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Abstract: Crowd monitoring and analysis has become increasingly used for unmanned aerial vehicle
applications. From preventing stampede in high concentration crowds to estimating crowd density
and to surveilling crowd movements, crowd monitoring and analysis have long been employed in the
past by authorities and regulatory bodies to tackle challenges posed by large crowds. Conventional
methods of crowd analysis using static cameras are limited due to their low coverage area and
non-flexible perspectives and features. Unmanned aerial vehicles have tremendously increased
the quality of images obtained for crowd analysis reasons, relieving the relevant authorities of the
venues’ inadequacies and of concerns of inaccessible locations and situation. This paper reviews
existing literature sources regarding the use of aerial vehicles for crowd monitoring and analysis
purposes. Vehicle specifications, onboard sensors, power management, and an analysis algorithm
are critically reviewed and discussed. In addition, ethical and privacy issues surrounding the use of
this technology are presented.

Keywords: drones; crowd detection; crowd estimation; crowd dynamics

1. Introduction

Crowd monitoring and analysis have been becoming vital from public security and
safety viewpoints because crowd participants may show abnormal behavior. An increase
in crowd density and the associated abnormal behavior amongst its participants may ulti-
mately lead to stampede incidents with risk of injuries. The probability of risks multiplies
when coupled with strict spatiotemporal constraints, such as those exercised in religious
gatherings [1,2]. Furthermore, in such mass gatherings, potential public health threats are
even more severe, ranging from transmission of infectious diseases, thermal disorders,
the possibility of terrorism incidents, and violent crowd behaviors resulting from alcohol
consumption and/or substance abuse [3]. Planned religious gatherings can attract millions
of people into designated areas enhancing societal values. For example, Hajj is considered
one of the largest planned mass gatherings where over two million Muslims gather annu-
ally in Mecca [1]. Stampede incidents in Hajj and other mass religious gatherings, such as
the Kumbh Mela in India, are partly attributed to abnormal crowd behaviors, resulting in
panic and subsequently fatal accidents [1,2].

Traditional crowd analysis methods have relied on visual inputs obtained from static
or fixed-location cameras that record images or videos, resulting in fixed angle visibility
and limited coverage. In addition, fixed visual inputs cannot, and are hence unable to,
perform persistent and continuous tracking of moving crowds, unless the deployment of
some massive monitoring devices’ network is made in place. In recent years, unmanned
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aerial vehicles, commonly known as drones have been deployed to perform crowd analy-
ses, complementing the fixed monitoring devices [4]. Drones, primarily used for military
applications, are now gaining interest in their use to capture footage that would other-
wise require the deployment of helicopters and manned aircrafts. Specifically, the use
of drones provides the following advantages: (1) ability to be equipped with required
sensors and payloads for acquisition of additional metrics other alongside visual data [5],
(2) availability of real-time data for crowd dynamics modeling, with the help of power-
ful onboard processing units for estimating the crowd dynamics [6–8], and (3) lowering
overall operational costs as the same monitoring device can be deployed elsewhere with
an effective increase in its coverage [4], as well as reducing the human resource [5,9]. The
benefits provided by drone use have already been established in other fields where mobility
and aerial access tremendously increase visibility and site access such as in the maritime
environment [10], agricultural technologies [11–14], mining industries [15], and disasters,
tsunami, and pandemic management [16].

The crowd monitoring and analyses discussed in this paper can be further divided
into several domains, namely crowd detection [8,17–22], crowd counting [8,23–27], crowd
density estimation [17,26], crowd tracking [6,22,28,29], and crowd behavior analysis [30,31].
Whereas most works have focused on a single domain, recent results from the literature
have discussed algorithms developed to tackle multiple domains such as the one presented
in [32], and similar other areas will be further discussed in the proceeding literature.

To the best of the authors’ knowledge, a balanced review on crowd monitoring and
analysis using drones, including a much-needed discussion on the ethical and privacy
issues surrounding the application of drones in crowd analysis, is scarce. This paper at-
tempts to gather relevant literature resources to address the technological aspects alongside
the ethical aspects of such advancements.

The rest of the paper is organized as follows: Section 2 describes the drone architecture
reported in the recent literature, consisting of onboard sensors and power management sys-
tems by including commercially developed solutions where relevant. Section 3 elaborates
on the applications of drones in crowd management and the accompanying technologies
used for monitoring and analysis of crowds. This includes emerging algorithms for crowd
analysis, as well as recent advancements in crowd prediction. Section 4 presents privacy
and ethical issues surrounding the use of drones in terms of their societal impact and the
legislature and global acceptance of drone technology. Finally, the conclusions are drawn
as a concise account in Section 5.

2. Drone Architecture

Multiple drone architectures exist in the literature, ranging from classification based
on functions, classification by weight and size, performance characteristics, and engine
types [33]. This section discusses the architecture of drones used for crowd monitoring and
analyses, covering its build, onboard sensors, communication, and power management
strategies.

2.1. Drone Build

Arguably, the vast selection of drone architectures is reduced when used for the
monitoring of human crowds. A significant proportion of drones used in the literature
point to multi-rotor drones with a vertical take-off and landing (VTOL) mechanism. The
choice of multi-rotor VTOL drones is advantageous in several aspects. Firstly, VTOL is
preferred to other mechanisms since it does not require additional launching platforms such
as runaways or catapults [34,35]. This allows easy configuration and fast deployment for
crowd monitoring purposes and requires a smaller deployment area. Secondly, multi-rotor
VTOL drones can hover in one place, making them the preferred choice for monitoring
as they can be positioned above the crowds [18]. This is especially useful for still crowd
imaging, as well as continuous crowd monitoring applications. The second choice of
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architecture presented in the literature, albeit scarce, is the fixed-wing type drones, which
have the advantage of longer flight endurance and higher efficiency.

Of the drones addressed in the literature, the majority chose off-the-shelf commercial
drones for the said purpose, notably from the manufacturer DJI, which in the year 2020
accounts for more than 70% of the drones market share in the US [36]. The choice of
off-the-shelf drones is likely since they come as an integrated package that includes drone
build, flight controller, mission planning system and data transmission link, allowing
for plug-and-play deployment. However, some work mentions utilizing a custom-made
drone to allow full access to the underlying hardware requirement, especially to allow
onboard image processing. Shao et al. [30] describe using a quadrotor with a NVIDIA
Jetson TX1 embedded computer to carry out real-time image processing coupled with
STM32F427VIT6 based flight controller. Custom hardware deployments allow complete
control of the hardware interfacing and remove restrictions due to proprietary software
and codes shipped with the commercial drones.

2.2. Visual and Onboard Sensors

No doubt, the presence of a visual sensor is a requirement for crowd-related drone
activities. The RGB or visible light type camera is the most widely used, most commonly
equipped with commercial drones [18,23,26,28,32,37]. On top of RGB, the addition of
thermal camera is another visual sensor that is either used on its own [21,30] or used in
combination with its RGB counterpart [18,23].

RGB images have been the gold standards for image processing applications. RGB
images often have higher resolution and contain richer details regarding the area being
surveyed [18]. However, RGB images are often affected by the environment [30], such as
its susceptibility to illumination changes or quality degradation due to limited lighting (for
example during nighttime captures) [23]. Thermal imagery complements these disadvan-
tages by providing heat signature of the objects in the area of interest, regardless of the
environmental illumination conditions. However, thermal images often suffer from lower
spatial resolution [19].

Although commercial drones often come with additional onboard sensors such as
the Global Positioning System (GPS), most of the crowd-related literature did not describe
taking advantage from these sensors. Bhattarai et al. [37] have described the use of onboard
GPS, in addition to the RGB camera, to geo-locate humans detected from aerial drone
surveillance activity. This in turn, has allowed the authors to visualize the location of the
detected human on a Geographic Information System (GIS) platform such as Google Earth.
Similarly, Singh et al. [31] have discussed the use of the onboard inertial measurement
unit (IMU) to calculate the drone’s horizontal velocity. In both cases, built-in or mounted
onboard sensors were used as an augmentative feature to obtain additional data during
the drone operation.

2.3. Communication

In a single-drone deployment scenario, the primary communication link is bi-directional
between a drone and its Ground Control Station (GCS). Commercial drones such as DJI uses
proprietary communication protocols such as Ocusync and Lightbridge, in addition to the
WiFi transmission system. Open-source protocols also exist for building communication
links for custom-made drones. One such protocol is the Micro Air Vehicle link (MAVLink),
which employs a lightweight binary serialization protocol [38]. As the complexity of
operation increases, communication can shift from being centralized GCS to a decentralized
drone-to-drone communication [39].

Most works in the literature concerning aerial crowd monitoring lack discussion
regarding the communication architecture, most likely suggesting the use of the built-in
communication protocol bundled with the purchased drone. Several works in this domain,
however, have discussed additional details in the communication methods. In [28], the
authors have presented a framework for persistent crowd tracking dubbed PERCEIVE
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which consists of a swarm of drones carrying out video surveillance using a novel charg-
ing scheduling and mobile ground charging station. The authors cited improvement in
efficiency in comparison with a fixed charging station or no charging condition. In a crowd
analysis application presented in [31], the authors have described using cloud computing
to analyze images on the cloud due to the memory-intensive computation required by the
corresponding algorithms. This allows offloading a segment of intensive drone tasks to
dedicated hardware which can relay the processing results back to the drone for further
action. However, the reliance on this feature might hamper the drone operation in the case
of lost internet connectivity. An emerging trend in drone communication is the use of cloud
computing or the Internet of Things (IoT) to augment drone operation. This concept has
been proposed in the Industrial IoT (IIoT) field such as for optimal power line inspection us-
ing UAVs [40]. Some architectures have been developed with the focus of getting connected
using resourceless or resource-constrained connectivity such as drone-assisted vehicular
networks (DAVN) or flying ad-hoc networks (FANET) for IoT-enabled scenarios [41,42],
giving rise to the concept of internet of drones (IoD) [43,44]. This trend has been observed
elsewhere in applications requiring transmitting environmental sensor data for constant
monitoring, as demonstrated in [45,46] and is expected to have significant integration in
the field of crowd monitoring as well.

2.4. Power Management

Whereas drones can perform a task beyond human imagination, the current tech-
nology that relies on onboard batteries introduces some limitations to their operation.
Specifically, the flight time is constrained to only tens of minutes. The additional payload
carried by the drone will further reduce its flight time. Such observations have been de-
scribed in [28], where a DJI Matrice UAV has shown a reduction of nearly 46% of its flight
time when carrying an additional 320 g of camera payload [28]. A survey of the literature
has indicated two strategies used in enhancing the drone flight time.

Firstly, the use of alternative power supply, allowing additional power for flight
without the frequent need for recharging. Secondly, the use of a charging station (CS) either
on the ground or on top of a building or vehicle that employs various technologies to
recharge an operational drone. The former method is used in the commercial Perimeter 8
multirotor drone (Skyfront), which operates on a hybrid gasoline-electric engine system
and has demonstrated around 13 h of flight time over California’s Coastal Range [47].
Similarly, the Hybrix 2.1 (Quarternium) multirotor drone has demonstrated over 10 h of
flight time using a petrol-electric fuel-injection engine [48]. Whereas the use of an advanced
engine propulsion system for drone provides enhanced endurance, it will also significantly
increase the cost of these drones. However, the availability of these technologies for multi-
rotor drones offers promising prospects in crowd monitoring and analyses applications.

Other works have employed the charging station (CS) strategies allowing conventional
drones to ensure the continuity of operations. One method discussed in [49] automated
the swapping of multiple drones to ensure continuity of operation by identifying when a
drone needs a recharge, deploying another one to its place, and directing the low-powered
drone to a ground CS. The charging is to be conducted contactless to ensure complete
automation, removing the need for an operator to remove and install the battery manually.
In a similar concept, instead of a fixed ground CS, Trotta et al. [28] has described the use
of a mobile CS for continuous crowd tracking, in which scheduling of the drone charging
can be made dynamically by changing the location of the CS to follow the drone position,
yielding higher efficiency and continuous connectivity of service.

Another method discussed has been the ‘battery hot-swapping’, in which a battery
on the drone is switched without needing to turn the drone off at the CS (for example,
using a robotic arm). In this case, multiple battery backups are made available instead of
multiple drones [50]. However, an operation time-gap exists while the hot swapping takes
place. Other proposed methods include contactless drone charging from the CS using laser
beam technology [51,52] while the drone is mid-air. In the context of crowd monitoring,
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this method will require utmost operational safety concern since the use of high-intensity
lasers can prove hazardous to human health and can impose disturbance in urban living
areas [53]. Photovoltaic (PV) cells harvesting solar energy have also been investigated
in the literature to allow charging without the need of requiring the landing maneuvers.
However, this technique depends on having adequate solar irradiation, and is mainly
suitable for fix-wing typed drones due to the vast surface area available on the drone body
for attaching the PV cells [53]. For continuous aerial surveillance, one alternative method
suggested in the literature is via a tethered drone system [54–56]. In this method, a drone
is powered from a ground station using generators or battery packs, effectively providing
unlimited endurance [57]. In addition, the tethering can provide an additional secured
communication uplink/downlink channel. A significant drawback of this method is the
apparent cable length restriction which subsequently imposes restrictions on the drone
coverage area. One improvement suggested to overcome this limitation is by introducing a
network of drones chained via tethering cables with control mechanisms implemented on
the ground station [58]. Figure 1 summarizes the drone power management strategies.

Figure 1. Drone power management. (a) Solar-powered drones, suitable for fixed-wing UAVs. (b) Hybrid-powered drones,
combining energy from electric and fuel cells. (c) Drone-swapping method, with a fixed charging station. (d) Laser-powered
on-the-air recharging. (e) Battery hot-swapping, without powering down the drone. (f) Mobile recharging stations, with
programmed charging scheduling, and (g) Tethered drones.

Since adding payloads such as cameras and recording equipment will inevitably
reduce the drone’s flight time, efficient power management is necessary for monitoring
and analysis applications. Table 1 summarizes the drone architecture as discussed in
this section.
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Table 1. Drone architecture in the literature utilized for crowd monitoring and analysis purpose.

Make/Model Visual Sensor Image Resolution
(px) Onboard Sensors Communication Reference

DJI Phantom 4, DJI
Phantom 4 Pro and

DJI Mavic
RGB + Thermal 512 × 640 (Thermal) - - [23]

Microdrones
MD4-1000 RGB + Thermal 1920 × 1080 (RGB)

320 × 240 (Thermal) - - [18]

DJI Matrice 100 RGB - - - [28]

DJI Phantom 4 Pro RGB - - - [26]

Custom
Quadcopter Thermal 336 × 256 QGroundControl +

MAVLink [30]

Custom
Quadcopter Thermal 640 × 512 - - [21]

Sensefly Xbee RGB - - Pix4d UAV [59]

DJI Matrice 100 RGB - GPS - [37]

DJI Phantom 4,
DJIPhantom 4 Pro,

DJI Mavic
RGB 1920 × 1080 - - [32]

3DR X8+ RGB 720 × 960 - [60]

Parrot AR 2.0 2 × RGB
1280 × 720 (front facing)

320 × 240
(downward facing)

IMU
Barometric sensor Cloud computing [31]

3. Applications and Algorithms

This section will cover the applications of drones in the area of crowd monitoring
and analysis. In addition, various algorithms used for achieving the said purpose will be
presented, along with the emerging challenges.

3.1. Crowd Detection and Monitoring

Drones are increasingly utilized alongside conventional CCTV crowd monitoring
and surveillance devices and systems. Crowd monitoring can be an essential tool in
public safety, since an accurate crowd assessment via monitoring can avoid potential
disasters caused by abnormal crowd formation [18]. The mobility of drones overcomes the
limitations of imaging angle, coverage and deployment cost of conventional CCTVs [5,18],
thus increasing its significance in real-time surveillance operations.

The authors in [18] have proposed using RGB and thermal imagery data for crowd
monitoring with a single drone. The authors have argued that since visuals captured by
drones are most likely nadir imagery (picture taken vertically or from aerial perspective),
the approach of identifying face and extracting body features is not suitable. Additionally,
whereas RGB imagery provides excellent details due to higher resolution, detecting the
crowd is a challenging task (earlier research such as presented in [61] used color-coded
participants for person detection), which can benefit from additional input such as provided
by a lower resolution thermal imagery. A similar approach has been employed in [19,21], in
which thermal imagery alone has been used to detect the human crowd. The authors have
proposed a detection method based on Region of Interest (ROI) extraction and Supervised
Machine Learning (SML) classification. Although promising results have been presented,
the techniques have only been verified in a reduced number of sample images. In [24], the
authors have presented a Multiview CNN algorithm, which takes an RGB input coupled
with artificially generated crowd heat maps. The authors have proposed that the algorithm
can be implemented on a processing board available on commercial drones such as the
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NVIDIA Jetson TX2 board, ensuring its feasibility for real-time aerial crowd detection tasks.
In addition to detection, the authors in [37] have presented a proof of concept for real-time
crowd localization methods using the onboard GPS sensor of a drone. This enables for
plotting the localization information in a mapping software such as Google Earth.

3.2. Crowd Size Estimation

Crowd size estimation is an integral part of crowd management, as the crowd size can
indicate potential risk emerging from its participants’ behavior. One method for crowd
size estimation is crowd counting. Several studies have described methods for counting
crowds, each addressing different potential challenges to perform precise counting from
images obtained through aerial imagery. One of these challenges is the scale variations
of crowd images obtained from the drones. Since local regulations in some countries do
not allow drones flying directly above the crowds, aerial images tend to be taken at an
angle; therefore, they are susceptible to scale variations due to changes in the drone’s
height. In [8], the authors have presented a method dubbed scale-adaptive real-time crowd
detection and counting method for drone images (SARCCODI) for counting dense crowd
which considers the images’ scaling factors. The method has been proven to outperform
Convolutional Neural Network (CNN)-based methods for a similar aerial image datasets.
Whereas many advanced crowd counting algorithms focus on single modal data (RGB),
recently, the authors in [23] have presented a different approach by introducing a multi-
modal data (RGB and thermal) CNN to improve performance and accuracy. The authors
have created a public dataset called DroneRGBT consisting of 3600 RGB and thermal image
pairs, and have devised an algorithm that can work separately on either RGB or thermal
images, or with the fusion of the two data sets. It is worth noting that within the limited
works for drone images in crowd counting applications, very few have offered perspectives
into the ability of the proposed method to work in real-time. Specifically, whether the
computational power required to achieve the crowd counting is lightweight enough to be
embedded onboard a drone and executed during the drone operation. Both works in [7,8]
have discussed a lightweight approach to crowd counting has been tailored to processing
tasks in real-time.

In addition to crowd counting, crowd density estimation is also an interesting focus
for crowd size estimation. Earlier crowd density estimation methods have relied on
detection-based approaches, regression-based approaches or density estimation-based
approaches [62]. In [17], the authors described using color-based segmentation to perform
crowd density estimation. The method is beneficial in aerial images where the color of
the crowd is very distinguishable from the background such as in the Hajj pilgrim images.
In further work, the authors have applied a modified corner detection algorithm called
the Features from Accelerated Segment Test (FAST) for density estimation in aerial crowd
images [63]. The method, however, is more susceptible to misdetection due to different
lighting conditions. A more recent approach into this field has centered on the use of
CNN-based methods. Specifically for drone imagery, the authors in [26] have described
employing an algorithm to estimate crowd density accurately from drone images with
perspective distortion by feeding a perspective map into a neural network (CSRNet). This
has been achieved by moving away from estimating crowd density on the image plane to
estimation on the head plane, a plane that is parallel to the ground and translated vertically
to a height of an average person. Figure 2 shows an example of crowd detection from
images carried out using CNN method.
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Figure 2. An example of crowd size estimation using Deep CNNs [64].

3.3. Crowd Tracking

Tracking crowd movement can provide insight into potential risks caused by the
crowd dynamics, such as the emergence of riots [29] that can prove to be an essential
tool in surveillance operations. Optical flow, an algorithm that estimates the motion of
image intensities temporally in a video sequence [65], has been used in motion estimation
applications in the past. Whereas the high computation requirement of the optical flow
method is now achievable using single board computers, real-time tracking application
remains a challenge. Authors in [60] argue that the traditional optical flow methods fail
to perform since drone imagery that is often susceptible to change in viewing angles
and perspective due to camera movements during flight. The authors have proposed
increasing the efficiency and robustness of moving target tracking using optical flow by
compensating the camera motion, removing the moving background and then segmenting
the independently moving foreground blobs or other similar hindering means. In [32],
a different approach has been employed to perform tracking of the human crowd from
the drone datasets. The authors have applied globally optimal greedy algorithms that
have been first introduced in [66] to estimate the tracks of multiple targets in the captured
video sequence. In another work, the authors in [67] have proposed a traverse order
generation scheme to address periodical surveillance of multiple moving targets. The
proposed scheme uses multiple drones in a decentralized manner. The scheme is designed
in a way that can determine the sequence of tracked targets. All the targets are visited
sequentially by predicting the position of the next target in path planning. As targets
move from one area to another, the presented algorithm switch between drones. The
proposed strategy provides an excellent opportunity for the crowd monitoring system
to detect abnormal activities. It is worth mentioning that datasets tailored for tracking
applications are pretty scarce, with the Visdrone [68] dataset remaining the most extensive
dataset tailored for multi-object tracking, apart from the smaller UAVDT dataset [69]. It
has recently been utilized for the tracking of individuals in crowds not complying with the
COVID-19 SOPs [70] as shown in Figure 3.
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Figure 3. Crowd Tracking for COVID-19 SOP breachers [70].

3.4. Crowd Analyses

An emerging trend in aerial imagery is analyzing crowd to identify anomalies or
changes in crowd behaviors and structures. In [61], an analysis of pedestrian crowd
behavior has been presented. The authors have described using the complex event detector
method proposed in [71] to identify the behavior of pedestrian groups in multiple scenarios
such as corridor walk, bottleneck pathway and escape situation. Authors in [30] described
an approach to identify abnormal crowd behaviors using drone-based thermal imagery
based on two factors; the crowd density and its velocity. A truth table containing a
combination of velocity factors and density factors will decide whether the crowd will
be classified as normal or abnormal. For example, an abnormal crowd is anticipated if
the crowd’s velocity increases and its density decreases. However, if both the crowd
velocity and density decrease, then the crowd is considered normal. Corner detection
and optical flow-based algorithm have been employed to identify both factors in a crowd
and a multi-task CNN is employed to carry out crowd detection and density estimation.
The authors have also demonstrated the feasibility of real-time detection with processing
carried out using the single-board computers onboard the drone. The status of crowd
behavior analysis is then displayed on the drone handheld controller, as shown in Figure 4.

Another field of interest is the live analysis of crowd behavior during surveillance
operation. The concept is demonstrated in [31] where the authors have described a drone
surveillance system to identify violent individuals in a crowd. This has achieved using
human pose estimation carried out via the proposed ScatterNet Hybrid Deep Learning
(SHDL) network algorithm. A custom dataset has been curated from aerial imagery of
individuals performing one of the five violent activities (punching, stabbing, shooting,
kicking, and strangling). In contrast to similar work in [72], the authors in [31] have
employed cloud computing to perform resource-intensive pose estimation tasks, allowing
the system to be implemented in real-time applications. Authors in [73] have proposed a
priority-based routing framework for flying adhoc networks (PRoFFAN) for better data
delivery to decision and control centers. They have found that the PRoFFAN has improved
the response time of the flying adhoc network (FANET) application. This improvement is
achieved by prioritizing the sending and forwarding of critical image data from the UAV
to the control center. Regarding of drones’ applications in crowd management, delivering
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such important image features as early as possible will save lives and enhance the crowd’s
safety and flow.

Figure 4. Abnormal behavior detection via drone as demonstrated in [30] on a simulated crossroad scene. (a) Normal crowd
behavior and (b) Abnormal behavior showing increased crowd velocity and crowd escaping behavior.

4. Privacy, Safety and Ethical Implications
4.1. Legal Frameworks

As no agreed standard and regulation exists across the globe, each country has speci-
fied its rules regarding the use of drones. In a survey comparing drone legislation among
thirty-five (35) Organization for Economic Co-operation and Development (OECD) coun-
tries, it has been found that 89% (31 countries) impose flight restrictions in overcrowded
areas such metropolitan cities [74]. Other restrictions include flight distance restrictions
(35 countries) and distance from building restrictions (23 countries) [74]. In general, regula-
tions are made related to several key characteristics: for example, the size and weight of
the drones, flight altitude, flight purpose, and restriction requirements [74]. Pilot licensing,
ownership registration, and insurance are also common elements included in the contents
of drone legislation [75]. Drone legislation also varies according to the types of drones
used, whether for recreational or commercial reasons. The approach to legislation related
to commercial drones is more stringent with some countries imposing total or effective
bans to their use, whereas others set restrictive standards such as line of sight requirements
while operating drones [75].

It is worth noting that these legislations may change over time, especially since
commercial drones are nowadays widely used in business, law enforcement, and for
environmental monitoring purposes [76]. For example, the European Union has issued a
regulation enforceable from 31December 2020, that mandates the registration of drones
and no longer differentiates between commercial and recreational drone activities, but
instead considers a drones’ weight, their specifications and the intended operation [77].
Restrictions on dealing with the crowds also differ by legislation. European Union law
prohibits uncertified drones from flying over crowds, where an assembly of people is
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defined based on peoples’ movement in a space, not the number of people [78]. In the
United States, recent rules changes (April 2021) allow a small drone to be flown over people
if it weighs less than 0.55 pounds (~250 g), with shielded rotating parts and the drone
is equipped with Remote ID, a technology that allows drones to be identified from the
ground [79]. Overall, legislation around the use of drones is part of the ongoing efforts in
many countries and is likely to undergo drastic changes in the coming years in response to
the increased use of drones worldwide in areas such as business, logistics, agriculture, and
weather, or animal tracking and monitoring applications.

4.2. Safety Considerations

Although drones are useful during crowd interactions, they can also pose risks and
threats with potential health implications, and even fatalities during the operation. In the
United States, between 2010 and 2017, injuries related to amateur aircraft including drones
experienced a sharp increase, with more than 270 cases requiring hospitalization [80].
Although predominantly reported in adults, the reported incidences of injuries have
included children under 18 years of ages [81]. Injuries caused by drones can be due to
an impact which can cause contusion or caused by the rapidly-rotating propellers and
rotors, harming different body parts due to lacerations [82]. In addition, more severe cases
such as skull fracture [83], severe eye injury [84], and organ damage due to exposure to
chemicals [81] have been reported. In maintaining the safe navigation of drones around
the crowd, experts have recommended using protective equipment and tools, especially
for the body parts most susceptible to injuries such as hands and heads. In addition,
propeller guards can be installed to avoid injury [80,82] during retrieval and in the event
of an unexpected landing. A small number of works have suggested using technological
advancements to avoid fatal drone-crowd interactions. The authors in [85] have described
a deep learning method of a fully convolutional network for crowd identification from
drone images that could output a heat map of safe or non-safe landing zones based on
the presence of crowd and pedestrian in a specific area. This work is improved from the
previous results by the authors in [20,86], where similar method has been used to identify
no-fly zones, such as the areas populated by the crowd and adjusting the drone flight
planning according to the local legal requirements. In [87], an innovation in terms of drone
hardware is proposed for cargo drone applications. The authors argued that whereas
traditional propeller guards provide safety measures, they introduce performance penalties
to the drone operation. The authors have proposed a drone design with morphing arms that
can be retracted during take-off and landing and extended during flight time. In addition,
an 8 mm opening on the cage structure has been selected to prevent children’s fingers from
passing through it [87]. It should be noted that whereas some jurisdictions have drafted
their regulations, there is no international standard for the airworthiness of drones, which
has caused a lot of drone incidents during events involving crowd presence [88]. One
specific measure proposed by the authors of [88] is the availability of a redundancy system
in drones that provides a fail-safe mechanism capable of dealing with the loss of control or
communication and subsequently providing safe landing. A combination of advances in a
drone’s hardware and software capabilities can provide safety and minimize risks during
the operation near crowds.

4.3. Privacy and Ethical Implications

As the use of drones expands from the military domains to recreational and commer-
cial spaces, the privacy and techno-ethical discussion surrounding drone use in crowd
management are justified. The availability of visual capture devices even on low-cost
hobbyist drones opens the possibility of abuse [89]. Recent estimates have shown that
as much as 30% of people have negative feelings (nervous, angry, sad) upon seeing a
drone flying close to their living place [90]. Drones have already been used for violating
individual space and privacy, especially against female targets through aerial photography
and video recording of their private lives by malicious users [76,91]. In a crowded envi-
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ronment, data collection in the form of visual images and facial recognition poses serious
privacy concerns. The authors in [89] have discussed that the best privacy practice (for
example, the one proposed in [92]) recommends adequately addressing data collection,
data sharing, data storage, data security, and data use policies. However, such practice
currently remains as a recommendation rather than being enforced via as legislation. In
the case of privacy breaches, challenges arise, among others in determining the drone own-
ership, establishing intent, and arguing the case for reasonable expectation to privacy [93].
One study investigating the relationship between drone altitude and the success rate of
privacy violation attacks from drone cameras indicated that regulations relating to use
of drones to a specific height can help reduce the identifiable features from the recorded
images [94]. This, of course, depends greatly on the type of cameras available onboard the
drone and varies significantly from one drone to another. Other works have suggested
that anonymization techniques such as blurring of images can be applied to the collected
image data to remove identifiable information from the images, thus minimizing the risk
of privacy violation [89,95]. However, as noted in [96], anonymization is often insufficient
if the drones also collect information that extends beyond visual data, such as geoloca-
tion and landmarks, which could still point to an identifiable details when combined
with visual data. Drone detection and deterrence techniques have also been suggested
to counter illegal and obtrusive use of drones, especially in sensitive public spheres such
as airports, medical facilities and crowded areas. Current technologies proposed include
the use of radar-based detection, visual detection, acoustic detection, and radio frequency
detection, as extensively reviewed in [97]. In addition to single modality detection, some
research have also investigated multiple modalities or hybrid detection techniques such as
visual combined with acoustic such as presented in [98] Whereas many of these techniques
addresses single drone detection, research in [99,100] proposed radar-based methods for
identifying drones in swarm formation. Drone detection techniques can assist authori-
ties and enforcement agencies to interdict and intervene for authoritative prohibition of
unlawful drone operations.

Another area of concern regarding the ethical considerations of using a drone over
the crowd is the militarization of drones. While amateur and commercial drones are
inherently non-violent, drones used in waring zones pose severe ethical issues for civilian
crowds, including pedestrians and bystanders. Although drone strikes are often described
as “precise”, thus minimizing risk and casualties, but the reality on the ground is not as
transparent as it is claimed. For example, drone strikes have been reported to cause more
severe amputation and most traumatic among the civilian (called collateral damage in
military terms) than other modern weapons [101]. In addition, in contrast to minimal risk
as suggested in [102], sources indicated that civilian casualties are far more damaging than
what the governments and authorities have reported with little or unreliable transparency
and accountability [76,103].

5. Outlook and Conclusions

Drones are becoming the modern state-of-the-art solutions for crowd management
and continuous tracking. Current research directions are mainly focused on single-drone
deployment for crowd detection, localization, tracking and prediction. However, swarm
drone arrangement is expected to find its way in future crowd management, coupled
with emerging technologies such as block-chain and 5G connectivity [104,105]. Among
the challenges to be addressed are optimal routing and the autonomous distribution of
drones to perform crowd monitoring and tracking [106]. For instance, when managing the
recent COVID-19 pandemic, such swarm arrangements have been proposed to perform
healthcare and policy compliance surveillance over a crowded population [107–109].

Due to occlusion imposed by varying weather conditions, scale changes, and view-
point variations, aerial images are challenging to analyze compared with datasets obtained
from traditional fixed-camera imaging methods. For instance, as noted in [110,111], the
performance of modern algorithms on applications such as crowd-counting and multiple
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objects tracking algorithms on challenging aerial datasets remain unsatisfactory and offers
a large room for improvements. In terms of real-time applications for crowd analysis, two
major key enablers are identified. Firstly, the availability of high-capacity single board
computers which exist in small form, are allowing their deployments onboard modern
drones alongside visuals and other telemetry sensors. Secondly, high-speed internet con-
nectivity will allow image analysis to be carried out on remote servers or on the cloud,
practically eliminating the hardware barriers for implementing algorithms requiring high
computational power. Both methods have been demonstrated in the surveyed literature
and are expected to become significant in future applications requiring real-time capability.

As the requirement for drone ownership becomes complete due to low-cost and high
market availability, it is expected that drone legislation will constantly change to adapt to
the challenges surrounding safety, privacy, and ethical issues for their use. From drone
ownership registration to piloting license requirements, countries with high drone usage
have already introduced legislation that will safeguard the community. Standardization
might also become the focus of attention in the future where a drone operator who has
obtained a license in one country is recognized in other countries within a specific union,
alliance or economic zones. Ethical issues involving data collection of identifiable individu-
als in crowd settings will require immediate attention preventing thus drones from abuse.
Among future directions for ethical and legal discussion is the issue of drone autonomy,
specifically in applications involving crowd analysis or crowd prediction. For example,
classifying an individual or a group of people as violent or non-violent based on their limb
orientation or body postures presents concern regarding misclassification and potential
abuse. Another major issue of interest is when a drone is tasked with making a life-altering
decision and acts upon it autonomously. While seemingly futuristic, a recent publication
by the United Nations Security Council has already reported an instance where a lethal
drone equipped with Artificial Intelligence has been programmed to autonomously track
and attack targets without communication with its operator [112]. Recent accepted work
on the interdiction of SOP is pointing to the futuristic use of the drones in pandemics [112].
Policy discussion around the enormous issues presented in such a situation is currently
inadequate due to the clandestine and covert nature of technological use in warfare, albeit
the lack of transparency and accountability.

In summary, this paper has provided a comprehensive review of drones from a
crowd monitoring and analysis perspective. Related drone architectures including the
drone hardware, power management, onboard sensors, and communications have been
discussed. Recent work focusing on crowd related applications such as crowd detection,
monitoring, volume estimation, tracking, and analysis has indicated an increased interest
in this field, particularly due to ease of access to drones for research and increased demands
for their use in public security and safety applications. It is worth noting that the legal
framework and policies regarding the use of drones are lag behind the rapid adoption of
their use world-wide. As the rationale technical capabilities of the drone develop even
more featured, our understanding of its impact on crowd management and interaction will
help shape future policies, harnessing its benefits while protecting society from its threats
and abuse.
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