the literature. A comparative analysis of these converters showed that elec-
trostatic harvesters can be preferred for implantable microsystems since they are easy to
integrate at MEMS level. Piezoelectric and electromagnetic converters are widely used
for macro-scale devices, and several solutions are already commercialized in the market.
On the other hand, although magnetoelectric converters have a high energy density, they
are still far from commercial applications due to their cost. Two main properties, among
others, must be considered to evaluate the performance of a vibration converter, and they
are the conversion efficiency and the frequency bandwidth.

4.1. Efficient Converters

Even if an ambient source is adequate and available continuously, a suitable design
remains challenging for a reliable solution. In this context, fundamental investigations are
essential for developing a suitable converter design but are inadequate to use efficiently.
Hence, deep studies of different constraints related to the application, such as the available
ambient vibration, characteristics, converter position, and environment (size, material), are
required to ensure a high working performance.

Therefore, the design of a vibration converter for a real application in smart factories
cannot be based only on laboratory investigations under harmonic excitation [35]. All re-
quirements and specifications of the aimed application must be fulfilled. First, the available
applied vibration must be characterized by frequency and amplitude or acceleration [31].
This allows for the adjustment of the converter’s design and operating frequency range,
significantly increasing its output performance [34].

A key factor for the design of a vibration converter is the mechanical structure used
to enable the relative movement between the converter elements in electromagnetic, elec-
trostatic, or magnetoelectric converters or the method to apply a stress/strain on the
piezoelectric element for the piezoelectric converters (see Figure 5). Specifically, the me-
chanical spring and cantilever beams are the most conventional structures used. However,
magnetic springs, pendulum-based converters, and bi-stable and multi-stable configura-
tions are interesting for designing highly efficient vibration converters. It must be indicated
that an efficient design can be achieved by developing a model-based design of the con-
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verter elements, taking into account the influence of external constraints. For instance,
the designed converter in [31] is optimized to harvest available kinetic energy in a freight
train. The field test results demonstrate that the energy harvester collects 4 mW. The study
includes the investigation of the magnet and coil optimal configurations, their relative
positions, and their housing properties.
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Figure 5. Schematic of the four main principles to convert mechanical to electrical energy.
(a) Electromagnetic: based on Faraday-Neumann-Lenz, a time-variable magnetic flux and voltage
are generated due to the relative motion between a coil and a permanent magnet. (b) Piezoelectric:
piezoelectric materials are used to produce charge under applied stress/strain. (c) Electrostatic:
a variable capacitor structure used to generate a charge. (d) Magnetoelectric: a combination of
piezoelectric and magnetostrictive materials.

Similarly, in [36], a model-based design for a magnetoelectric converter is presented.
Authors have studied the optimal magnetic field design acting on the magnetoelectric
transducer, the influence of the bonding interface between the magnetoelectric and the
piezoelectric layers, and the relative position between the two converter elements. Ex-
perimental investigations demonstrate that around one mW can be harvested from the
vibration of a lawnmower.

4.2. Wide-Band Converters

Vibration sources in smart factories are not always harmonic. In this case, the con-
verter efficiency can be increased by adjusting the resonance frequency of the designed
transducer to the characteristic frequency range of the ambient source by mechanical [36]
or electrical [37] tuning of the resonance frequency.

There are several possibilities to improve the converter bandwidth by introducing
nonlinearity through several mechanisms, such as the use of a magnetic spring instead of a
mechanical one [35] and the integration of smart materials that have a nonlinear behavior,
such as piezoelectric [35] and magnetostrictive materials [34]. Another interesting approach
is to use stoppers, as described in [38], where the frequency bandwidth could be increased
by 140%.

A suitable strategy to increase the frequency bandwidth must consider the potential
applications for the converter. For example, some converters that use the magnetic spring
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principle are interesting and present an efficient solution to increase nonlinearity in a
converter, enlarging its working frequency bandwidth. However, in terms of functionality,
such a converter based on the magnetic spring principle or using a moving magnetic part is
unsuitable for metallic environments, affecting its functionality. In conclusion, improving
the frequency bandwidth by adjusting the proper structure presents an interesting solution.
As an alternative, some researchers opted for the hybridization of vibration converters for
better performance, which is detailed in Section 4.3.

4.3. Hybrid Vibration Converters

One of the interesting possibilities to extract more energy from ambient sources in
smart factories is to design hybrid converters. Hybridization contributes to the improve-
ment of the converter performance in terms of reliability, and it increases the harvested
energy amount. Several combinations of energy harvesters have been proposed. They
can be classified into main five combinations: piezoelectric–electromagnetic, piezoelectric–
electrostatic, piezoelectric–triboelectric, electromagnetic–magnetostrictive, and electromagnetic–
magnetoelectric converters. Few researchers opted to develop converters that combine
even three principles: piezoelectric, electromagnetic, and triboelectric principles. In the
following, the main architectures that consider the different combinations are detailed.

In [39], a combination of piezoelectric and electrostatic principles is proposed. The aim,
thereby, is to develop a converter with a flexible structure that harvests from low-frequency
human motions around 3 Hz and improves the energy density level of the converter. In
this case, the average output power density is limited to the range of micro to nano-watts.
Further, aiming to improve the performance of the piezoelectric part for a low frequency
and high bandwidth, [40] proposed a hybrid converter that comprises multi cantilevers
and a thermoelectric nanogenerator. The converter concept consists of a PVDF cantilever
hitting the MNDS PDMS on the glass substrate due to external vibration, leading to energy
conversion based on piezoelectric and triboelectric principles.

The magnetostrictive–electromagnetic combination is proposed by [41], where the
main challenge was developing a converter in AA battery size. In this case, the im-
provement of the energy outcome is only at a level of microwatts by introducing the
magnetostrictive material to the electromagnetic converter, without changing the volume.

For the piezoelectric–electromagnetic converters, the main aim of this hybridization is
to improve the performance of the piezoelectric converter and adjust it for low frequencies
by adding the electromagnetic principle as a tip mass [42]. The architecture combining these
two principles is generally based on the cantilever beam structure, where the piezoelectric
element is placed. The electromagnetic part is added as a tip mass, and its design always
depends on the required working resonant frequency. In addition, other researchers
focused on this combination to widen the operating frequency range of the converter [43].
This is achieved by introducing a nonlinear structure for the EM, leading to a nonlinear
converter behavior, and enabling a wide frequency bandwidth.

The electromagnetic–magnetoelectric hybridization presents an interesting solution to
improve the energy density of the converter as well as its reliability. Both converters harvest
energy based on the variation level of the magnetic field, which enables the development
of a converter where the energy density is improved compared to a single electromagnetic
or magnetoelectric converter [44,45]. Due to the proposed design, energy can be harvested
from both principles independently [45]. Recently, in [46], the combination of the three
basic principles (electromagnetic, piezoelectric, and triboelectric) is proposed. Compared
to the piezoelectric–electromagnetic version, the improvement is small due to the limited
generated energy through the triboelectric principle.

The presented solutions above are challenging in terms of implementation due to
the structural complexity. Nevertheless, the research on harvesting from ambient is still
growing due to the progressive need for more advanced technologies responding to the
application requirements, including flexibility and long-term exposure to the energy source.
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5. Polymer Composite-Based Flexible Nanogenerators

Recently, the novel trend is developing miniaturized, flexible, and lightweight energy
harvesters named nanogenerators, which can generate electrical energy from thermal and
mechanical energy sources [47–49]. These sources are typically available with machinery,
which offers an obvious supply option. Nanogenerators are attracting attention due to
their conversion efficiency, easy fabrication process, low costs, and their possibility of
fulfilling the demands of having a sustainable and self-powered source for operating novel
flexible electronic systems [50]. They are relevant for smart factories, as they can easily be
integrated into machines and elements and harvest energy following different principles.

Nanogenerators can be categorized according to the source of energy (see Figure 6).
The first category uses mainly mechanical sources and is divided into two types, which are
the triboelectric nanogenerators (TENGs) and the piezoelectric nanogenerators (PENGs) [51].
The working principle of the TENGs depends on a conjunction of triboelectrification and
electrostatic induction between two contacted materials, as illustrated in 0In contrast, the
piezoelectric nanogenerator mainly applies an external force to piezoelectric materials, lead-
ing to electric dipole moments between the two electrodes. The second category is based
on converting thermal energy into electricity with a pyroelectric effect. Indeed, pyroelectric
materials are a subclass of piezoelectric materials. However, not all piezoelectric materials
have a pyroelectric effect. Pyroelectric materials exhibit a spontaneous polarization caused
by temperature fluctuation [52].
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In order to realize flexible nanogenerators, polymer materials are usually used because
they can exhibit flexible properties, mechanical stabilities to withstand more significant
deformation, as well as piezoelectric and ferroelectric properties. The most common
piezoelectric polymers are Polyvinylidene fluoride (PVDF) [53], polyvinylidene fluoride-



Electronics 2021, 10, 2929 11 of 22

trifluoro ethylene (PVDF-TrFE) [54], polyamides (PA) [55], and polylactic acids (PLA) [56],
among which PVDF and their co-polymer have been extensively used due to their high
piezoelectric properties. However, the performance of polymer nanogenerators can be
improved by including piezoceramic particles [57], carbon nanomaterials [58], metallic
nanoparticles [59], biomaterials, or hybrid materials [60].

5.1. Piezoelectric and Triboelectric Nanogenerators

Polymer composite-based piezoelectric nanogenerators have attracted extensive in-
terest for the supply of electronics due to their enormous output, conversion efficiency,
and flexibility. Usually, the functionality and performance of the flexible nanogenerator
depend significantly on the chosen polymer and reinforcement. So far, various piezoelectric
polymer composite materials have been developed to realize micro-scale and nano-scale
generators. The most commonly used polymer composites are PVDF and co-polymer
filled with piezoceramics nanoparticles, such as zinc oxide ZnO [61], lead zirconated ti-
tanate (PZT) [62], and Barium Titanite (BaTiO3) [63], owing to their excellent piezoelectric
properties. Shin et al. [63] reported the fabrication of high-performance PENG based on
BaTiO3-P (VDF-HFP) composite thin-film prepared with a solvent-assisted composite thin
film formation process to attain optimal distribution of BaTiO3 within the polymer matrix.
Using different solvent ratios, the optimal NG achieves a compressive force of ∼0.23 MPa
normal to the surface a high output voltage and current of 110 V and 22 µA, respectively.

Further studies focus on embedded piezoceramic particles in a highly stretchable and
flexible polymer, such as polydimethylsiloxane (PDMS) [64,65]. The use of soft polymer
matrices will offer nanogenerators unique advantages over other polymers, including the
simplicity and scalability of the fabrication process and improved durability at high me-
chanical deformation. This kind of nanogenerator provides higher flexibility for industrial
applications to harvest energy from movements. Park et al. [66] fabricated a high large-area
NG based on lead zirconate titanate (PZT) embedded in PDMS using a simple, low-cost,
and scalable bar-coating method. The NG exhibits up to ∼100 V and ∼10 µA, enough to
power 12 light-emitting diodes (LEDs) without external energy-storage systems. Hybrid
polymer composites have been developed by adding conductive nanoparticles such as
carbon nanotubes or Ag nanoparticles to increase the performance and distribution of
piezoceramic particles. The role of these conductive particles is to form a network within
the polymer matrix to achieve a good distribution of the piezoceramic nanoparticles, as
demonstrated by Park et al. [67], and enhance the dielectric property, leading to a better
piezoelectric property. The use of conductive nanoparticles can eliminate the requirement
of making poling process, which is very long and unsafe.

However, piezoelectric nanogenerators show a limited ability to harvest from weak
energy sources. In this regard, many efforts have focused on developing nanogenerators
based on triboelectric effects due to the possibility of tackling the above problem. As
the working principle of these nanogenerators relies on contact-induced electrification
between the different dielectric materials, other methods have been adopted to boost the
performance, including surface patterning, chemical functionalization, and composite
structure. Using chemical functionalization, the charge capturing capability of the triboelec-
tric material will be enhanced. For example, Wang et al. [68] reported improving the output
four times for TENG modified with amine as the head group. Many efforts have been
devoted to modifying the surface of TENG by creating wrinkling or buckling within it. Sun
et al. [69] reported about a soft NG, which is a self-healable, stretchable, and transparent
thin film containing Ag nanowires/poly (3,4 ethylenedioxythiophene) composite electrode
sandwiched with self-healable poly (dimethylsiloxane) (PDMS) elastomers. The character-
istics of this TENG can be tuned according to the buckling wavelength of the electrode. The
resulting TENG scavenges mechanical motion energy and reaches an open-circuit voltage
of ∼100 V and a maximum power density of 327 mW/m2.
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Others use high dielectric materials, such as BaTiO3, to enhance the charge-attracting
or -trapping capability [70]. Compared to PENGs, TENGs provide higher output power
that can reach the watt level, which can also help power electronic devices.

5.2. Pyroelectric Nanogenerators

Piezoelectric polymer composites have been effectively used to harvest small-scale
mechanical energy. As either strain or temperature can create the piezo potential, several
works have focused their study on harvest energy based on the pyroelectric effect, which is
based on the spontaneous polarization of the piezoelectric materials due to temperature
variation. For example, Yang et al. [71] reported flexible pyroelectric NGs fabricated
to harvest energy from sunlight illumination using PDMS filled with lead-free KNbO3
nanowires grown by a simple hydrothermal method. The obtained nanowires have a
single-crystalline structure with a growth direction of [011].

5.3. Hybrid Nanogenerators

Many studies have focused on optimizing the performance of nanogenerators to avoid
the limitation of each kind of nanogenerator by hybridizing the energy harvesting system
using dual or trial effects to improve the energy output and expand the application scope.
Suo et al. [72] reported a novel hybrid nanogenerator formed with two nanogenerators
using BaTiO3NP/PDMS composite film and two different working principles, which are
piezoelectricity and triboelectricity. In this work, the two nanogenerators shared energy
conversion. According to Suo et al. [72], the hybrid NG voltage possesses higher output
performance than the triboelectric and piezoelectric harvesters’ performance. Another
option is using a hybrid nanogenerator based on different conversion principles to raise
the overall power output. In [73], a fully stretchable hybrid nanogenerator working on a
combination of piezoelectric and pyroelectric effects was developed. The nanogenerator
comprises micro-patterned piezoelectric polymer P (VDF-TrFE) thin film, PDMS-CNT
composite, and graphene. A prosperous and stable output voltage is obtained under both
thermal and strain effects.

Energy harvesting systems present challenges in implementation, availability, and
the generated amount of power, which cannot be offered in some applications. In this
case, alternative wireless charging systems can be implemented. Section 6 is devoted to
presenting an overview of the recent achieved development of wireless charging systems.

6. Wireless Charging

In general, as a high level of reliability is required in industrial applications, the
necessary energy supply should be guaranteed along the operation time. Especially in
smart factory systems, where the ambient energy cannot deliver sufficient energy supply,
wireless charging provides an alternative for supplying sensors. This is important for
WSN in various environments, such as machines, which can contain oils or water, chain
conveyers, or even for tracking boxes transporting elements for the production process.
Contactless power transfer offers many advantages, where cables and sockets can be
removed, moving elements can be supplied, and the energy can be transferred on demand.
In addition, it is possible to supply a WSN without additional storage elements [16],
which decreases the size of a node, as the storage elements usually have large dimensions
compared to integrated electronics. In this section, an overview of different wireless
charging systems for the supply of WSN is presented.

Different concepts can be applied to power WSN devices wirelessly, such as radio
frequency (RF) [72], magnetic resonance power transmission (MRPT) [74], and inductive
power transmission (IPT) [16]. These techniques differ by their charging efficiency and
range, frequency band, and the used wave field. Table 2 resumes the main characteristics
of each system. These systems can supply the WSNs [16,75] or charge the associated
batteries [74]. The main limitation for the IPT system is its charging range [16], which
depends on the alignment between the charging circuit and the device. The MRPT systems
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are usually defined as derivative systems of IPT systems, where the coils resonate with the
internal capacitor [16].

Table 2. Characteristics of wireless power transmission systems.

Characteristics
Contactless Power Transmission Method

Radiofrequency Magnetic Resonance Power
Transmission

Inductive Power
Transmission

Wave type Electromagnetic field Magnetic field Magnetic field

Charging range Medium to long
(from m to km)

Short to medium
(from cm to m)

Very short
(from mm to cm)

Relative power nW—mW mW—few W MW—kW
Working frequency range MHz-GHz MHz kHz

6.1. Structure of CPT Systems

The general structure of the presented systems is based on transmitting and receiving
sides [74]. The transmitter side is connected to the energy source. It consists of an oscillator
circuit with a specific frequency and power level connected to a transmitter coil. In [76],
the general structure of the receiving side CPT system is shown. The receiving coil is
connected to an LC resonant circuit with associated capacitors and coils on both sides. In
some scenarios, the receiving side load behavior on the system efficiency is considered
during the resonance circuit development or by specific control circuits [77]. However, the
connection of the resonance circuit affects the circuit bandwidth and the attitude of the
output voltage and current [78].

To deliver the required power to the load, an AC-DC converter such as a single
diode rectifier, full-bridge rectifier, and voltage multiplier can be used. The selection of
the necessary converter depends on the required output voltage level and the working
frequency. For low output voltage systems [74], voltage multiplier circuits are more suitable.
Bridge rectifiers are used for high output voltage systems [79], such as IPT and MRPT.
DC-DC converters can be merged with the circuit to regulate the acquired power according
to the load specifications, generating a constant output voltage or current. Generally, for
the MRPT and IPT systems, a coil with specific geometries and materials is used, such as
copper and ferrites. The components of the structure can also be seen in Figure 7.
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6.2. CPT Coils

CPT design depends on various aspects such as the electronic circuit, the coil system,
and the control architecture. The design of the CPT coils presents one of the research trends.
CPT systems can be classified in mainly four possible architectures based on the number
of transmitter and receiver coils, and they are singular input singular output (SISO) (see
Figure 8a), singular input multiple output (SIMO) (see Figure 8b), multiple input singular
output (MISO) (see Figure 8c), and multiple input multiple output (MIMO) (see Figure 8d).
Multiple output systems increase the number of the receiver devices supported by the same
transmitter circuit [76], where the multiple transmitter systems investigate the generated
transmitter energy and the charging area. The multiple input systems can connect the
coils in series [76] or parallel, generally activated by switches [16]. However, increasing
the number of coils increases the complexity during implementation and the system cost,
making them challenging.
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In MRPT, the system can use additional intermediate coils to increase the charging
distance range [18]. This intermediate coil is often resonating on the operating system
frequency. Other challenges for improving the CPT system coils are considered in re-
search, such as the design with the lowest thickness, weight, and robustness and tolerance
to the environment, for temperature and humidity. For that, different geometries [79],
materials [80], and technologies [81] are investigated.

Providing energy for a WSN, either through harvesting or wireless charging, is chal-
lenging. For that, many developments also focus on smart solutions that enable energy
saving on the network level. This will be discussed in the following section.

7. Energy-Saving Techniques for WSNs

In addition to energy supply sources coming from ambient sources, it is important
to reduce the power consumption of the wireless sensor node itself or when it is com-
municated to other nodes within the network. Some sensor nodes are equipped with
non-rechargeable batteries, which are hard to replace, particularly in a large field or un-
reachable positions such as in railway monitoring [82]. In a smart factory and by the huge
number of sensors needed, there is no acceptance for systems needing battery replacements
often or risking a lack of reliability and longevity. This is why it is very important to realize
an equilibrated system design reducing energy consumption and using a sufficient energy
source, even for dynamic operation conditions.

Different energy-saving techniques have been introduced as enabling technologies to
boost network efficiency and operability [83]. This section provides a panoramic view of the
most relevant energy optimization techniques on the node and network levels (Figure 9).
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7.1. Node Level

The architecture of a sensor node has a significant impact on its energy consumption.
Each node has a specific architecture [84]. The power consumption can be reduced at the
node architectural level by choosing the hardware and software. Integrating the System on
Chip (SoC) circuit into WSNs is a promising solution to reduce the power consumption
by using HW/SW partitioning [85]. So, the most time-consuming function or complex
algorithms such as video or image processing are performed with the hardware. However,
SoC circuits are not flexible and are dedicated to a specific application.

For this reason, the field-programmable gate array (FPGA) is introduced. The clock
gating presents one of the power reduction techniques used by the FPGA [86]. This unit
can change the clock signal distribution and disables the hardware peripherals, which
are not in use for this particular application. Despite this, the FPGA is known for its
high-power consumption compared to other processors. That is why some works integrate
hardware accelerators to reduce the processing and execution time, thus reducing the
consumed power.

With the introduction of multi-core architectures, many developers use modern mi-
crocontrollers to optimize code performance by implementing separate instructions in
separate microcontrollers. This is known as parallelism [87], where various cores execute
programs in parallel, realizing more efficiency. Multi-core sensor nodes provide energy
efficiency compared to traditional single-core nodes for two reasons. First, the energy spent
on communication can be reduced by carrying out an in situ calculation of the detected
data and transmitting only the processed information. Second, a multi-core node can
distribute computations over multiple cores.

In contrast, each core operates at a lower voltage and processor frequency than a
single-core node, resulting in significant power savings. The use of a single-core node
for information processing in high-demanding processing applications needs the wireless
node to operate at a high enough frequency and voltage to satisfy the application’s delay
demands, resulting in increased processor power loss. A multi-core sensor node decreases
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overall memory access, instruction decoding, and clock speed, allowing better computing
performance while consuming less power.

The consumed power of the microcontroller can also be reduced by changing the
frequency considering the workload. For this, the dynamic voltage frequency scaling
(DVFS) technique can be applied. The voltage and frequency are adjusted dynamically
based on system performance requirements at a certain point of time [88]. Another energy-
efficient solution is the dynamic power management (DPM) technique, where the power
consumption level is tuned depending on the power mode. Indeed, the node is shut down
automatically when it is in idle mode and activated in the active mode [89].

The consumed power of the sensing unit can be optimized by choosing a low power
consumption sensor that has one or more low power modes, such as the shutdown state.
The smart sensing method is introduced to achieve low power sensor consumption by using
integrated digital logic in the sensor design, enabling sensors to carry out their internal
self-power management. This method is applied to pressure sensors, magnetometers, and
accelerometers [90].

The communication unit is the most energy-consuming component in a sensor node.
Optimizing the transceiver parameters effectively reduces overpower consumption during
wireless communication by optimizing the antenna direction, power transmission, and
modulation [91]. Therefore, directional antennas aim to decrease the data retransmission
and interference generated by omnidirectional antennas. When a node transfers data
in a given direction, a neighboring node can also transfer simultaneously and with no
interference, resulting in a considerable reduction in energy consumption. Setting the
radio transmission parameters depending on specific link quality parameters, including
the received signal strength indicator (RSSI) and link quality indicator (LQI) or according
to certain network conditions is defined as transmission power control (TPC) method,
which is used to save the radio power consumption [92]. At the same time, the modulation
optimization methods are introduced to identify the optimal modulation parameters of
the radio with the lowest power consumption. Over short distances, the circuit’s power
consumption is greater than the power consumed for the transmission, and the reverse
is true for long distances. Consequently, the appropriate modulation parameters that
compromise the transmission signal power and the distance between the nodes are crucial.

One of the most energy-efficient operations is switching the radio transceiver into
standby mode when no communication is needed. The best way to do this is to turn off the
radio when there is no data to be transmitted or received and turn it on again when a new
data packet is available. Another approach to save the energy within the communication
unit is to use a different, ultra-low-power wake-up receiver (WuRx) by turning off the rest
of the system and providing a permanent on-demand communication feature, with low
power consumption in the order of µW [93]. The wake-up receivers are used together with
the main receiver, which is switched on only on request. Once a signal is received with
a unique identifier, the main processor and the rest of the peripherals are immediately
activated. The detection of wake-up packets can be achieved with appropriate circuits with
ultra-low power consumption.

7.2. Network-Level

The communication between sensor nodes within the same network or the base
station is one of the major sources of energy dissipation in WSNs. Thereby, different
energy-efficient techniques can be used to reduce the network overall power consumption
significantly. Data reduction approaches are introduced as key solutions for energy saving
by transforming the data to be sensed, treated, and transmitted to the sink node into smaller
units for decoding by the receiver node, thus reducing the network power consumption.
They can be categorized into three schemes, namely data prediction, data compression,
and in-network processing. Data prediction refers to the abstraction of the sensed data [94].
It forecasts the output values of the wireless sensor node with a specified error range and
produces two instance patterns in the receiver node and the corresponding source node.
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When the prediction pattern is correct, the receiver can handle any request made by the
user while not communicating with the source node and having the correct value. If there
is an inaccurate prediction pattern between the receiver and the sensor nodes, the used
pattern requires updating. Therefore, using data prediction mechanisms can reduce the
volume of messages transmitted from the source node to the receiver, thus reducing the
energy required for communication. Data compression is intended to compress the data
captured from the sensor node by this node itself or through an aggregator node [95].
Afterwards, only the necessary data is forwarded to the destination node.

Several methods can be applied when the receiving node decompresses incoming data,
such as adaptive model selection, lossless compression, and Kalman filtering. Compressive
sensing (CS) can be considered an energy-efficient data compression method by decreasing
the volume transferred [96]. In this method, the original signal is converted into a new
signal with reduced values, defined as sparsity. As the sampling rate is shortened, the
power consumption is reduced. A significant characteristic of CS is its ability to rebuild a
sparse signal from a reduced number of measurements, with no prior knowledge of the
signal structure. The in-network processing scheme aggregates the data at the relay node,
allowing the data from different nodes to be combined and transmitted to the receiver
node in an individual packet. In this way, the amount of data is decreased, and the energy
consumed is reduced.

To reduce the power consumption during data communication, routing is introduced,
as one of the most energy-aware techniques, by aggregating data packets and selecting the
energy-efficient paths between source and destination nodes. In this direction, clustering
protocols present one of the most energy-efficient routing techniques by minimizing the
number of transmitted packets and the distances between nodes simultaneously. It divides
the network into groups called clusters, where a cluster head is selected to forward the
received data from its cluster members and forward it to the base station or sink node.
Several studies have been performed to save the energy within the network and have a
longer network lifetime [97].

Another technique to save energy within the network is the efficient use of channel
access. Therefore, the medium access control (MAC) schemes are introduced to arrange the
communication from a sensor node to another node within the same network or between
nodes from different networks by setting a sending time for every node [98]. Thus, the
data collision problem is avoided, and the energy is saved. The most well-used in WSN is
the time division multiple access (TDMA), which allows a strict synchronization between
transmitter nodes and the sink node [99]. Each node has a specific time slot, and it is
allowed to transmit only in the allocated time slot to avoid interference. Then, it goes
into sleep mode when its time is finished. So, the energy consumption is significantly
decreased to the minimum required for transmitting/receiving data, and the transmission
is efficiently scheduled. TDMA is used in applications that need a high data rate and low
delay, such as healthcare applications. Carrier sense multiple access (CSMA) or carrier
sense multiple access/collision avoidance (CSMA/CA) are used by many applications
such as WIFI, Zigbee, etc. [100]. So, nodes transmit their data only if the channel is free
by implementing a carrier sense to check the channel state to avoid data collision. This
protocol is not good for high data traffic because high traffic means high collisions. CSMA
allows high flexible communication with low complexity.

8. Conclusions

Autonomous wireless sensor networks are gaining importance in industrial applica-
tions. They enable several indispensable functionalities and especially provide flexibility,
as they can be easily installed and involve a low-maintenance effort. This review provides
an overview of the potential of energy-aware power solutions for sensors in industrial ap-
plications. The contribution has shown a survey of relevant energy harvesting possibilities,
including supply by energy harvesting from ambient sources and wireless energy transfer,
each focusing on high performance and energy saving. Classical converters such as solar
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cells or vibration transducers have advantages and disadvantages. For solar cells, the
power output can be predicted. Vibration converters can be updated with new materials
to improve the bandwidth. Furthermore, the potential of smart materials for nanogenera-
tors has been discussed. These transducers enable new adaptive ways to convert power,
tailored specifically to the energy sources.

Very important for all systems is the energy saving at the network level, which
should be considered within the network design as well, as discussed in the last section
of this review paper. The review of energy aware WSNs for smart factories shows that
several solutions already exist and are well applicable to several applications in smart
factories. These solutions make sensor systems independent from cable connections,
making installation and maintenance easier and improving their acceptance. WSNs for
industrial applications will become more important in the future. They represent an easy
way to bring production to a new technological advanced level with high efficiency and
manageable costs. With the continuous growth of automation and data technologies in
industrial applications, the complexity of data collection, data processing, communication,
and storage is significantly increasing. It results, in total, in a high demand for energy,
even if the system elements may appear to use a small energy budget. Thereby, the
developments in the direction of autonomous supply and energy efficiency support each
other and constantly increase the feasibility, making them practical and useful for these
developments. Supplying wireless nodes with energy coming from ambient sources
and simultaneously implementing energy-saving techniques needs further exploration
for better performance. Both aspects need to be considered together in a holly system
design to elaborate optimized useful WSNs for this economically highly relevant sector of
smart factories.
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