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Abstract: Model checking is an efficient formal verification technique that has been applied to a
wide spectrum of applications in software engineering. Popular model checking algorithms include
Bounded Model Checking (BMC) and Incremental Construction of Inductive Clauses for Indubitable
Correctness/Property Directed Reachability(IC3/PDR). The recently proposed Complementary
Approximate Reachability (CAR) model checking algorithm has a performance close to BMC in
bug-finding, while its depth-first strategy sometimes leads the algorithm to a trap, which will waste
lots of computation. In this paper, we enhance the recently proposed Complementary Approximate
Reachability (CAR) model checking algorithm by integrating the restart policy, which yields a
restartable CAR model (abbreviated as r-CAR). The restart policy can help avoid the trap problem
caused by the depth-first strategy and has played an important role in modern SAT-solving algorithms
to search for a satisfactory solution. As the bug-finding in model checking is reducible to a similar
search problem, the restart policy can be useful to enhance the bug-finding capability. We made an
extensive experiment to evaluate the new algorithm. Our results show that out of the 749 industrial
instances, r-CAR is able to find 13 instances that the state-of-the-art BMC technique cannot find and
can solve more than 11 instances than the original CAR. The new algorithm successfully contributes
to the current model-checking portfolio in practice.

Keywords: model checking; CAR; BMC; bug-finding; SAT

1. Introduction

Model checking [1] is an efficient technique for formal verification that has been
applied into most stages of the life cycle in software development to ensure correctness. For
example, model checking can be used to verify the software requirements [2–5], software
design models [6–8] and even as testing and debugging [9,10]. Moreover, model checking
can be adopted to verify a wide spectrum of applications such as the web [11–14], device
drivers [15–17], GUI [18,19], distributed programs [20–22], embedded systems [23,24],
databases [25], and malware [26]. These scenarios show that model checking has played an
important role in software engineering [27].

Given a software design M as the model and the formal specification (property) P,
which is often written by some temporal logic [28], model checking checks whether P holds
for all behaviors of M. To achieve this goal, a model-checking algorithm explores the state
space of M by starting from the initial states to all their reachable states in M. Moreover,
model-checking techniques terminate the exploration as soon as (1) a counterexample as
witness of the property violation is detected (In general, finding property violations refers
to the same thing as finding bugs/counterexamples), or (2) the proof is accomplished that
the initial states can never reach the states which violate the property P. If P is a safe
property [29], the length of the counterexample becomes finite. As a result, the safety
model checking can be reduced to the reachability analysis problem [30], and we focus on
the safety model checking in this paper.
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Although model checking has been widely used in software and hardware verification,
the performance improvement is still eagerly on demand to help solve more industrial
instances. It is well known that no model-checking technique is the best one to dominate
all others, and different algorithms perform differently for different benchmarks [31].
Although invented nearly three decades ago, Bounded Model Checking (BMC) [32,33] is
still considered as the most efficient technique for detecting property violations, or say, bugs.
Meanwhile, Interpolation Model Checking (IMC) [34] and Incremental Construction of
Inductive Clauses for Indubitable Correctness (IC3) [35], or Property Directed Reachability
(PDR) [36], are shown to be more fit for proving correctness. Therefore, a portfolio of model
checking techniques is often maintained by either academic or industrial model checkers
to solve different problems.

Recently, a new model-checking algorithm named Complementary Approximate
Reachability (CAR) [37], was proven to complement BMC on bug-findings, i.e., detecting
property violations, and IC3/PDR on correctness proofs. That is, CAR is able to solve
instances that BMC or IC3/PDR cannot solve within the given time and hardware sources.
The achievement from CAR inspires us that, even though relevant techniques have been
deeply investigated for decades, there are possibilities to improve the model-checking
performance such that it can be more useful for the industry. In this paper, we focus on CAR
and present an improved search strategy inside the algorithm to gain a better bug-finding
performance.

CAR was inspired by IC3/PDR and the traditional reachability analysis [37], which main-
tains an over-approximate state sequence for correctness proof and an under-approximate
state sequence for bug-finding. CAR utilizes the depth-first search strategy to find new states
that meet the constraints, which are used to refine the under-approximate state sequence or
collect the relevant information to refine the over-approximate state sequence if failed. The
algorithm terminates as soon as either a bad state is in the under-approximate sequence, which
indicates a counterexample has been detected, or an invariant has been computed based on the
over-approximate sequence, which indicates the correctness proof has been asserted. For more
details, see below. CAR can be performed in both forward and backward directions. Since
evidences have shown that Backward-CAR is better than Forward-CAR at bug-finding [38],
we follow the observation and focus on improving Backward-CAR. In the rest of the paper,
all mentions of “CAR” represent Backward-CAR unless it is specifically clarified.

Although CAR has shown the advantage of detecting bugs for safety model checking
and outperforms IC3/PDR in bug-finding, it cannot solve as many unsafe instances (those
with bugs) as BMC in the current stage [39]. The depth-first strategy may lead the algorithm
to a trap for those unsafe cases it is unable to solve. As a result, to keep searching for new
states is almost impossible for the algorithm to locate the bad states and only wastes the
computation sources. Such a similar phenomenon occurs on solving the satisfiability of
Boolean formulas (SAT) [40], in which the search can also be in the trap if the order of
variable assignments is not properly chosen. To tackle such issue, researchers propose a
restart policy such that the current search path is discarded and a new one can be selected to
get rid of the trap [41]. Their experiments show that such a simple strategy is very efficient
to help speedup SAT solving, particularly for those satisfiable instances.

Inspired by the results achieved by applying the restart policy to modern SAT solvers [41],
we leverage a similar idea to enhance the performance of CAR in bug-finding. The new
algorithm is named r-CAR (restartable CAR). In our designation, the restart policy is invoked
as soon as the size of the new elements of the over-approximate state sequence in a single
search reaches the frequency k× t, where k is the length of the over-approximate sequence and
t is a given threshold, which can be dynamically updated based on a given growth rate gr during
the search. That means, if the current threshold is t and the growth rate is gr, the threshold
will be updated to be (t× gr) when the restart is invoked next time. Moreover, the search
will be restarted the next time as soon as the size of the new elements of the over-approximate
sequence reaches (k× t× gr). As a result, the restart frequency depends on the threshold and
the corresponding proportion to update it. Once the restart is triggered, CAR deletes all state
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information collected in the current search and starts a new one immediately. Notably, the
previous path information has been stored in the over-approximate sequence such that it is
guaranteed the new search is able to find a different path with all founded before.

We conduct a comprehensive experimental evaluation on the 749 industrial instances
from the Hardware Model Checking Competition in 2015 [42] and 2017 [43]. We implement
our new algorithm based on the SimpleCAR model checker [38,44] and compare the bug-
finding performance to the original CAR in SimpleCAR, as well as the BMC and IC3/PDR
algorithms that are implemented in the state-of-the-art model checker ABC [45]. The results
show that, given the same time and hardware sources, r-CAR can solve 13 new unsafe
instances compared to BMC and find 11 more counterexamples compared to the original
CAR by feeding different restart configurations. Moreover, r-CAR is able to outperform
IC3/PDR on bug-finding (checking unsafe instances). The new algorithm helps increase
the diversity to solve more instances. Therefore, we show that combining the restart
policy with CAR is able to increase the power of the current model-checking portfolio in
the industry.

In summary, this paper makes the following contributions:

• We propose r-CAR, an enhanced CAR-based model-checking algorithm, to detect
more property violations, or, say, bugs/counterexamples.

• We implement r-CAR to produce a practical model checker called RestartCAR and
conduct an extensive experimental evaluation to show that RestartCAR improves the
capability of the SimpleCAR model checker to find more unsafe instances by feeding
different restart configurations.

• We further identify the practical restart configurations for RestartCAR and study the
effectiveness of r-CAR.

2. Related Work

Compared to Theorem Proving [46], another mainstream formal verification technique,
the advantage of model checking is to avoid massive manual work and enable automatic
verification, which is accomplished by performing the exhausted search on the graph
constructed from the model together with the property. However, the main challenge
in model checking is the exponential scaling of the model’s state space, the so-called
“state-explosion problem” [47].

Early approaches to model checking [48,49] were based on an explicit search of the
model’s transition graph, where nodes represent states and edges represent system transitions.
Such explicit-state techniques typically do not scale well beyond models with a few million
states [50]. A major breakthrough, in the early 1990s, was the introduction of symbolic tech-
niques, which replaced explicit search with Boolean reasoning techniques. The development
of Binary Decision Diagrams (BDDs) [51] led to the development of BDD-based symbolic
model checking, which enabled the verification of systems with 1020 states [52]. Yet BDD-
based techniques rarely scale to models with more than 1000 Boolean state variables, which
limits their applicability to the verification in industry [53].

In the late 1990s, SAT solving emerged as a highly effective Boolean reasoning tech-
nique [54]. The first application of SAT solving to model checking was in the context of
bounded model checking (BMC), in which the search over model behavior is subject to
a depth bound [32]. This approach, where model checking is reduced to a sequence of
SAT-solving calls, one for each depth bound, has been shown to be highly effective in
practice, particularly for detecting property violations (bugs) [49]. Yet BMC is incomplete,
as it can only reveal the presence of counterexample behavior, but not prove their absence,
which led to a quest to develop SAT-based complete model-checking techniques. This
is still a very much active area, as no single approach has proven to be superior to all
other approaches, cf. [40]. While some approaches have tried to find ways to extend BMC
to make it complete, e.g., [55], others have tried to follow the approach of BDD-based
model checking.
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There are two ideas in BDD-based model checking [52]: (1) a set of states can be
represented by a Boolean formula (a BDD is a special case), and (2) a key operation in
searching the state space is the image/pre-image operation, in which we symbolically com-
pute the set of successor/predecessor states of a given set S of states. Much of the research
in BDD-based symbolic model checking has focused on the efficient implementation of the
image operation, cf. [56]. One direction of research on SAT-based complete model-checking
techniques has been on a SAT-based implementation of the image operation. While stan-
dard SAT solving returns a single satisfying assignment when the formula under test is
satisfiable, there is a variant, called All-SAT, that returns a representation of all satisfying
assignments, cf. [57].

All-SAT-based symbolic model checking did not, however, prove to provide a highly
scalable approach. Two other SAT-based approaches emerged in the following years.
Interpolation-based model checking [34] combines the use of Craig Interpolation as an
abstraction technique with the use of BMC as a search technique. IC3/PDR starts with an
over-approximation and is gradually refined to be more and more precise [35,36]. Both
approaches have proven to be highly scalable and are today parts of the algorithmic
portfolio of modern model checkers, such as ABC [45]. Normally, users prefer to using
BMC for bug-finding (checking unsafety) and using IC3/PDR and IMC for correctness
proving (checking safety). Recently, a new model checking algorithm, CAR, was presented,
and the preliminary results showed that it succeeds in complementing BMC, IC3/PDR,
and IMC by solving instances that cannot be solved by those three algorithms [37,44].

Although BMC, IC3/PDR, IMC, and CAR utilize the SAT technique to achieve the
search task, they follow different strategies. Explicitly, BMC and IMC use the breadth-
first strategy, while IC3/PDR and CAR use the depth-first search strategy. Since IMC
is developed upon BMC, its bug-finding performance is completely dominated by that
of BMC, according to previous literature [44]. In addition, IC3/PDR pays more effort
to generate the so-called minimal inductive clauses for proving correctness such that its
overall performance on bug-finding is not as good as that of CAR. Therefore, BMC and
CAR are the best two options for bug-finding. On one hand, BMC has been proposed for
decades, and is now very difficult to improve the performance. On the other hand, CAR
is a new algorithm that leaves many potential slots for improvement. As a result, this
paper presents one candidate solution to improve the bug-finding performance on CAR.
Compared to the original CAR [44], the new algorithm r-CAR enhances it by introducing
the restart policy such that the depth-first search inside CAR can be restarted if the current
path is determined as a non-promising one to find the solution. Moreover, the import
of restart significantly improves CAR’s performance in bug-finding while preserving the
performance in proving correctness, as shown in the experimental section.

In general, among all modern model checking algorithms mentioned above, BMC can
find far more counterexamples than IC3/PDR and IMC within the same time and memory
limit, but BMC does not have the ability to prove correctness. The CAR algorithm has the
ability to prove correctness and has a performance close to BMC in bugs-finding. IC3/PDR
and IMC focus more on proving correctness and therefore has a better performance in
proving correctness and a relative poor performance in bugs-findings compared to CAR
and BMC. After we introduce the restart policy into the CAR algorithm, we obtain the r-
CAR algorithm, which retains CAR’s ability of proving correctness and enhances the ability
to find counterexamples. Moreover, r-CAR can find more counterexamples by running
different parameter combinations in parallel, which is not available to other algorithms.
Please check Table 1.
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Table 1. Modern model checking algorithms.

Name Strategy Bug-Finding Prove Correctness

BMC breadth-first ++++
IC3/PDR depth-first ++ +++

IMC breadth-first + +++
CAR depth-first +++ ++

r-CAR restartable + depth-first ++++ ++

All the aforementioned model checking algorithms are originally bit-level techniques
that can only handle Boolean transition systems. Recently, several efforts have been
made to immigrate such bit-level algorithms to the so-called word-level model checking,
using the SMT engine instead of the SAT one due to the increasing interests in the SMT
domain [58–61]. Normally speaking, the bit-level model checking techniques are used
mainly in hardware verification, while the work-level model checking techniques focus on
software verification.

3. Preliminaries
3.1. Boolean Transition System

Modern SAT-based model checking techniques consider the Boolean transition system
as the model. A Boolean transition system Sys is defined as a tuple (V, I, T), where V is a
set of Boolean variables and each state s of the system is in 2V , the set of truth assignments
to variables in V. I is the set of initial states. If we mark the copy of V as V

′
to represent

the set of primed variables, T is the transition relation of the system over V ∪V
′
. We say

that state s2 is a successor of state s1, if s1 ∪ s
′
2 |= T, denoted as (s1, s2) ∈ T.

A finite state sequence s0, s1, ..., sk is called a path of length k, if each (si, si+1) for
(0 ≤ i ≤ k− 1) is in T. We say the state t is reachable from state p in (resp. within) k steps,
if there exists a finite path with length k (resp. smaller than k) such that s0 = p and sk = t
are true. All states that are reachable from the initial states I are called the reachable states of
Sys. Given a safety property P (represented as a Boolean formula) and Boolean transition
system Sys = (V, I, T), we say the system is safe for P if every reachable state s of Sys
satisfies P, i.e., s |= P. Otherwise, the system is unsafe. We call the state violating P a bad
state and use ¬P to denote the set of all bad states. A path from an initial state in I to one
of the bad states in ¬P is called a counterexample.

Let X ⊆ 2V be a set of states in Sys. We define the relation R(X) to be the set
of successors of the states in X, i.e., R(X) = {s′|(s, s′) ∈ T for s ∈ X}. We define
Ri(X) = R(Ri−1(X)) for i > 1. Similarly, we define R−1(X) as the set of predecessors of
states in X and R−i(X) analogously for i > 1.

We call a Boolean variable a or its negation ¬a as a literal. Let L be a set of literals.
A cube is a Boolean formula with the form of

∧
l where l ∈ L. Analogously, a clause is

a Boolean formula with the form of
∨

l, where l ∈ L. It is not trivial to see that a state
of Sys is a cube. In the rest of the paper, we will mix-use the terms state and cube for
convenient description.

3.2. The High-Level Description of CAR

Derived from the traditional reachability analysis, CAR can perform in both the
forward and backward directions. As Backward CAR has been shown better than Forward
CAR [38], in the rest of the paper, we focus on Backward CAR and all mentions of “CAR”
represent Backward CAR. The CAR algorithm maintains a finite under-approximate state
sequence F = F0, F1, ..., Fk(k ≥ 0) starting from I (the set of initial states), i.e., F0 = I,
and each Fi is a subset of states reachable from I in i steps. Such an under-approximate
sequence is called the F-sequence. In addition, CAR maintains an over-approximate sequence
B = B0, B1, ..., Bk(k ≥ 0) starting from the bad states, i.e., B0 = ¬P, and a state is included
in Bi(i ≥ 0) if it can reach ¬P in i steps. The sequence is called the B-sequence. In addition,
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each element B[i] of the B-sequence is named a frame and i is the frame level. States in
F-sequence are represented as a disjunction of cubes, while the states in B-sequence are
represented as a conjunction of clauses.

A summary of both F- and B-sequences including the initialization, constraints, and
safety/unsafety checking conditions are listed in Table 2. The F-sequence is defined
recursively that (1) F0 = I, i.e., the first element of the sequence is the set of all initial states,
and (2) Fi+1 ⊆ R(Fi) for i ≥ 0, i.e., the element of the sequence at position i + 1 is a subset
of states which represent the successors of those at position i. Since each Fi represents
only a part of real states at position i, the F-sequence is under-approximate. Because the
F-sequence does not include all state information, we can only use it to check unsafety.
That is, if a state in some Fi is also a bad state in ¬P, a counterexample is found and the
unsafety result can be reported. Analogously, the B-sequence is defined recursively that
(1) B0 = ¬P, i.e., the first element of the sequence is the set of all bad states (represented by
¬P), and (2) Bi+1 ⊇ R−1(Bi) for i ≥ 0, i.e., the element of the sequence at position i + 1 is
a superset of states which represent the predecessors of those at position i. Since each Bi
includes the information of all real states at position i, the B-sequence is over-approximate.
Since the B-sequence includes more state information than the real ones, we can only use
it to check safety. If every state in some Bi+1 is included in some Bj for 0 ≤ j ≤ i, the
correctness is proved and the safety result is reported.

Table 2. The summary of key structures in CAR.

F-Sequence (under) B-Sequence (over)

Initial F0 = I B0 = ¬P
Constraint Fi+1 ⊆ R(Fi) Bi+1 ⊇ R−1(Bi)

Safety Check - ∃i · Bi+1 ⊆
⋃

0≤j≤i Bj
Unsafety Check ∃i · Fi ∩ ¬P 6= ∅ -

Figure 1 shows the schema on how to refine elements in both sequences. The crux
is a Boolean formula φ = s ∧ T ∧ B(i)′, in which s is a state in the Fj, T is the transition
relation formula, and B(i) is the i-th element of the B-sequence (B(i)′ is the prime version).
Informally speaking, the formula φ queries whether one of the successors of state s can
be in B(i). The query can be sent to a SAT solver, and if a satisfying assignment is
returned, the F-sequence can be updated based on the information from the assignment (see
Figure 1b). Otherwise, the B-sequence can be refined according to the unsatisfiable cores
from the SAT solver, which is a subset of s (Figure 1a). As the length of the B-sequence being
increased, we enumerate the elements in F- and B-sequences to feed the above formula φ
and therefore update all information of the sequences.

(a) (b)

Figure 1. The schema to refine elements in the B- and F-sequences. This figure is better viewed online.
(a) The schema to update elements in the B-sequence. (b) The schema to refine elements in the
F-sequence.

3.3. SAT Calls with Assumptions and Unsatisfiable Cores

As introduced above, the CAR algorithm frequently invokes the SAT calls whose
inputs have the form of A ∧ B, where B = T ∧ B(i)′ is a CNF formula, a Boolean formula
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with the form of
∧

ci, where each ci is a clause, and A (= s) is a cube. We use the notation
SAT(A, B) to represent such SAT queries and take A as the assumptions of the SAT solver.
Although the result of SAT(∅, A

∧
B) is equivalent to that of SAT(A, B), using the latter

one is typically more flexible for incremental SAT solving, which is a very efficient mecha-
nism to frequently invoke SAT solvers in practice. There are two different outcomes from
an SAT solver when handling the query SAT(A, B). If the result is satisfiable, an assignment
of the formula A ∧ B is provided by the SAT solver. Otherwise, A ∧ B is unsatisfiable
and an Unsatisfiable Core (UC) uc ⊆ A, which is a subset of the assumptions A, and
can be returned by the SAT solver. In CAR, the assignments are used to extract the new
explicit states of the system that are added to the under-approximate sequence, while the
unsatisfiable cores are collected to refine the over-approximate sequence.

4. Algorithm Design
4.1. Algorithmic Description of CAR

The pseudo-codes for the main procedures of CAR are shown in Algorithm 1. The entry
procedure takes a system Sys = (V, I, T) and a safety property P as the inputs, and outputs
are safe if an invariant is detected (Line 14), which indicates the correctness is proven, or unsafe
if a counterexample is found (Line 7), which means a property violation exists. The texts
in red are introduced to implement the restart policy, which will be explained in the next
section.

The main framework of CAR is shown from Line 1 to Line 15 of Algorithm 1. The first
SAT call at Line 1 is used to check whether there is a counterexample with the length of 0,
which means that some initial state in I is also a bad state in ¬P. If the SAT query returns
unsatisfiable, CAR initializes the B-sequence and F-sequence at Line 3, according to the
rules in Table 2. The whole loop from Line 5 to Line 15 increases the length of the B-sequence
gradually (see Line 13) and first calls the UNSAFECHECK procedure to search new states
and returns unsafe if a counterexample is found. Notably, inside the procedure, the length
of the F-sequence can be increased while that of the B-sequence cannot. Meanwhile, the F-
and B-sequence can be updated during the search inside the procedure. If UNSAFECHECK
proceeds but no counterexamples are detected, the SAFECHECK procedure is then used to
check whether an invariant can be found based on the information of the F-sequence. The
whole loop terminates as soon as one of the above two procedures returns, as discussed
in [37]. A summary of procedures in CAR is listed below:
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Algorithm 1 Main Procedures of r-CAR and CAR (without texts in red)
Input: Sys = (V, I, T) and Safety Property P;
Output: return safe or unsafe.
1: if SAT(I,¬P) is satisfiable then return unsafe;
2: end if
3: F0 := I, B0 := ¬P, k := 0;
4: restart := false, count := 0, threshold := threshold0;
5: while true do
6: while (Cube s = PICKSTATE (F)) 6= ∅ do
7: if UNSAFECHECK(s, k, k) then return unsafe;
8: end if
9: if restart then break;

10: end if
11: end while
12: if not restart
13: k := k + 1;
14: if SAFECHECK (k) return safe;
15: else RESTART()
16: end while

17: procedure UNSAFECHECK(s, i, k)
18: if RESTARTPOINT(k, threshold, count)
19: restart := true;
20: return false
21: Cube ŝ := REORDER(s);
22: while SAT(ŝ, T ∧ B

′
i) do

23: if i = 0 then return true;
24: end if
25: Cube t := get_assignment();
26: Fj+1 := Fj+1 ∪ t supposing s is in Fj (j ≥ 0);
27: if UNSAFECHECK (t, i− 1, k) then return true;
28: end if
29: end while
30: Cube c :=get_unsat_core()
31: count := count + 1;
32: Bi+1 := Bi+1 ∩ ¬c;
33: return false;
34: end procedure

35: procedure SAFECHECK(k)
36: i := 0;
37: while i < k do
38: if not SAT(∅,¬(Bi+1 ⇒ (

∨
0≤j≤i Bj)))

39: return true;
40: end while
41: return false;
42: end procedure

• PICKSTATE at Line 6 takes the F-sequence as the input and uses certain decision
strategies to enumerate and select a state from the sequence. For example, we may
enumerate the states from the beginning (resp. end) to the end (resp. beginning) of
the sequence, which can be implemented in a trivial way. The procedure returns an
empty set ∅ if all states in the sequence are considered but no more available states
can be chosen.

• REORDER at Line 21 takes a state as the input. Inspired by the concept of assump-
tions in modern SAT solvers, this procedure maintains two non-conflict policies named
intersection and rotation, which are designed to generate smaller unsatisfiable cores so
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as to boost the efficiency of the algorithm. The procedure reorders the literals in the
state s to generate its new copy ŝ (Cube ŝ at Line 21), which is then transferred to the
SAT solver as assumptions. For example, given a state s = (l1, l2, l3, l4), the returned
state ŝ may be (l3, l4, l1, l2) according to the reorder policy inside the procedure. Al-
though the SAT query result remains the same, the latter assumptions may lead to a
smaller unsatisfiable core (UC) and the literature [39] has shown the efficiency of such
reorder heuristics.

• get_assignment at Line 25 returns a satisfying assignment of the input formula if the
SAT query result is satisfiable. A new state t, which is a successor of s, can be extracted
from the assignment. Details are referred to in [37].

• get_unsat_core at Line 30 generates an unsatisfiable core uc, which is a subset of the
assumptions ŝ in the current SAT call, if the query result is unsatisfiable. It is trialed to
see that uc is also a subset of s. Essentially, the unsatisfiable core uc represents a set of
states (including s) that does not meet the query. Using uc instead of s to update the
over-approximate sequence is proven to be more effective.

• UNSAFECHECK from Lines 17 to 34 takes a state s, an integer i representing the
current frame level of the B-sequence, and an integer k representing the length of
the B-sequence as inputs. The procedure first reorders the input state s to ŝ through
the REORDER procedure, and then invokes an SAT call SAT(ŝ, T ∧ Bi

′) to check
whether state s can directly reach states in Bi. If the result is unsatisfiable, it calls
get_unsat_core() to obtain an unsatisfiable core c ⊆ s. Considering that ¬c represents
the over-approximate set of states which should not be in Bi+1 because they cannot
reach states in Bi, the unsatisfiable core c is added to Bi+1. On the other hand, if the
SAT query is satisfiable and the given integer i is 0 (Line 23), that is, state s can reach
the bad states in Bi. As the state s is selected from the F-sequence, which stores states
reachable from I, a counterexample is found and the procedure returns true. If the
SAT call is satisfiable with i > 0 (Lines 25–27), we invoke get_assignment() to obtain a
new state t, which is added into the F-sequence as the successor of s, and recursively
invoke UNSAFECHECK(t, i− 1, k).

• SAFECHECK at Lines 35–42, takes an integer k and the length of the B-sequence as
the inputs. By enumerating i from 0 to k, the procedure checks whether all the states
in Bi+1 have been contained in the union set of B0, B1, ..., Bi. If this is the case, We can
assert that all the states that can reach the bad states B0 = ¬P have been included in
the B-sequence. Because the initial states I are not in the B-sequence, the system Sys is
safe for the property P. This procedure exactly implements the safety check condition
shown in Table 2.

• RestartPoint at Line 18 returns true if CAR is ready to restart the state search according
to the restart policies introduced below.

4.2. Restart Policy

The restart mechanism has been widely implemented in modern SAT solvers to im-
prove their performance. The motivation comes from the observation that the search
inside the solver may become trapped due to an improper order of the assignments to
the variables in the Boolean formula. Under such scenarios, to keep searching is almost
impossible to find the final result but only wastes the computation sources. Therefore, it is
reasonable to abandon the current search path and restart it again with different variable
assignments. Studies have shown that such a simple strategy turns out to be very efficient
to help solve more satisfiable instances [41]. It is surprising to see that CAR also suffers
from a similar problem during the state search, and the idea of applying the restart policy
to CAR comes out straightforward.

As shown in Algorithm 1, the texts in red are pseudo-codes added to integrate the
start policy in CAR and therefore produce r-CAR. We use a counter variable count to record
the number of unsatisfiable cores generated in the current search. The count increases
every time a new unsatisfiable core is computed (Line 31) and will be set to 0 after each
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restart (Line 8). The insight is that too many unsatisfiable cores are computed in a single
search probably leads to a trap. In addition, a threshold that can be dynamically updated
is provided, and the restart policy is triggered as soon as the condition count > frequency
becomes true (Line 3). Notably, we use a flag restart to control whether the restart policy
should be triggered (Line 12), whose value is updated based on the return value of the
RestartPoint procedure (Line 18).

Once the restart policy is triggered, CAR abandons the current search and starts over
again. However, the restart frequency is a key reason that affects the final performance.
If the frequency is set too high, CAR may lose the instances that can be solved when no
restart is applied to the algorithm. On the other hand, if the frequency is set too low, it may
not be helpful to solve more instances that cannot be solved when no restart is applied
to the algorithm. In the implementation, we control the restart frequency according to a
threshold, whose value is initialized at the beginning (threshold0 at Line 4 of Algorithm 1)
and then can be updated based on a growth rate gr. The value of threshold0 determines the
initial frequency of the restart policy through the equation frequency = threshold0 ∗ (k + 1),
where (k + 1) represents the length of the current B-sequence. How the restart frequency
dynamically updates depends on gr. After each time the CAR algorithm triggers the restart
policy, the threshold is multiplied by gr, leading to the increment in the restart frequency.

In the UNSAFECHECK procedure, RESTARTPOINT is invoked to judge whether it is
ready to restart. The procedure takes an integer k representing the length of B-sequence and
an integer count, which counts the number of new unsatisfiable cores (Line 31) generated
in the current search, as the inputs. Since the B-sequence is over-approximate, generating
new unsatisfiable cores exactly makes the B-sequence more precise, which may prevent the
algorithm from searching the same path. Therefore, we take the length of the B-sequence
into consideration, and the restart frequency is the product of the length of B-sequence
and threshold. As soon as count is larger than frequency, RESTARTPOINT returns true and
the restart flag becomes true, which makes the procedure UNSAFECHECK terminate with
the output false (Lines 18–20). Once the restart point is reached, all recursive calls in
UNSAFECHECK are returned as false, leading to the termination of the loop at Lines 6–9
and the entry to the procedure RESTART at Line 15.

The RESTART procedure at Line 7 of Algorithm 2 resets the unsatisfiable core counter
count (Line 8) and enlarges the threshold with growth rate gr (Line 9). Compared to the
previous search from initial states I, we have updated Bi with a certain number of unsatis-
fiable cores, which probably generates a different search path from the previous ones. The
procedure BACKTRACK contains the process of returning to initial states I, eliminating the
F-sequence to release the memory, and some auxiliary work such as the reconstruction of
the SAT solver.

Algorithm 2 The restart policy

1: procedure RESTARTPOINT(k, threshold, count)
2: Let frequency := (k + 1) ∗ threshold;
3: if count > frequency then return true;
4: end if
5: else return false;
6: end procedure

7: procedure RESTART
8: count := 0;
9: threshold := threshold ∗ gr;

10: BACKTRACK();
11: end procedure

To clearly show the scenario before and after introducing the restart policy, we show
the difference between the searching diagrams of CAR and r-CAR (CAR + restart policy)
in Figure 2. Although the figures are greatly reduced, zooming in on the pictures will not
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cause distortion. From the figure, we found that CAR searches very deeply, consuming
lots of CPU time but returning with no counterexample. Meanwhile, Figure 2b shows the
searching path of r-CAR. It can be observed that r-CAR does not spend too much time on a
certain path and restarts the search several times. Finally, a counterexample with a length
of seven is found. You can find the trace of the counterexample on the top-right corner of
Figure 2b. A counterexample is a path from the initial state to a final state. The initial state
and final state are surrounded by red circles.

Init

(a)

Init Init Init Init Init Init Init

final

(b)

Figure 2. The search paths of CAR and r-CAR (CAR + restart policy) algorithms on solving the
instance “oski15a08b09s”. Zooming in on the pictures will not cause distortion. (a) The search path
of CAR algorithm. (b) The search path of r-CAR algorithm.

5. Experiments
5.1. Experimental Setup

We implement r-CAR based on the SimpleCAR model checker [44]. As mentioned
before, the restart frequency has a significant influence on the effectiveness of the restart
policy. In our conjecture, the frequent restarts in r-CAR may not preserve the advantages
already achieved in original CAR, while a low frequency cannot help solve new instances.
In our proposed algorithm, two parameters threshold and gr are introduced to determine
the restart frequency in a dynamic way. We evaluate different combinations of these two
parameters. We assign a relatively small value to threshold and a value equal to or greater
than 1 to gr, e.g., threshold = 128, gr = 1.2, aiming to avoid the disadvantage of frequent
restarts by gradually increasing the threshold after each restart.

We compare our r-CAR implementation to SimpleCAR, which implements the original
CAR, and ABC [45], a prestigious model checker in the community which implements
BMC and IC3/PDR and won the hardware model checking competition several times.
Notably, there are different kinds of BMC implementations in ABC, and we select the
one invoked by the bmc2 command in the tool, which has the best performance based on
previous evaluations [38]. Both SimpleCAR and ABC use the Minisat SAT solver [62,63] as
the computation engine for model checking.

All the experiments are performed on a cluster which consists of 2304 processor cores
in 192 nodes, and each node runs RedHat 6.0 with a 2.83 GHz CPU and 48 GB of memory
(RAM). In the experiments, for each algorithm, the time and memory limits of each instance
are set to be 1 h and 8 GB as default.

We evaluate all algorithms against 749 industrial benchmarks from the single safety
property track (SINGLE) of the HWMCC in 2015 [42] and 2017 [43], whose categories are
listed in Table 3. Each instance in the benchmark is an aiger model [64], which formalizes
the And-Invertor Graph of a circuit together with the safety property to be verified. Latches
are an important part of an aiger model. Sequential circuits have latches as state elements.
In a model, the number of latches reflects the complexity of the model to a certain extent.
Specifically, the state space is 2l , where l is the number of latches. In Table 3, we grouped
all benchmarks according to their source. For example, there are 180 cases, whose names
are started with “6s” and provided by IBM. In these 180 cases, the smallest case contains
no latches, while the largest contains 467,369 latches, with an average of 16,674 latches per
case.
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Table 3. The categories of benchmarks.

Groups Source Min Lacthes Max Latches Avg Latches Case Numbers

6s IBM 0 467,369 16,674 180
Intel Intel 36 17,843 3285 43
Oski Oski Tech 2915 25,715 15,977 171

Others - 3 26,148 609 355
Total - 0 467,369 8132 749

This paper focuses on unsafety checking, under which a counterexample can be
provided to help identify the property violation. We use the aigsim tool from the Aiger
package [65] to check whether the produced counterexamples are correct. We report that
the counterexamples generated from all checkers pass the tests successfully.

5.2. Results

RQ1: What is the appropriate configuration for the restart policy? In the experi-
ments, the original CAR (without restart policy) is able to solve 145 unsafe instances by
providing counterexamples. To evaluate the performance of the restart policy on r-CAR, we
first fix the initial threshold to be 128 and make the growth rate gr vary from 1.0 to 16.0. The
number of solved and distinctively solved (for the meaning, see the figure) instances with
the corresponding parameters are shown in Figure 3a. From the figure, the restart policy
effectively expands the algorithm’s diversity to find considerable new counterexamples
with different configurations. In particular, the restart strategy has better results when
the value of gr is in the range of one to two, which acquires the most amount of new
instances (seven or eight). When gr is set to be larger than 16, it can always surprisingly
find 5 “distinctly solved” instances. The reason is that these five distinctly solved instances
(6s218b2950, oski15a01b03s, oski15a01b43s, oski15a10b11s, oski15a10b14s) only need one
single turn of restart when the threshold is set to be 128, which means that gr plays no effect
on these five cases. It is more appropriate to set gr in the range of 1.0 to 3.0 as there are
some differences in their “distinctly solved” instances, which means we can obtain more
counterexamples in total through operating the algorithm with different parameters in
parallel.

We then vary the value of threshold from 64 to 8192 by fixing gr = 1.2 (as the rep-
resentative), and the corresponding results are shown in Figure 3b. The restart policy
performs better when the value of threshold is smaller than 256, under which not only
more “distinctly solved” but also several unique instances are detected. For example,
“oski15a08b15s” can only be found by “64–1.2”, “6s351rb15” and “oc8051topo08”can only
be solved by “128–1.2”. In our conjecture, certain instances are sensitive to the particular
combinations of the parameters that determine the frequency of the restart policy. Setting
the initial threshold to be larger than 1024 is too large for a one-hour execution to make the
restart strategy work. In short, the threshold is recommended to be set in the range of 32
to 256, while gr is recommended to be set in the range of 1.0 to 3.0 for benchmarks from
HWMCC. Unfortunately, there is currently no good way to obtain the parameters suitable
for specific cases. More precisely, the methods to extract the characteristics of a model are
currently lacking. Larger models do not necessarily adapt to more frequent restarts. We
think how to define and extract the characteristics of a model is a meaningful follow-up
work.
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Figure 3. Number of unsafe benchmarks solved from the experiments. The category “distinctly
solved” benchmarks are solved by CAR with the corresponding restart policy but not by the original
CAR. The “solved” benchmarks solved by CAR with and without the restart policy. X-axis 128–
1.0 means the initial threshold = 128, gr = 1.0, and the same applies to others. (a) Results of the
restart policy with the initial threshold = 128. (b) Results of the restart policy with gr = 1.2.

It should be highlighted that, although IC3/PDR can also perform differently by
varying the parameters to generate the inductive clauses [31], it helps more significantly
to prove safe instances. Meanwhile, applying the restart policy to CAR results in a better
performance on solving unsafe instances, which cannot be achieved by varying different
parameters inside IC3/PDR.

Due to the fact that the state space of a model grows exponentially with the number
of variables, we achieve little marginal benefit when allocating more linear time to the
computational task. For example, out of a total of 749 instances, the original CAR can find
145 counterexamples in 1 h and can find 147 counterexamples in 5 h, with only 2 more
counterexamples in an extra 4 h. Similarly, it takes BMC 1 h to find 153 counterexamples
and 5 h to find 159 counterexamples, with only 6 more counterexamples in an extra
4 h. Considering that r-CAR finds many different counterexamples when using different
parameters, it is better to separately allocate computing resources to run r-CAR with
different parameter combinations in parallel.

RQ2: Is restarting the policy effective? We focus on the number of counterexamples
found by different algorithms, shown in Figure 4.
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Figure 4. Comparison of the number of counterexamples.

We combine the results from the five configurations (“64–1.2”, “128–1.2”, “128–1.5”,
“128–3.0”, and “256–1.2”) of r-CAR with each configuration running for one hour, to
represent running these five different parameter combinations in parallel, noted as r-CAR-
select. Correspondingly, both CAR and BMC run for five hours. The BMC implementation
in ABC finds 159 counterexamples in 5 h, CAR can find 147 counterexamples, and r-CAR-
select can find 158 counterexamples. We can conclude that the restart policy is effective as
it helps CAR find 11 more counterexamples than before (from 147 to 158). In addition, the
performance of r-CAR-select is roughly equal to BMC (158 and 159), which is considered
to be the most effective and widely used algorithm in bug-finding. To better compare the
experiment result of r-CAR and BMC, we mark the number of counterexamples that cannot
be found by the other side as “unique solved”. Similarly, the “unique solved” of “CAR-5h”
in Figure 4 represent the number of counterexamples that cannot be found by BMC. As
we can see, r-CAR-select finds 13 counterexamples that cannot be found by BMC, much
more than before (CAR finds 7), which affirms our claim that the restart policy plays a
non-negligible role as a part of the portfolio to check property violation or bug-finding.

To evaluate the performance of r-CAR from another angle, we compare the time spent
in solving each case between r-CAR vs. BMC and r-CAR vs. IC3/PDR, the results of which
are shown in Figure 5a,b, respectively. The X-axis of these two figures is the time spent
for the best result from r-CAR-select, while the Y-axis represents the time spent for BMC
(resp. IC3/PDR) to solve the problem. Obviously, each point above the diagonal represents
a single case in which BMC (or IC3/PDR) spends more time to find a counterexample
than r-CAR-select and vice versa. It should be noted that points with the abscissa or
ordinate of 3600 represent the instances that the corresponding method cannot find this
counterexample in 3600 s. In Figure 5a, we can find that for those instances that can be
solved by both algorithms, either BMC or r-CAR can solve most of them in a short time
(less than 600 s). Even though BMC performs better in the instances that can be solved
by both algorithms, r-CAR uniquely solved several instances that BMC could not solve.
These two methods complement each other very well in bug-finding. Meanwhile, from the
results shown in Figure 5b, r-CAR-select succeeds in solving many more instances than
IC3/PDR within 3600 s and also solves them much faster. Obviously, r-CAR outperforms
IC3/PDR in bug-finding.
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Figure 5. Comparison of time spent by r-CAR-select with other algorithms. (a) Comparison on time
spent by r-CAR-select and BMC. (b) Comparison on time spent by r-CAR-select and IC3/PDR.

We then show the comparison of the overall performance among different approaches
in Figure 6. We can clearly see that r-CAR-select, CAR, and BMC dominate PDR in bug-
finding. Compared to BMC, CAR and r-CAR-select solve fewer instances in the early stage.
The reason for this is that BMC is based on the strategy of breadth-first search, which
normally operates fast at the beginning but can become slower as the depth increases. We
can find that BMC solves fewer new instances after 10 min. r-CAR follows the depth-first
search strategy, and the restart is triggered as soon as the depth of the searching path
reaches the threshold. Therefore, the restart policy gives r-CAR more opportunities to
detect the property violation as time increases, and the restart policy gradually closes
the gap between r-CAR and BMC. Considering that r-CAR-select represents the result
of running five parameter combinations in parallel, even if we multiply the time cost of
r-CAR-select by five times, we know that after a total of about five hours, r-CAR can catch
up with BMC, based on the result of Figure 4. As mentioned before, bug-finding is not
the strong point of IC3/PDR, and the results of IC3/PDR shown in the figure support this
claim firmly.
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Figure 6. The overall performance of CAR, r-CAR, BMC, and PDR.

It should be clarified that r-CAR with a single configuration cannot outperform BMC.
We argue that comparing r-CAR-select, which consists of five different restart configura-
tions, to BMC is still fair because we give BMC 5 h. The BMC implementation (abc-bmc2)
we select is the best one as far as we know, and abc-bmc2 can solve all instances that
other BMC implementations can solve, according to our preliminary experiments. As a
result, testing more BMC implementations cannot affect the conclusions made in this paper.
The ability to perform differently with different configurations is the advantage of r-CAR,
which cannot be achieved by either BMC or IC3/PDR.
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6. Conclusions

To summarize, we apply the restart policy to CAR, aiming to get rid of the trap which
occurs during the search and make the algorithm not terminate in a reasonable time. The
results of the experiments show that the restart policy increases the diversity of the CAR
algorithm, though there is no single configuration that can improve the overall performance
significantly. The new finding of 11 unsafe instances indicates the efficiency of the restart
policy in the domain. Moreover, the CAR algorithm with the restart policy can now find
13 unsafe instances with counterexamples that BMC cannot find, which enhances the ability
of the current model checking portfolio.

This is the first work to understand how the restart policy performs on model checking,
and our experiments result have proven the effectiveness of the restart policy. We expect
that our research can be helpful to understand the performance characteristics of the
restart policy. It is possible to run different parameter combinations which control the
restart frequency in parallel to solve previously unsolvable cases. In future work, we plan
to design more elaborate and sophisticated restart mechanisms to improve the overall
performance of CAR such that it is able to outperform BMC in bug-finding with a single
restart configuration. Due to the fact that different problems are sensitive to different
restart frequencies, it is also interesting to introduce the learning techniques to learn the
best solution for different instances.
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