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Abstract: The unprecedented success of classical neural networks and the recent advances in quan-
tum computing have motivated the research community to explore the interplay between these
two technologies, leading to the so-called quantum neural networks. In fact, universal quantum
computers are anticipated to both speed up and improve the accuracy of neural networks. However,
whether such quantum neural networks will result in a clear advantage on noisy intermediate-scale
quantum (NISQ) devices is still not clear. In this paper, we propose a systematic methodology for
designing quantum layer(s) in hybrid quantum–classical neural network (HQCNN) architectures.
Following our proposed methodology, we develop different variants of hybrid neural networks and
compare them with pure classical architectures of equivalent size. Finally, we empirically evaluate
our proposed hybrid variants and show that the addition of quantum layers does provide a noticeable
computational advantage.

Keywords: quantum machine learning; quantum neural networks; hybrid neural networks; ampli-
tude encoding; angle encoding; variational quantum circuits

1. Introduction

Machine learning (ML) is the subfield of artificial intelligence (AI) that entails pro-
gramming computers to learn from data [1]. Among others, neural networks are one of the
most widely used ML models, providing clear advantages including adaptive learning,
self-organization, real-time operation, parallelism and fault tolerance [2]. Deep learning
is an extension of neural networks with a greater number of hidden neuron layers, and
this technique is well suited for learning from large amounts of data, often referred to as
big data [3]. Over the years, many powerful deep neural networks (DNNs) models have
been proposed and have been shown to exhibit exceptional performance in a variety of
scenarios. Examples of applications where deep learning outperforms other state-of-the-art
ML algorithms include speech recognition [4,5], computer vision [6,7], natural language
processing [8], cybersecurity [9] and healthcare [10,11], to name a few.

The primary objective when designing DNN architectures is the efficient optimiza-
tion of the network in such a way that it leads to better training accuracy (how well the
model learns from the data) and validation accuracy (the model’s performance on unseen
data) [12–14]. Another important performance metric in DNNs is the model generaliza-
tion (how efficiently the model adapts to new unseen data) [15], which is the difference
between the training and validation accuracy given that we have a large enough dataset for
training the model and vice versa to avoid the issues of underfitting (low training accuracy
and low validation accuracy) and overfitting (high training accuracy and low validation
accuracy). Ignoring underfitting and overfitting, the generalization error can be defined as
in Equation (1).

GeneralizationError(%) =
TrainAccuracy−ValidationAccuracy

TrainAccuracy
× 100 (1)
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The smaller the difference between the train and validation accuracy, the better the
generalization. If the generalization error of a model is high, it means that the model
is not actually learning, rather just memorizing the data. Consequently, the model will
fail to efficiently predict using data it has not seen before. The convergence time (the
time the model takes to reach an optimal performance) of neural networks is another
important performance metric when dealing with real-world datasets, which should be
reasonably practical.

In recent years, research in quantum computing has advanced considerably, mainly
motivated by its potential to outperform classical computation for certain tasks. In fact,
regarding quantum supremacy, refs. [16–18] recently provided practical evidence of the
computational advantage of quantum over classical computers. These successful experi-
mental illustrations of quantum supremacy motivated the research community to explore
the extent to which quantum computing can improve ML, which is today termed as quan-
tum machine learning (QML). QML has become an interesting research topic, and various
ML algorithms are being developed in the quantum realm. The primary purpose of QML
is to explore and analyze the possible advantages quantum computation might offer to ML
compared to classical ML algorithms.

Universal fault-tolerant quantum computers are anticipated to significantly enhance
the performance of machine learning algorithms. Although the quest for building a
universal fault tolerant quantum computer has had a great deal of effort devoted to it over
the last decade and various important advances and milestones have been achieved, a
universal fault-tolerant quantum computer is still not expected in the near future. However,
small-scale quantum computers with limited numbers of qubits and with small resilience
to noise have already been developed [19,20]. These small-scale quantum computers fall
into the noisy intermediate scale quantum computation (NISQ) regime, and such quantum
devices are not yet proven to enhance the performance of machine learning algorithms.
However, significant progress has been made in QML [21–24], particularly quantum neural
networks (QNNs) [25–32] for various applications including image generation [33–35]
and data classification [23]. QNNs are also being explored in terms of their trainability
and generalization [36–42]. For example, a recent work [39] investigated QNNs for NISQ
devices and analyzed how a well-designed QNN can outperform classical neural networks
in terms of data expressibility (the types of functions a neural network architecture can
fit). Similarly, in [43], QNNs have also been designed and analyzed on real-world datasets
including MNIST [44]. However, some claims have been made in the literature proposing
the advantage of QNN over classical NNs [43].

The main objective of quantum machine learning algorithms is to achieve better train-
ability and generalization with a reasonable model convergence time (at least compared
with the classical machine learning algorithms). However, in the NISQ era, building better
quantum machine learning models than their classical counterparts might be a challenge
because of two fundamental problems: (1) the unavailability of native quantum datasets
and (2) the unavailability of quantum memory (QRAM) and sufficiently strong quantum
processors for storing and handling big data. While this limits the progress of developing
standalone and sufficiently strong QNNs, it has motivated a hybrid quantum–classical
approach [26], which is now widely used to achieve a reasonable quantum advantage in
neural networks. The hybrid quantum–classical neural networks (HQCNNs) follow the
same architecture as QNNs, as shown in Figure 1, while including classical input and
output layers. The input layers reduce the input data dimension before being encoded
into the quantum circuit, while the output layer is used to classically post-process the
measurement results of the quantum circuit. Furthermore, HQCNNs are also possible to
simulate on NISQ platforms and use variational quantum circuits due to their robustness
against noise on NISQ devices [45–48]. We discuss HQCNNs and variational quantum
circuits further in Sections 2.1 and 2.4.
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Figure 1. Quantum neural network architecture. U(x) is a set of unitary operations dependent on
input data and responsible for encoding input data into quantum devices. V(θ) is the variational
quantum circuit consisting of a set of parametrized gates, which depends on trainable parameters
θ. When the circuit is measured, it is classically post-processed and interpreted as a prediction (ŷ)
of QNN.

Some studies have claimed that QNNs can surpass classical DNNs for particular
learning tasks, such as the discrete logarithm problem [38], and quantum synthetic data
classification [23]. However, a relatively recent work [49] criticized these claims and
discussed the barren plateau problem (the problem of vanishing gradients) in QNNs,
which poses a limitation on the applicability of QNNs for large-scale real-world problems.
This limitation of QNNs makes it unclear whether or not the QNNs can provide any
advantage over their classical counterparts. However, recently there have been some
efforts to understand and overcome the issue of barren plateaus in QNNs [50,51], opening
the doors for real world applications of QNNs.

There is still no standard methodology to design quantum circuits for QNNs, which
we speculate is one reason behind the mixed opinions of the quantum advantage in QNNs.
Therefore, it is crucial to develop a systematic approach to design quantum circuits for
QNNs rather than relying on heuristics.

1.1. Contribution

Realizing the fact that the quantum part of HQCNNs is largely unexplored, in this
paper, we perform a comprehensive Design Space Exploration (DSE) of quantum circuit
construction in HQCNNs. To illustrate this process, we use image classification problems.
We also demonstrate the practical quantum advantage of HQCNNs over pure classical
networks in terms of computational efficiency and comparable accuracy. We use various
commonly used parameterized quantum gates, particularly in the context of QNNs, with
different data encoding techniques (specifically, amplitude and angle encoding), which
gives us the best set of quantum gates with corresponding encoding techniques. We
also develop different variants of HQCNNs with a maximum of four qubits (for a fair
comparison with classical counterpart), progressing from simpler to more sophisticated
quantum circuits. The primary objective of this exercise is to reduce the trial efforts required
for designing quantum circuits for HQCNNs.

1.2. Organization

The rest of the paper is organized as follows: Section 2 contains the necessary back-
ground and terminologies used in this paper. Our proposed hybrid HQCNN variants are
introduced in Section 3. The evaluation results and brief comparisons of all the hybrid
and classical counterparts are presented in Sections 4 and 5, respectively. Finally, Section 7
concludes the paper.

2. Preliminaries
2.1. Hybrid Quantum–Classical Neural Networks (HQCNN)

In HQCNNs, part of the neural network is made quantum. A typical structure of a
hybrid QNN consists of a trainable variational quantum circuit sandwiched between input
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and output classical neural layers. In this architecture, the quantum circuit serves as the
hidden layers of the HQCNN. The quantum part in HQCNNs is similar to the original
QNN architecture and consists of two parts: (1) data encoding, which encodes the classical
data, and (2) a trainable variational quantum circuit. An abstract illustration of an HQCNN
is shown in Figure 2.

Figure 2. Typical architecture of hybrid quantum–classical neural network (HQCNN) architecture.

The classical input layers in the HQCNN architecture are usually used to downsize the
input feature space to make it compatible for NISQ devices. The quantum part is similar
to QNN (Figure 1). The classical output layer is typically used to classically post-process
the measurement results of the quantum part. Moreover, in HQCNNs, the parameters can
also be updated classically since the measurements returned from the quantum part are
classical values.

2.2. Dataset Preparation

In this paper, we use MNIST handwritten digits dataset for training the HQCNNs.
The standard MNIST dataset has 60,000 training images and 10,000 testing images. This
dataset is quite large for HQCNNs on NISQ devices. Therefore, we create two subsets
from the original dataset: a small dataset (D103) containing 10,000 training and 3000 test
images, and a large dataset (D204) containing 20,000 training and 4000 test images. The
pure classical neural network and all the variants of HQCNNs are trained for both D103
and D204.

2.3. Data Encoding

Machine learning depends heavily on big data. In the current NISQ era, we have a
very limited number of qubits available and almost no diverse quantum datasets. Hence,
we rely on classical datasets, which are required to be encoded. Encoding can be considered
as data point (x ∈ χ) loading from memory into a quantum state so that a QML algorithm
(e.g., quantum neural network) can process it.

From a practical viewpoint, data encoding is performed via a unitary [52] state prepa-
ration circuit Sx, which is realized in terms of single and double qubit gates acting on an
initial state |φ〉, which is usually the all zero state |φ〉 = |0〉⊗n. The encoding can then be
represented by Equation (2).

x 7→ E(x) = Sx |φ〉 〈φ| S†
x = |x〉 〈x| =: ρx (2)

For Sx to be suitable for the data encoding, it is required that the gates count is
polynomial (or sub-polynomial) compared to the number of qubits. Moreover, the state
preparation circuit needs to be hardware efficient; that is, the single and double quantum
gates can be realized efficiently without increasing the overhead cost.

Different techniques are used to encode the data into an n-qubit quantum device,
namely amplitude, angle, basis, qsample and dynamic encoding. Below, we briefly in-
troduce amplitude and angle encoding strategies, as these are the most popular and the
strategies we adopt in this work. The details on other encoding techniques can be found
in [53].
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2.3.1. Amplitude Encoding

Amplitude encoding associates classical information, such as a real vector, with
quantum amplitudes. This can be achieved in various ways. For instance, a classical
normalized vector x ∈ C2n, ∑k|x|2 = 1 can be encoded in the amplitudes of quantum state
as shown in Equation (3). ( x1

...
x2n

)
↔ |ψx〉 =

2n

∑
j=1

xj |j〉 (3)

Similarly, a classical matrix A ∈ C2n × C2n
with entries aij that fulfill ∑ij|aij|2 = 1 can

be represented by accordingly enlarging the Hilbert space, as shown in Equation (4).

|ψA〉 =
2m

∑
i=1

2n

∑
j=1

aij |i〉 |j〉 (4)

One of the limitations of amplitude encoding is that it can process only normalized
classical vectors, which eventually leads to data representation in one fewer dimension
(e.g., a classical 2-dimensional vector (x1, x2)

T can only be associated with an amplitude
vector (α1, α2)

T of a qubit, which fulfills |α1|2 + |α2|2 = 1). This means that it lies on a unit
circle—a one-dimensional shape in two-dimensional space.

2.3.2. Angle Encoding

Another popular data encoding technique for classical–quantum hybrid algorithms
is angle encoding [53]. Angle encoding [53], sometimes also called “qubit encoding”, has
been used widely in a number of recent QML experiments [54–56]. In angle encoding,
the features are encoded into the rotation angle of qubits and can be represented by the
following equation [52]:

|x〉 =
N⊗

i=1

cos(xi) |0〉+ sin(xi) |1〉 (5)

This encoding technique makes use of N qubits with a quantum circuit of constant
depth, which makes it more suitable for NISQ devices. The state preparation unitary in the
case of angle encoding encodes a single feature per qubit, as shown in Equation (6) :

Sxj =
N⊗

i=1

Ui where Ui :=

cos(x(i)j ) − sin(x(i)j )

sin(x(i)j ) cos(x(i)j )

 (6)

2.4. Variational Quantum Circuits for HQCNNs

The variational circuit V(θ) is an ansatz (a subroutine consisting of a sequence of gates
applied to specific wires) which defines a set of all possible states |ψ(θ)〉 it is able to prepare.
In the QML context, the idea of hybrid training is to use a quantum device with some
classical processing to compute the objective function c(θ) for a given set of parameters
θ. Afterwards, a classical algorithm optimizes the parameters by making queries to the
quantum device [57]. The parameterized circuit V(θ) is implemented by a quantum device
which then prepares a state V(θ) |0〉 = |ψ(θ)〉 according to the circuit parameters θ. The
final state measurements V(θ) give the state or expectation value estimates of a particular
qubit, which depends on the circuit parameters θ. These expectation values are then used
by the cost function C(θ), which determines how good θ is in the context of the problem
under consideration. The main objective of the algorithm is to find the optimal circuit
parameters θ of the variational circuit, which would tend to minimize C(θ). Analogous to
the objective of selecting a suitable model in conventional machine learning, choosing an
efficient ansatz that allows the parameterized state to approximate possible solutions to
the problem by using fewer parameters is a challenging task in QML.
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Variational quantum circuits have recently become a very popular approach for QML
applications on NISQ devices because of a number of advantages [53]:

• Only a small portion of the overall algorithm is required to run coherently (as a
quantum circuit), leading to smaller circuit;

• Since there are many possible ansatzes, it is possible to design the circuit based on the
underlying device capabilities;

• Since the circuit is learnable, it can add robustness against device errors. For instance, if a
certain state is over-rotated, it can be automatically corrected by parameter self-adjustment.

3. Methodology

The methodology to design efficient quantum circuits in hybrid quantum–classical
neural networks (HQCNNs) is not very well-defined in the literature, and that might be
one of the important reasons behind the mixed opinions regarding the potential advantage
of quantum computation in HQCNNs. In this paper, we develop different variants of
HQCNNs and perform a comprehensive analysis of how various encoding techniques and
quantum gates/circuits potentially affect the performance of these hybrid networks. This
exercise will reduce the trial efforts required to select quantum gates (for quantum circuit
design) and encoding techniques (encoding the data into quantum system) in HQCNNs
for a specific application. Furthermore, we also compare the hybrid networks with their
classical counterparts to determine whether the quantum layers introduce any advantage.
In particular, we train the same model on both D103 and D204 to observe and compare
the convergence rate and whether there is any computational advantage in the hybrid
case. We also compare the models in terms of the overall accuracy and generalization error
improvement rate.

For all the models (hybrid and classical), we use the Adam optimizer with an initial
learning rate of 0.01. Moreover, the learning is scheduled for better training, and we
use the early stopping method in keras to avoid overfitting. The maximum number of
training epochs is set to 100; however, if there is no improvement in validation loss for three
consecutive epochs, the learning rate scheduler reduces the learning rate by a factor of 0.1,
and the new learning is calculated as shown in Equation (7). If there is no improvement in
validation loss for four consecutive epochs, the training is stopped to avoid overfitting.

new learning rate = previous learning rate× 0.1 (7)

The hybrid architectures we use in our experiments consist of two input layers. The
first layer completely encodes the input features, and the following classical layer consists
of four neurons, downsizing the feature size being encoded into the quantum circuit. The
last classical layer of all the hybrid model consists of 10 neurons because the dataset we are
using (MNIST) consists of 10 output classes. The qubit measurements are performed in the
eigen-basis of σz for all the variants of implemented HQCNNs. In addition, for the angle
encoding, the rotation gate used to encode features in qubit rotations is Rx(θ) for all hybrid
networks. In the following sections, we discuss in detail all our HQCNN variants and two
classical counterparts. It is important to note here that we keep the number of qubits the
same in all the variants of the HQCCNs to allow a fair comparison between them.

3.1. Hybrid Quantum–Classical Neural Network—Variant 1

The first variant of the implemented hybrid neural network (HQCNNv1) is relatively
simple, with four qubits and only single qubit rotation gates followed by qubit measure-
ments in the eigen-basis of σz. The main purpose of HQCNNv1 is to (1) select the best
batch sizes for the input dataset being fed to the circuit and (2) select the best parametrized
rotation gates for both the data encoding techniques. Once the best parameters are selected,
the rest of the hybrid network architectures is then be experimented upon to determine
the best batch sizes and best gates. The complete architecture of HQCNNv1 is depicted in
Figure 3.
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Figure 3. Schematic of variant 1 of hybrid quantum–classical neural network architecture.

3.2. Hybrid Quantum–Classical Neural Network—Variant 2

Similar to HQCNNv1, the second variant of the hybrid network (HQCNNv2) also
consists of four qubits. However, in HQCNNv2, instead of four single-qubit layers, two
two-qubit layers have been used to introduce entanglement, which is one of the commonly
used quantum mechanical properties in quantum computation (we use the CNOT gate
create the entanglement). The HQCNNv2 architecture makes use of the best parameters
(batch size and parametrized rotation gates), which we select based on the empirical results
obtained for HQCNNv1 (Section 4.1). The complete architecture of HQCNNv2 is shown in
Figure 4:

Figure 4. Schematic of variant 2 of hybrid quantum–classical neural network architecture.

3.3. Hybrid Quantum–Classical Neural Network—Variant 3

In this section, we develop a more complex quantum circuit by entangling all four
qubits. We analyze the performance of the third variant of the hybrid neural network
(HQCNNv3) for both amplitude and angle encoding techniques with the best batch sizes
and best rotation gates for each encoding (as discussed in Section 4.3. The schematic of
HQCNNv3 is shown in Figure 5.
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Figure 5. Schematic of variant 3 of hybrid quantum–classical neural network architecture.

3.4. Classical Counterpart for Hybrid Networks

In order to compare the results and analyze the potential advantages of quantum
layers in the network, we develop a pure classical model corresponding to our hybrid
networks. The classical counterpart has two variants: (1) simply omitting the quantum
part from Figure 3, as shown in Figure 6a, which we call CVa, and (2) replacing the four
quantum layer from Figure 3 with a classical layer of four neurons, as shown in Figure 6b,
which we call CVb. For a fair comparison with hybrid models, we made this classical layer
a one-to-one connected layer and not a fully connected layer since the quantum layer in
the hybrid network is not fully connected.

(a) (b)

Figure 6. Classical counterparts for hybrid networks. (a) First variant of classical counterpart (CVa);
(b) Second variant of classical counterpart (CVb).

4. Results and Discussion

In this section, we report and discuss the results for all three variants of hybrid
networks and two classical counterpart models for the hybrid networks.

4.1. Results—HQCNNv1
4.1.1. Small Dataset—D103

First, the HQCNNv1 was trained on D103. The following steps were performed to
extract the best rotation gates and batch sizes for the small datatset:

1. The model in Figure 3 was initially trained on D103 for batch sizes of 8, 16, 32 and 64
with rotation gates Rx(θ), and the data were encoded via amplitude encoding. This
step gave us the best batch size for D103;

2. We trained the same model with Ry(θ), Rz(θ) and Rot(θ) gates only for the best
batch sizes selected in the previous step. This step gave us the best rotation gate for
amplitude encoding.

The training results for the extraction of the best batch size are presented in Table 1.
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Table 1. HQCNNv1 training results with amplitude encoding for D103.

Batch
Size

Rotation
Gate

Maximum
Train Accuracy

Maximum
Validation
Accuracy

Generalization
Error

Convergence
Time (s)

8 Rx(θ) 0.7423 0.6942 4.8 7250.72
16 Rx(θ) 0.7582 0.6750 8.3 6669.1
32 Rx(θ) 0.8082 0.7290 7.9 6500.5
64 Rx(θ) 0.7608 0.6687 9.2 4147.7

After the first step, the best batch sizes for D103 were found to be 8 and 32 with respect
to accuracy, generalization and convergence time. Although the convergence time for a
batch size of 64 is significantly lower than other batch sizes, it falls short in terms of overall
accuracy and generalization error. The same experiment was repeated only for the best
batch sizes with other rotation gates to extract the best rotation gate for amplitude encoding.
The training results are presented in Table 2.

Table 2. HQCNNv1 training results for best batch size with amplitude encoding for D103.

Batch
Size

Rotation
Gate

Maximum
Train Accuracy

Maximum
Validation
Accuracy

Generalization
Error

Convergence
Time (s)

8 Ry(θ) 0.7367 0.6850 5.1 1274.8
32 Ry(θ) 0.7693 0.6960 7.3 1741.07
8 Rz(θ) 0.7660 0.6870 7.9 5213.11

32 Rz(θ) 0.7463 0.6527 9.3 4867.32
8 Rot(θ) 0.7092 0.6437 6.6 1775.5

32 Rot(θ) 0.6294 0.5933 3.6 1527.5

Based on the experiment results shown in Tables 1 and 2, we can conclude that, in
terms of model accuracy, all four rotation gates have comparable performance, but Ry(θ)
outperforms Rx(θ) and Rz(θ) in terms of model convergence time. Although Rx(θ) is
slightly better in terms of overall accuracy, its convergence time is significantly higher than
Ry(θ). Moreover, while using Rot(θ), the model converges faster, but it has reasonably low
accuracy compared to the other gates, particularly Ry(θ). As the Ry(θ) performs reasonably
well with amplitude encoding, we use Ry(θ) whenever we use the amplitude encoding
technique in the next variants of hybrid networks.

Now, we test the same set of rotation gates for the angle encoding technique. We
already have the best batch sizes for D103; therefore, we only train the model for the best
batch sizes. The training results of HQCNNv1 with angle encoding are shown in Table 3.

Table 3. HQCNNv1 training results with angle encoding for D103.

Batch
Size

Rotation
Gate

Maximum
Train Accuracy

Maximum
Validation
Accuracy

Generalization
Error

Convergence
Time (s)

8 Rx(θ) 0.8914 0.7870 10.44 9681.8
32 Rx(θ) 0.8917 0.7837 10.8 7133.7
8 Ry(θ) 0.7479 0.6290 11.9 8339.2

32 Ry(θ) 0.8815 0.7967 8.4 5511.7
8 Rz(θ) 0.8744 0.7663 10.8 7929.13

32 Rz(θ) 0.8787 0.7870 9.17 4637.33
8 Rot(θ) 0.8695 0.7467 12.28 10427.7

32 Rot(θ) 0.8901 0.7707 11.94 8985.01
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Based on the results in Table 3, we observe that Rz(θ) performs well with angle
encoding in terms of accuracy, generalization and convergence time. Although Ry(θ) has
a relatively smaller generalization error, not only is the overall accuracy is lower, but it
also takes slightly more time to converge than Rz(θ). Hence, Rz(θ) is found to be the best
when the data are encoded using the angle encoding technique. Therefore, we use Rz(θ)
whenever we use angle encoding in the next variants of hybrid networks.

4.1.2. Large Dataset—D204

Now, we train the same model (HQCNNv1) on D204 to analyze the change in model
behavior with respect to accuracy, generalization error and convergence time. This exercise
would provide grounds for a computational and expressibility (generalization ability)
comparison of classical and hybrid networks by comparing the convergence rate and gen-
eralization error of both models, respectively. We use batch sizes of 8 and 32 (similar to that
of D103) for fair comparison. We train the model for both amplitude and angle encoding
with the corresponding best rotation gates and analyze if there is any improvement in the
model performance. We observe that increasing the dataset size results in almost the same
accuracy with better generalization and an obvious increase in model convergence time.
The results are shown in Table 4.

Table 4. HQCNNv1 training results with both encodings for D204.

Encoding Batch
Size

Rotation
Gate

Maximum
Train

Accuracy

Maximum
Validation
Accuracy

Generalization
Error

Convergence
Time (s)

Amplitude 8 Ry(θ) 0.7041 0.6525 5.1 2544.8
Amplitude 32 Ry(θ) 0.7706 0.7175 5.3 2794.8

Angle 8 Rz(θ) 0.8622 0.7993 6.2 10,248.4
Angle 32 Rz(θ) 0.8816 0.8175 6.4 12,003.4

The graphical representation of the results of HQCNNv1 for both amplitude and angle
encoding with the best corresponding parameters are shown in Figure 7. We observe that,
analogous to classical machine learning, the hybrid (quantum–classical) approach tends to
perform better with more training and testing data. The accuracy and generalization of
the hybrid model improves with an increase in the dataset size, as shown in Figure 7a,b,
whereas the convergence time increases (Figure 7c), which is obvious since there are more
data on which to train the model. At first, angle encoding performed slightly better in
terms of accuracy whereas amplitude encoding performed better in terms of generalization
and convergence time.

(a) (b) (c)

Figure 7. HQCNNv1 results for D103 and D204. (a) Accuracy, (b) generalization error, (c) convergence time. The values on
the x-axis denote the encoding technique, with corresponding batch sizes in parentheses.
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4.2. Results—HQCNNv2

HQCNNv2, as shown in Figure 3, was implemented using the best parameters selected
while experimenting with HQCNNv1. Similar to HQCNNv1, HQCNNv2 was also trained
on both D103 and D204 with the best batch sizes and best rotation gates for both amplitude
and angle encoding. The training results for HQCNNv2 are presented in Table 5 and
visualized in Figure 8.

Table 5. HQCNNv2 training results on D103 and D204 with both encodings.

Encoding Batch
Size

Rotation
Gate

Maximum
Train

Accuracy

Maximum
Validation
Accuracy

Generalization
Error

Convergence
Time (s)

Small Dataset—D103

Amplitude 8 Ry(θ) 0.7482 0.6903 5.8 3649.4
Amplitude 32 Ry(θ) 0.7690 0.6867 8.2 3649.4

Angle 8 Rz(θ) 0.7886 0.6917 9.7 6662.6
Angle 32 Rz(θ) 0.8345 0.7280 10.7 6262.4

Large Dataset—D204

Amplitude 8 Ry(θ) 0.7929 0.7525 4.04 6493.9
Amplitude 32 Ry(θ) 0.7395 0.6970 4.3 5823.8

Angle 8 Rz(θ) 0.7523 0.6755 7.7 12679.1
Angle 32 Rz(θ) 0.8291 0.7563 7.3 9152.6

(a) (b) (c)

Figure 8. HQCNNv2 results for both D103 and D204. (a) Accuracy, (b) generalization error, (c) convergence time. The
values on the x-axis denote the encoding technique with corresponding batch sizes in parentheses.

Like HQCNNv1, we observe that in HQCNNv2, the accuracy and generalization
error tend to improve when the size of the dataset is increased, and the time of model
convergence increases. Furthermore, both amplitude and angle encoding have a compa-
rable performance with respect to overall accuracy. In addition, the amplitude encoding
performed better in terms of generalization and convergence time for both D103 and D204.

4.3. Results—HQCNNv3

The training experiment for HQCNNv3 followed the same procedure as in HQCNNv1
and HQCNNv2. The tabular and graphical representation of the obtained results for both
D103 and D204 for HQCNNv3 are shown in Table 6 and Figure 9.

Similar to HQCNNv1 and HQCNNv2, when the amount of data was increased, the
overall accuracy and generalization of model improved in HQCNNv3 as well, while taking
more time to converge in case of larger data. Furthermore, for a smaller batch size (8),
the angle encoding performed worst in HQCNNv3 with almost no learning at all (lowest
accuracy). The amplitude encoding exhibited a better performance with respect to all three
performance metrics (accuracy, generalization and convergence time) in HQCNNv3.
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Table 6. HQCNNv3 training results for D103 and D204 with both encodings.

Encoding Batch
Size

Rotation
Gate

Maximum
Train

Accuracy

Maximum
Validation
Accuracy

Generalization
Error

Convergence
Time (s)

Small Dataset—D103

Amplitude 8 Ry(θ) 0.7406 0.6817 5.9 3780.7
Amplitude 32 Ry(θ) 0.7449 0.6800 5.6 7941.9

Angle 8 Rz(θ) 0.1080 0.1087 ∼0 1879.6
Angle 32 Rz(θ) 0.6745 0.5983 7.6 6184.2

Large Dataset—D204

Amplitude 8 Ry(θ) 0.7283 0.6812 4.3 5178.6
Amplitude 32 Ry(θ) 0.7297 0.6998 3.0 8341.5

Angle 8 Rz(θ) 0.1133 0.1145 ∼0 3046.5
Angle 32 Rz(θ) 0.7078 0.6390 6.9 17,304.1

(a) (b) (c)

Figure 9. HQCNNv3 results for both D103 and D204. (a) Accuracy, (b) generalization error, (c) convergence time. The x-axis
represents the encoding technique with corresponding batch size in parentheses.

4.4. Results—CVa and CVb

We trained both classical models (CVa and CVb) on both D103 and D204 for the best
batch sizes of 8 and 32. The training results for both classical models are summarized in
Table 7 and visualized in Figure 10.

Table 7. Training results of both classical counterpart models on both D103 and D204.

Batch
Size

Classical
Model
Variant

Maximum
Train

Accuracy

Maximum
Validation
Accuracy

Generalization
Error

Convergence
Time (s)

Small Dataset—D103

8 CVa 0.8937 0.8203 7.3 7.54
32 CVa 0.9031 0.8247 7.8 4.67

Large Dataset—D204

8 CVa 0.8811 0.8435 3.7 24.21
32 CVa 0.8745 0.8350 3.9 8.09

Small Dataset—D103

8 CVb 0.9053 0.8287 7.3 13.19
32 CVb 0.8948 0.8197 7.5 4.82

Large Dataset—D204

8 CVb 0.8937 0.8437 5.0 28.8
32 CVb 0.8802 0.8428 3.7 8.78
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(a) (b) (c)

Figure 10. Results of CVa and CVb. (a) Accuracy rate comparison, (b) generalization error rate comparison, (c) convergence
rate comparison. The x-axis represents the classical model variant with the corresponding batch size in parentheses.

For D103, the classical model CVa performs slightly better than CVb in terms of con-
vergence time, with almost the same performance in terms of accuracy and generalization.
This is because CVb includes one extra hidden layer and hence tends to converge slower
(particularly for a smaller batch size). For D204, both CVa and CVb have comparable
accuracy. However, CVa generalizes slightly better because of its simpler architecture
compared to CVb (where the latter tends to overfit).

The overall performance of CVa and CVb is significantly better than HQCNNv1,
particularly in terms of convergence time. This is mainly because of the classical nature of
data, which can be easily encoded into the classical network. On the contrary, in hybrid
networks, the classical data features are encoded into the quantum space, which is time-
consuming and generally considered a bottleneck in hybrid quantum–classical algorithms.
In order to demonstrate the potential quantum advantage in hybrid networks over pure
classical networks, we consider the rate with which the underlying model’s performance
would improve or deteriorate in terms of accuracy, generalization error and convergence
time by training the networks on both D103 and 204.

5. Performance Analysis of Hybrid Networks

In this section, we compare the performance of HQCNNv1, HQCNNv2 and HQC-
NNv3. The performance metrics considered for the comparison are (1) accuracy, (2) gen-
eralization error and (3) the overall model convergence time. The comparison result is
presented in Table 8 and Figure 11.

Table 8. Comparison of all hybrid network variants.

Encoding Batch
Size

Model
Variant

Improved
Accuracy
Rate (%)

Improved
Generalization
Error Rate (%)

Increase in
Convergence

Rate (%)

Amplitude 8 HQCNNv1 −4.7 ∼0 49.9
Amplitude 32 HQCNNv1 3.0 27.3 37.7

Angle 8 HQCNNv1 4.1 42.5 58.8
Angle 32 HQCNNv1 3.7 30.2 61.4

Amplitude 8 HQCNNv2 8.2 3.4 43.8
Amplitude 32 HQCNNv2 1.4 47.5 26.7

Angle 8 HQCNNv2 −2.4 20.6 48.2
Angle 32 HQCNNv2 3.7 31.8 31.5

Amplitude 8 HQCNNv3 0.07 27.1 27.0
Amplitude 32 HQCNNv3 2.8 46.4 4.8

Angle 8 HQCNNv3 worst worst worst
Angle 32 HQCNNv3 6.3 9.2 64.2
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(a) (b) (c)

Figure 11. Comparison of HQCNNv1, HQCNNv2, HQCNNv3. (a) Accuracy rate (b) generalization error rate, (c) conver-
gence rate. The x-axis represents the encoding technique with corresponding batch sizes in parentheses.

5.1. Accuracy

Based on the accuracy comparison results shown in column 4 of Table 8 and Figure 11a,
we can conclude the following:

• In the case of amplitude encoding and a smaller batch size, HQCNNv2 has the highest
accuracy improvement rate. It is important to note here that the overall (individual)
accuracy values of all the hybrid variants for smaller batch sizes are quite comparable,
as already presented in their corresponding results sections;

• For a larger batch size and amplitude encoding, all the variants have comparable
individual accuracy. However, the accuracy rates of HQCNNv1 and HQCNNv3 show
a comparable improvement rate, which is slightly better than HQCNNv2;

• For angle encoding and a smaller batch size, the accuracy improvement rate is best for
HQCNNv1. As the complexity of the quantum circuit increases, with angle encoding
on a smaller batch size, not only does the overall (individual) accuracy tend to reduce
but the accuracy improvement rate also reduces. We observe that in HQCNNv2, the
accuracy improvement rate is significantly reduced, and in HQCNNv3, the model
almost learns nothing and hence is not comparable in terms of accuracy improvement
rate;

• For angle encoding with a bigger batch size, the overall accuracy of all the hybrid
model variants tends to reduce, but the accuracy improvement rate increases, with
HQCNNv1 and HQCNNv2 having almost the same accuracy improvement rate and
HQCNNv3 being slightly better.

5.2. Generalization Error

Based on the results presented in column 5 of Table 8 and Figure 11b, the following
conclusions can be made regarding the generalization error of all the hybrid variants.

• The individual generalization error values tend to reduce for all the hybrid model
variants for both the encoding techniques and batch sizes when the dataset size
is increased;

• For amplitude encoding and a smaller batch size, HQCNNv3 has the highest general-
ization improvement rate, whereas HQCNNv1 has the worst with no improvement in
generalization in the case of more data being present from which to learn;

• For amplitude encoding and a bigger batch size, both HQCNNv2 and HQCNNv3
have a comparable generalization improvement rate that is better than HQCNNv1;

• For angle encoding and a smaller batch size, HQCNNv1 has a better generalization
improvement rate than HQCNNv2 and HQCNNv3. Since HQCNNv3 has the worst
performance (almost no learning) for angle encoding with a smaller batch size, its
generalization improvement rate is taken as zero;

• For angle encoding with a bigger batch size, both HQCNNv1 and HQCNNv2 have a
comparable generalization improvement rate that is better than HQCNNv3.
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5.3. Convergence Time

The individual convergence time increases as increasingly complex quantum circuits
are used in hybrid networks with amplitude encoding, whereas it reduces in the case of
angle encoding. However, the convergence rate improves in all the scenarios. Based on the
results presented in column 6 of Table 8 and Figure 11c, the following conclusions can be
made regarding the convergence time of all the hybrid variants:

• For amplitude encoding, the HQCNNv3 has the lowest increase in in convergence
rate for both the batch sizes, and HQCNNv1 has the highest;

• For angle encoding and a smaller batch size, HQCNNv2 is better than HQCNNv1.
Since HQCNNv3 has the worst performance for angle encoding and a smaller batch
size, we do not compare its convergence rate for other variants;

• For angle encoding and a bigger batch size, HQCNNv2 has a better convergence rate
than other variants. Moreover, the convergence rates of HQCNNv1 and HQCNNv3
are comparable.

6. Comparison of Hybrid Networks with Classical Counterparts

In this section, we perform a comparative analysis of the results obtained for all
our hybrid variants and the corresponding classical counterpart models, with respect to
accuracy, generalization error and convergence rate. For that purpose, we consider the
rate with which the results improve or deteriorate in all the performance metrics. The
comparison is presented in Table 9 and Figure 12.

Table 9. Comparison of classical and hybrid network variants.

Model Variant Encoding Batch
Size

Improved
Accuracy
Rate (%)

Improved
Generalization
Error Rate (%)

Increase
in Convergence

Rate (%)

Classical CVa - 8 2.7 49.3 58.9
Classical CVa - 32 1.2 50.0 42.3
Classical CVb - 8 1.7 31.5 54.2
Classical CVb - 32 2.7 50.6 45.1

Hybrid HQCNNv1
Amplitude 8 −4.7 0 49.9

32 3.0 27.3 37.7

Angle 8 4.1 42.5 58.8
32 3.7 30.2 61.4

Hybrid HQCNNv2
Amplitude 8 8.2 3.4 43.8

32 1.4 47.5 26.7

Angle 8 −2.4 20.6 48.2
32 3.7 31.8 31.5

Hybrid HQCNNv3
Amplitude 8 0.07 27.1 27.0

32 2.8 46.4 4.8

Angle 8 ∼0 ∼0 ∼0
32 6.3 9.2 64.2
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(a)

(b) (c)

Figure 12. Comparison of all hybrid variants with classical counterparts. (a) Accuracy rate, (b) generalization error rate,
(c) convergence rate.

6.1. Accuracy

Based on the comparison results shown in column 5 of Table 9 and Figure 12a, the
following conclusions can be made:

• For a smaller batch size, when the training and testing data are increased, the accuracy
improvement rate of HQCNNv1 and HQCNNv2 is significantly better than CVa and
CVb, when the data are encoded via angle and amplitude encoding, respectively.
Furthermore, the overall accuracy is reduced for angle encoding in HQCNNv2 and
for amplitude encoding in HQCNNv1. In addition, for a smaller batch size with angle
encoding, the HQCNNv3 has the worst performance (almost no learning at all) of all
the models;

• For a bigger batch size, the accuracy improvement is better in all the hybrid models
irrespective of the encoding technique, except for amplitude encoding in HQCNNv2,
which can be considered as a simulator glitch.

6.2. Generalization Error Rate

Based on the comparison results shown in column 6 of Table 9 and Figure 12b, we can
conclude the following:

• When the amount of data is increased, the generalization error improvement rate for
a smaller batch size is better in CVa than all the variants of hybrid models.However,
it is better in HQCNNv1 than CVb and quite comparable to CVa when the data are
encoded via angle encoding. Furthermore, the generalization error improvement
rate in HQCNNv2 and HQCNNv3 is comparable to CVb for angle and amplitude
encoding, respectively;
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• The generalization error improvement rate for a bigger batch size is also better in
both classical models (CVa and CVb) than all the variants of hybrid models when
we increase the training and testing data. However, the generalization improvement
rate in HQCNNv2 and HQCNNv3 with amplitude encoding is comparable to CVa
and CVb. Moreover, it is better in all hybrid variants for a bigger batch size when
compared with smaller batch size.

6.3. Convergence Rate

Based on the comparison results shown in column 7 of Table 9 and Figure 12c, we can
conclude the following:

• For a smaller batch size, the convergence rate is better in all the hybrid networks when
we increase the dataset size, except for HQCNNv1 with angle encoding, which is
almost equal to that of CVa;

• For a bigger batch size, the convergence rate of all hybrid networks is also better than
CVa and CVb, except for HQCNNv1 and HQCNNv3 with angle encoding.

Since in most cases, when the size of the data is increased, we observe better con-
vergence rates in hybrid networks compared to classical counterparts, we can say that
the potential quantum advantage (computational speedup) in neural networks comes
into effect.

7. Conclusions

Quantum neural networks with large quantum data and fault-tolerant quantum
devices can potentially outperform classical neural networks. However, the unavailability
of large-scale universal fault-tolerant quantum computers and sufficiently large quantum
datasets limits their practical relevance. On the other hand, NISQ devices have already
been developed and have been demonstrated to outperform classical computers for certain
tasks. Hybrid quantum–classical neural networks (HQCNNs) are largely being explored
for NISQ devices, where a small portion of the neural network is designed in quantum
space—typically the hidden layers, sandwiched between classical input and output layers.
Using classical data, HQCNNs attempt to leverage the quantum advantage in neural
networks. However, it is still not proven that HQCNNs have an advantage over classical
NNs (particularly for classical data).

Realizing the lack of a standardized methodology to design quantum layers in
HQCNN, in this work, we propose a systematic methodology to construct these quantum
layers. Such quantum layers are typically constructed using variational or parametrized
quantum circuits. However, before running the quantum layer, the classical data need to
be encoded, which is the most important step in HQCNNs and is often considered the
performance bottleneck. In this paper, we use two of the most commonly used encoding
techniques, namely amplitude and angle encoding.

We propose three variants of HQCNNs. HQCNNv1 consists of four single-qubit layers
and is tested with all commonly used parametrized gates and both the encodings. We
conclude that for amplitude encoding, Ry(θ) performs the best, whereas Rz(θ) is best to use
with angle encoding, with respect to our performance metrics (accuracy, generalization and
convergence time). HQCNNv2 and HQCNNv3 introduce fairly complex and reasonably
complex entanglement, respectively.

We then compare all three hybrid variants, for which we consider the overall rate at
which each performance metric improves or deteriorates when we increase the data, since
we believe that quantum advantages are clearer with more computational data.

The results of the comparison of the hybrid variants do not lead to a single winner
that is an optimal choice for all the scenarios and applications. Hence, considering any of
the variants is highly application-dependent. An overview of variants’ selection preference
for some applications is presented in Table 10. For instance, healthcare applications usually
require higher accuracy, and thus HQCNNv1 would be more appropriate choice. Similarly,
applications such as recommendation systems can accommodate relatively low accuracy
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for faster model convergence, in which case HQCNNv3 would be a preferred variant.
Finally, both HQCNNv2 and HQCNNv3 can be a desirable choice for applications in which
accuracy and convergence need to be balanced, such as facial and speech recognition
applications.

Table 10. Variant selection for respective application requirements.

Objective HQCNNv1 HQCNNv2 HQCNNv3

High Accuracy 3 1 2
Better Generalization 3 1 2

Fast Convergence 3 2 1
1: First Preference, 2: Second Preference, 3: Third Preference.

When evaluating the encoding techniques, we conclude that amplitude encoding is
significantly faster than angle encoding, mainly because it encodes an exponential amount
of data for n number of qubits, whereas angle encoding is slightly better in terms of
overall accuracy, particularly for simple quantum circuits. Hence, amplitude encoding is
recommended for applications where convergence time is the most important metric and
angle encoding where accuracy is most important.

We also compare our hybrid variants with two distinct variants of classical coun-
terparts. We observed that the accuracy improvement rate and model convergence are
better in all hybrid variants for the majority of the experiments, and hence it is safe to
say that when the amount of data is increased, the potential quantum advantages start to
enhance the performance rate of HQCNNs as compared to pure classical NNs. Although
the classical models generalize slightly better than hybrid variants, the generalization
improvement rate of hybrid variants is still quite comparable to classical models.
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23. Havlíček, V.; Córcoles, A.D.; Temme, K.; Harrow, A.W.; Kandala, A.; Chow, J.M.; Gambetta, J.M. Supervised learning with

quantum-enhanced feature spaces. Nature 2019, 567, 209–212. [CrossRef]
24. Cerezo, M.; Arrasmith, A.; Babbush, R.; Benjamin, S.C.; Endo, S.; Fujii, K.; McClean, J.R.; Mitarai, K.; Yuan, X.; Cincio, L.; et al.

Variational Quantum Algorithms. arXiv 2020, arXiv:quant-ph/2012.09265.
25. Farhi, E.; Neven, H. Classification with Quantum Neural Networks on Near Term Processors. arXiv 2018, arXiv:quant-

ph/1802.06002.
26. Mitarai, K.; Negoro, M.; Kitagawa, M.; Fujii, K. Quantum circuit learning. Phys. Rev. A 2018, 98, 032309. [CrossRef]
27. Kandala, A.; Mezzacapo, A.; Temme, K.; Takita, M.; Brink, M.; Chow, J.M.; Gambetta, J.M. Hardware-efficient variational

quantum eigensolver for small molecules and quantum magnets. Nature 2017, 549, 242–246. [CrossRef] [PubMed]
28. Hempel, C.; Maier, C.; Romero, J.; McClean, J.; Monz, T.; Shen, H.; Jurcevic, P.; Lanyon, B.P.; Love, P.; Babbush, R.; et al. Quantum

Chemistry Calculations on a Trapped-Ion Quantum Simulator. Phys. Rev. X 2018, 8, 031022. [CrossRef]
29. Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Boixo, S.; Broughton, M.; Buckley, B.B.; Buell, D.A.; et al.

Hartree-Fock on a superconducting qubit quantum computer. Science 2020, 369, 1084–1089. [CrossRef]
30. Cong, I.; Choi, S.; Lukin, M.D. Quantum convolutional neural networks. Nat. Phys. 2019, 15, 1273–1278. [CrossRef]
31. Beer, K.; Bondarenko, D.; Farrelly, T.; Osborne, T.J.; Salzmann, R.; Scheiermann, D.; Wolf, R. Training deep quantum neural

networks. Nat. Commun. 2020, 11, 1–6. [CrossRef] [PubMed]

http://doi.org/10.1007/s42979-021-00592-x
http://dx.doi.org/10.1186/s40537-014-0007-7
http://dx.doi.org/10.1109/MSP.2012.2205597
http://dx.doi.org/10.1155/2018/7068349
http://dx.doi.org/10.1145/3065386
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1038/s41586-019-1666-5
http://dx.doi.org/10.1126/science.abe8770
http://www.ncbi.nlm.nih.gov/pubmed/33273064
http://dx.doi.org/10.2200/S00585ED1V01Y201407QMC008
http://dx.doi.org/10.1088/1361-6633/ab85b8
http://www.ncbi.nlm.nih.gov/pubmed/32235066
http://dx.doi.org/10.1007/s11128-014-0809-8
http://dx.doi.org/10.1038/nature23474
http://dx.doi.org/10.1038/s41586-019-0980-2
http://dx.doi.org/10.1103/PhysRevA.98.032309
http://dx.doi.org/10.1038/nature23879
http://www.ncbi.nlm.nih.gov/pubmed/28905916
http://dx.doi.org/10.1103/PhysRevX.8.031022
http://dx.doi.org/10.1126/science.abb9811
http://dx.doi.org/10.1038/s41567-019-0648-8
http://dx.doi.org/10.1038/s41467-020-14454-2
http://www.ncbi.nlm.nih.gov/pubmed/32041956


Electronics 2021, 10, 2980 20 of 20

32. Du, Y.; Hsieh, M.H.; Liu, T.; Tao, D. A Grover-search based quantum learning scheme for classification. New J. Phys. 2021,
23, 023020. [CrossRef]

33. Zhu, D.; Linke, N.M.; Benedetti, M.; Landsman, K.A.; Nguyen, N.H.; Alderete, C.H.; Perdomo-Ortiz, A.; Korda, N.; Garfoot, A.;
Brecque, C.; et al. Training of quantum circuits on a hybrid quantum computer. Sci. Adv. 2019, 5, 9918. [CrossRef] [PubMed]

34. Rudolph, M.S.; Toussaint, N.B.; Katabarwa, A.; Johri, S.; Peropadre, B.; Perdomo-Ortiz, A. Generation of High-Resolution
Handwritten Digits with an Ion-Trap Quantum Computer. arXiv 2020, arXiv:quant-ph/2012.03924.

35. Huang, H.L.; Du, Y.; Gong, M.; Zhao, Y.; Wu, Y.; Wang, C.; Li, S.; Liang, F.; Lin, J.; Xu, Y.; et al. Experimental Quantum Generative
Adversarial Networks for Image Generation. Phys. Rev. Appl. 2021, 16, 024051. [CrossRef]

36. Du, Y.; Hsieh, M.H.; Liu, T.; You, S.; Tao, D. On the learnability of quantum neural networks. arXiv 2020, arXiv:quant-
ph/2007.12369.

37. Banchi, L.; Pereira, J.; Pirandola, S. Generalization in Quantum Machine Learning: A Quantum Information Perspective. arXiv
2021, arXiv:quant-ph/2102.08991.

38. Huang, H.Y.; Broughton, M.; Mohseni, M.; Babbush, R.; Boixo, S.; Neven, H.; McClean, J.R. Power of data in quantum machine
learning. Nat. Commun. 2021, 12, 1–9. [CrossRef] [PubMed]

39. Abbas, A.; Sutter, D.; Zoufal, C.; Lucchi, A.; Figalli, A.; Woerner, S. The power of quantum neural networks. Nat. Comput. Sci.
2021, 1, 403–409. [CrossRef]

40. Bu, K.; Koh, D.E.; Li, L.; Luo, Q.; Zhang, Y. On the statistical complexity of quantum circuits. arXiv 2021, arXiv:quant-
ph/2101.06154.

41. Du, Y.; Tu, Z.; Yuan, X.; Tao, D. An efficient measure for the expressivity of variational quantum algorithms. arXiv 2021,
arXiv:quant-ph/2104.09961.

42. Huang, H.Y.; Kueng, R.; Preskill, J. Information-Theoretic Bounds on Quantum Advantage in Machine Learning. Phys. Rev. Lett.
2021, 126, 190505. [CrossRef] [PubMed]

43. Qian, Y.; Wang, X.; Du, Y.; Wu, X.; Tao, D. The dilemma of quantum neural networks. arXiv 2021, arXiv:quant-ph/2106.04975.
44. LeCun, Y. The MNIST Database of Handwritten Digits. 1998. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on

16 September 2021).
45. Verdon, G.; Broughton, M.; McClean, J.R.; Sung, K.J.; Babbush, R.; Jiang, Z.; Neven, H.; Mohseni, M. Learning to learn with

quantum neural networks via classical neural networks. arXiv 2019, arXiv:quant-ph/1907.05415.
46. Liang, Y.; Peng, W.; Zheng, Z.J.; Silvén, O.; Zhao, G. A hybrid quantum-classical neural network with deep residual learning.

arXiv 2021, arXiv:cs.LG/2012.07772.
47. Beer, K.; List, D.; Müller, G.; Osborne, T.J.; Struckmann, C. Training Quantum Neural Networks on NISQ Devices. arXiv 2021,

arXiv:quant-ph/2104.06081.
48. Wei, S.; Chen, Y.; Zhou, Z.; Long, G. A Quantum Convolutional Neural Network on NISQ Devices. arXiv 2021, arXiv:quant-

ph/2104.06918.
49. McClean, J.R.; Boixo, S.; Smelyanskiy, V.N.; Babbush, R.; Neven, H. Barren plateaus in quantum neural network training

landscapes. Nat. Commun. 2018, 9, 1–6. [CrossRef]
50. Pesah, A.; Cerezo, M.; Wang, S.; Volkoff, T.; Sornborger, A.T.; Coles, P.J. Absence of Barren Plateaus in Quantum Convolutional

Neural Networks. Phys. Rev. X 2021, 11, 041011. [CrossRef]
51. Patti, T.L.; Najafi, K.; Gao, X.; Yelin, S.F. Entanglement devised barren plateau mitigation. Phys. Rev. Res. 2021, 3, 033090.

[CrossRef]
52. LaRose, R.; Coyle, B. Robust data encodings for quantum classifiers. Phys. Rev. A 2020, 102, 032420. [CrossRef]
53. Schuld, M.; Petruccione, F. Supervised Learning with Quantum Computers; Springer: Berlin/Heidelberg, Germany, 2018; Volume 17.
54. Cao, S.; Wossnig, L.; Vlastakis, B.; Leek, P.; Grant, E. Cost-function embedding and dataset encoding for machine learning with

parametrized quantum circuits. Phys. Rev. A 2020, 101, 052309. [CrossRef]
55. Grant, E.; Benedetti, M.; Cao, S.; Hallam, A.; Lockhart, J.; Stojevic, V.; Green, A.G.; Severini, S. Hierarchical quantum classifiers.

NPJ Quantum Inf. 2018, 4, 1–8. [CrossRef]
56. Stoudenmire, E.M.; Schwab, D.J. Supervised learning with quantum-inspired tensor networks. arXiv 2016, arXiv:1605.05775.
57. Benedetti, M.; Realpe-Gómez, J.; Perdomo-Ortiz, A. Quantum-assisted Helmholtz machines: A quantum–classical deep learning

framework for industrial datasets in near-term devices. Quantum Sci. Technol. 2018, 3, 034007. [CrossRef]

http://dx.doi.org/10.1088/1367-2630/abdefa
http://dx.doi.org/10.1126/sciadv.aaw9918
http://www.ncbi.nlm.nih.gov/pubmed/31667342
http://dx.doi.org/10.1103/PhysRevApplied.16.024051
http://dx.doi.org/10.1038/s41467-021-22539-9
http://www.ncbi.nlm.nih.gov/pubmed/33976136
http://dx.doi.org/10.1038/s43588-021-00084-1
http://dx.doi.org/10.1103/PhysRevLett.126.190505
http://www.ncbi.nlm.nih.gov/pubmed/34047595
http://yann. lecun. com/exdb/mnist/
http://dx.doi.org/10.1038/s41467-018-07090-4
http://dx.doi.org/10.1103/PhysRevX.11.041011
http://dx.doi.org/10.1103/PhysRevResearch.3.033090
http://dx.doi.org/10.1103/PhysRevA.102.032420
http://dx.doi.org/10.1103/PhysRevA.101.052309
http://dx.doi.org/10.1038/s41534-018-0116-9
http://dx.doi.org/10.1088/2058-9565/aabd98

	Introduction
	Contribution
	Organization

	Preliminaries
	Hybrid Quantum–Classical Neural Networks (HQCNN)
	Dataset Preparation
	Data Encoding
	Amplitude Encoding
	Angle Encoding

	Variational Quantum Circuits for HQCNNs

	Methodology
	Hybrid Quantum–Classical Neural Network—Variant 1
	Hybrid Quantum–Classical Neural Network—Variant 2
	Hybrid Quantum–Classical Neural Network—Variant 3
	Classical Counterpart for Hybrid Networks

	Results and Discussion
	Results—HQCNNv1
	Small Dataset—D103
	Large Dataset—D204

	Results—HQCNNv2
	Results—HQCNNv3 
	Results—CVa and CVb

	Performance Analysis of Hybrid Networks
	Accuracy
	Generalization Error
	Convergence Time

	Comparison of Hybrid Networks with Classical Counterparts
	Accuracy
	Generalization Error Rate
	Convergence Rate

	Conclusions
	References

