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Abstract: This paper presents a novel hybrid antenna with equal beamwidth in two frequency
bands for short-range radar applications. The proposed design consists of a 2 × 2 patch array and
a SIW-fed dielectric rod antenna. The two kinds of radiators are responsible for the 5.8 GHz and
24 GHz ISM bands, respectively. Pencil beams are obtained in both lower and upper bands. The
beamwidth generated by the dielectric rod can be flexibly tuned to coincide with that of the patch
array. Magneto-electric (ME) dipole, composed of a slot and two parasitic monopoles, is constructed
to replace the conventional 3-D waveguide feeder, which can excite the dielectric rod effectively. The
complementary structure is helpful to obtain a pencil beam. The 2 × 2 patch array has the size of
70 × 70 mm2 and is fed by a four-way power divider. Due to no overlapping radiating aperture, the
two radiators can work independently with high port isolation. The measured peak gain in the two
bands is 12.5 dBi and 12.7 dBi. The measured 3-dB beamwidth at 5.8 GHz and 24 GHz is 42◦ and 39◦

in x-z plane, and 43◦ and 42◦ in the y-z plane. The proposed antenna features a small beamwidth
difference in two frequency bands, thus being attractive for dual-band radar systems.

Keywords: dual-band antennas; dielectric rod antennas; patch antennas; radar antennas

1. Introduction

Radar technology plays an important role in modern wireless systems. Nowadays,
dual-band radar receives growing interest since it can provide two independent frequency
channels regarding the detected object. The enhanced spectrum information is beneficial to
improve the accuracy and robustness of the radar system. In recent decades, dual-band
radars have been applied in various applications, such as remote sensing and autonomous
driving [1–4].

As one of the key components in a dual-band radar system, dual-band antennas
have been intensively researched [5–7]. According to the radiation gain level, the related
dual-band antennas are categorized into three types, namely high gain, medium gain,
and low gain antennas. Parabolic reflector and reflectarray are widely used in high gain
design [8–10]. In medium-gain antenna design, the available radiators are rich, including
horn, dielectric rod antenna, patch array, and their combinations [11–19]. As for low gain
antennas, dual-band operation is one of the most popular topics. Many dual-band antennas
based on patch, slot, dipole, and monopole have been proposed [20–27]. However, to the
best of the authors’ knowledge, almost all the designs did not concern the beamwidth
relationship in the two bands. The beamwidth in the upper band is usually narrower
owing to a shorter wavelength. This behavior may cause serious problems in some radar
applications. Figure 1 show one possible application of dual-band radar, where the radar
emits two beams at two different frequencies. In Figure 1a, the illumination areas of the two
beams are different since the beamwidth in the two bands is not equal. It means that the
information obtained from the reflected waves may be different at the two frequencies. In
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Figure 1b, identical illumination areas are achieved in the two bands because the two beams
have equal beamwidth. This property is especially useful for the detection of atmospheric
particles, such as clouds, snow, and rain. Considering that the particles are separately
distributed, identical beamwidth can guarantee the same illuminating volume of particles
in two bands.
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Figure 1. Dual-band radar emitting two independent beams: (a) Unequal beamwidth in two fre-
quency bands; (b) Equal beamwdith in two frequency bands. Atmospheric particles, such as clouds,
snow, and rain, are the typical detected objects.

In this paper, a dual-band antenna that has medium gain and equal beamwidth
is presented for radar applications. The hybrid antenna combines a patch array and a
dielectric rod antenna. The two kinds of radiators generate resonances in the lower and
upper bands, respectively. The beamwidth of the dielectric rod antenna is changed to
coincide with that of the patch array. However, a bulky 3-D waveguide is usually needed
to feed the dielectric rod [28,29]. This makes the antenna difficult to integrate with a planar
circuit. A planar feed network has been proposed to replace 3-D waveguides [30–34]. For
example, in ref. [30], a planar waveguide is fabricated by stacking multiple layers. In
ref. [32], a single-layer substrate integrated waveguide (SIW) feeder is used to excite the
dielectric rod. However, the main beam is towards the end-fire direction, not towards
the broadside direction. In the proposed antenna, a novel planar magneto-electric (ME)
dipole is designed to excite a dielectric rod. This has the merits of simple structure and
symmetrical radiation pattern. In addition, the low mutual coupling is needed in many
wireless systems [35–37]. Thanks to no overlapping radiating aperture, the proposed
antenna can achieve high port isolation in the two bands.

There are two innovations in this work. Firstly, the concept of equal beamwidth in
two frequency bands is proposed for the first time. This is helpful to improve the detection
accuracy of radar. Secondly, the dielectric rod is fed by SIW rather than a bulky 3-D
waveguide. An ME dipole is constructed to amend the distortion of the radiation pattern
caused by the SIW feed. The feed structure is easy to integrate with a planar circuit.

2. Antenna Design Methodology
2.1. Antenna Geometery

To obtain medium gain (i.e., 10–20 dBi) performance in two frequency bands, a hybrid
antenna structure is proposed. As shown in Figure 2, it combines a patch array and a
dielectric rod antenna. The patch array and its feed network are printed on the top layer
of the upper substrate. The dielectric rod is located at the center and is fed by a SIW
feed network. The SIW structure is fabricated on the lower substrate. A slot is etched
on the ground plane to couple energy from the SIW feeder to the dielectric rod. Two
parasitic metallic pins are placed in the upper substrate, which is beneath the rod. A
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tapered transition is printed at the bottom layer of the lower substrate to transform the
input impedance of the SIW feeder to 50 Ω. The detailed dimensions are listed in Table 1.
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Figure 2. Geometry and dimensions of the proposed hybrid dual-band antenna: (a) 3-D view;
(b) Side view; (c) Dimensions of the patch array on the top layer; (d) Dimensions of the SIW feed on
the bottom layer.

Table 1. Detailed dimensions of the antenna (unit: mm).

Parameter Value Parameter Value Parameter Value

D1 3 L2 2 w2 11
D2 8 p1 16 s2 3
L1 29 w1 0.6 w3 0.5

The patch array is responsible for the lower band. The typical gain of a 2 × 2 patch
array is roughly 13 dBi. Higher gain can be obtained by using a 3 × 3 or 4 × 4 patch
array. The dielectric rod is responsible for the upper band. As we know, the typical gain
of dielectric rod varies from 10 dBi to 20 dBi. The gain increases with the increase of the
rod’s length. It provides a simple but flexible way to change the beamwidth. That is why a
dielectric rod radiator is adopted in the proposed design.

2.2. Operating Principle of the Dielectric Rod Antenna

A dielectric rod antenna is used to generate a pencil beam in the upper band. This
kind of radiator has a small transversal size and high gain. In addition, the gain is mainly
decided by the longitudinal length of the rod. These properties are useful in gaining
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adjustment. Nevertheless, as shown in Figure 3a, the rod usually needs to be inserted into
a waveguide, and there is a tapered transition at the bottom of the rod.
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Figure 3. Design evolution of the feeding network for dielectric rod antenna: (a) Using a conventional 3-D waveguide feed;
(b) Using a planar SIW feed; (c) Using a planar SIW feed with a pair of parasitic monopoles.

In order to get rid of the bulky feed and the tapered transition, the conventional 3-D
waveguide is replaced by planar SIW in this design. As shown in Figure 3b, the dielectric
rod is placed above the SIW feeder. No tapered transition is needed at the bottom of the
rod. The dielectric rod is made of low-cost Teflon (εr = 2.1, tan δ = 0.001). A slot is etched on
the top surface of the SIW, where RT/duroid 5880 substrates with a thickness of 0.508 mm
are used. There is a thick substrate layer between the dielectric rod and the slot. It refers to
the substrate in patch array design. The initial size of the ground plane is 40 × 40 mm2.
This value will be adjusted when assembling with the patch array.

The center frequency of the dielectric rod is designated for the 24 GHz ISM band.
Figure 4a show the radiation patterns of the rod fed by the SIW directly. It is shown that
the patterns in the two principal planes are distorted. The main beam is not pencil, and
the beamwidth in the two planes is also not equal. The reason is that there is no tapered
transition between the rod radiator and the SIW feed. Large discontinuity causes the
turbulence of the beam.
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The feed network is modified to amend the distortion of the radiation pattern. As
shown in Figure 3c, a pair of parasitic metallic pins are inserted in the upper substrate.
The two pins are located at the mid perpendicular line of the slot and have a distance of
2.8 mm. The height of the pins is the thickness of the upper substrate and is 1.575 mm.
This value is roughly λ/4 at 24 GHz when taking the dielectric constant into consideration.
Therefore, the two pins serve as two parasitic λ/4 monopoles, which can also radiate
energy effectively.

Figure 4b show the radiation patterns of the slot and monopoles before adding the
dielectric rod. It is seen that a pencil beam can be generated when only the slot and
monopole feeder is excited. The beamwidth in the two principal planes has a small
difference, which is caused by the fact that the effective permittivity for the monopoles is
slightly decreased if the dielectric rod is moved away from the top of the monopoles. The
peak gain of the slot and monopoles is about 8.3 dBi.

The simulated radiation patterns with parasitic monopoles and dielectric rods are
shown in Figure 4c. The main beamwidth in the x-z and y-z planes agrees well. The peak
gain is 13.4 dBi in the zenith direction, and the 3-dB beamwidth in the x-z and y-z planes is
34.7◦ and 35.8◦. The two values are almost equal, indicating that a pencil beam is obtained.
Therefore, the distortion of the radiation patterns can be well amended.

The operating principle of the feed network is further analyzed to explain the amend-
ment of the radiation patterns. As depicted in Figure 5, the feed network is considered
to be a ME dipole. On the one hand, the length of the slot is about half-wavelength. The
slot serves as a magnetic dipole. The direction of magnetic current JM is transversal with
respect to the slot. On the other hand, the length of the parasitic monopoles is about quarter-
wavelength. The currents on the two monopoles are out of phase since the monopoles are
located at the two sides of the slot. Therefore, the two monopoles serve as an electric dipole.
The direction of equivalent current JE is also transversal with respect to the slot. The ME
dipole is constructed based on the slot and the monopoles. As we know, the ME dipole
has symmetrical radiation patterns in E- and H-planes [38]. The pencil beam remains
unchanged when a dielectric rod is placed above the ME dipole because the dielectric rod
can also emit a pencil beam.
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Figure 5. Operating principle of the SIW feed network with equivalent ME dipole.

Figure 6 show the surface currents distribution on the ground plane. The currents
are concentrated at the two ends of the slots and around the two monopoles. The square
contour of the current intensity can be observed at the center area. The current distribution
further indicates that an equivalent ME dipole has been constructed.
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Figure 7 show the simulated reflection coefficient of the dielectric rod antenna. A
good impedance match is observed in the upper frequency band. The −10 dB bandwidth
is 1.6 GHz (23.8–25.4 GHz), which is sufficient to cover the 24–24.25 GHz ISM band.
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The influence of the ground plane is investigated. Figure 8 show the simulated
radiation patterns with different sizes of ground plane. It is seen that the radiation patterns
in the two principal planes remain stable, although the size of the ground plane changes a
lot. The size variation of the ground plane has little influence on the dielectric rod antenna.
This property is useful when integrating the dielectric rod with the patch array since the
ground plane of the patch array is large.
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Considering that the patch array and the dielectric rod for the lower and upper bands
have no overlapping radiating aperture, the two radiators can work independently. High
port isolation is obtained in the two bands. Equal beamwidth can be achieved by separately
tuning the length of the dielectric rod antenna.

2.3. Operating Principle of the 2 × 2 Patch Array

Patch array is used to generate a pencil beam in the lower band. It should be pointed
out that a patch array is just the typical example; other kinds of antennas can also be used.
The 2 × 2 patch array is fed by a four-way power divider. Considering that the elements
are fed from the top and bottom sides, a 180◦ phase shifter is used to make sure that all the
elements are excited in phase. The upper substrate layer for the ME dipole design is also
utilized for patch design. Therefore, no additional substrate is needed for the lower band
design. The RT/duroid 5880 substrate (εr = 2.2, tan δ = 0.0009) has a thickness of 1.575 mm.
The size of the ground plane is 70 × 70 mm2. Port 1 is connected with an SMA connector
from the bottom of the antenna.

The center frequency of the patch array is designated at 5.8 GHz. Figure 9 shows the
instantaneous current distribution on the patch array and the feed network. It is clearly
observed that the feed network can provide four ways of signals with in-phase or out-of-
phase excitations. The currents on the four patches are almost the same, which imply that
the phase gradient of the patch array is zero. Therefore, a broadside radiation pattern will
be generated.

The simulated radiation patterns of the patch array are shown in Figure 10. It is
observed that the peak gain is 12.7 dBi. The 3-dB beamwidth in the x-z and y-z planes is
40◦ and 43.6◦, respectively. The two values are close, which means that the pencil beam is
generated in the lower frequency band.
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3. Experimental Results

A prototype of the hybrid antenna is fabricated and measured. Figure 11 shows
the photograph of the assembled antenna. The dielectric rod is glued at the center of
the substrate board. The two substrate layers of the SIW feeder are assembled using
plastic screws. A metallic ring with shorting pins is added on the upper substrate, which
surrounds the dielectric rod. It is useful to align the rod with the substrate. The introduction
of the glue and ring has little influence on the performance via simulation verification. An
SMA connector and a K connector are soldered for the lower and upper bands, respectively.
It should be mentioned that the mechanical stability of the structure can be strengthened
by adding stubs at the bottom of the rod, which is used to fasten the rod on the substrate
with plastic screws.
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Figure 11. Photograph of the fabricated antenna. Left side is the top view and right side is the
bottom view.

Figures 12 and 13 show the S parameters in the lower and upper bands, respectively.
The simulated and measured curves of |S11| agree well in the lower band. The mea-
sured −10 dB bandwidth is 350 MHz (5.67–6.02 GHz), which is sufficient to cover the
5.725–5.875 GHz ISM band. The measured port isolation ishigher than −40 dB. In the
upper band, the measured |S22| has some frequency shift from the simulated one. This
difference may be attributed to fabrication errors. The measured −10 dB bandwidth is
roughly 1.8 GHz, ranging from 23.4 GHz to 25.2 GHz, which can cover the 24–24.25 GHz
ISM band. The measured port isolation is higher than 30 dB.
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The radiation patterns at the two bands are measured in a far-field chamber. During
the measurement, when one feed port is excited, the other feed port is terminated with a
50 Ω load. A total of 5.8 GHz and 24 GHz are selected to represent the typical frequency
points in the lower and upper bands. Figures 14 and 15 show the simulated and measured
normalized radiation patterns at the two frequencies. The simulated and measured curves
show reasonable agreements. Pencil beams can be observed at both 5.8 GHz and 24 GHz.
At 5.8 GHz, the measured 3-dB beamwidth in the x-z and y-z planes is 42◦ and 43◦. At
24 GHz, the 3-dB beamwidth in the two planes is 39◦ and 42◦. These values are close.
Therefore, almost equal 3-dB beamwidth is achieved in the two frequency bands. The
cross-polarization levels are all below −18 dB in the two principal planes. The measured
peak gain at 5.8 GHz and 24 GHz is 12.5 dBi and 12.7 dBi.
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4. Discussion

The performances of the proposed design and other referenced dual-band antennas
are compared. As shown in Table 2, the proposed design has the advantages of equal
beamwidth and equal gain in two frequency bands. To the best of the authors’ knowledge,
this is the first time that the issue of identical illumination in two bands has beentackled.
In the future, research will be focused on other combinations of radiators and designing a
high gain dual-band antenna with equal beamwidth.

Table 2. Comparisons of the proposed antenna with other dual-band antenna.

Design f 1(GHz) f 2 (GHz) Beamwidth
at f 1 (◦)

Beamwidth
at f 2 (◦)

Gains at f 1
and f 2 (dBi)

[11] 12.45 14.35 ~13/not
given

~11/not
given ~22/23

[14] 12.1 17.4 19.1/not
given

13.1/not
given 18/18.2

[15] 7.28 8 ~22/not
given

~16/not
given 12.98/13.25

[18] 1.275 1.575 ~82/88 ~74/76 8.2/8.7
[22] 5.8 30 22/34 56/68 10.2/8.1

Proposed 5.8 24 42/43 39/42 12.5/12.7

5. Conclusions

The concept of realizing equal beamwidth in two frequency bands is presented for
the first time. As a proof of concept, a 2 × 2 patch array and a dielectric rod antenna
are integrated to provide dual-band operation. The beamwidth of the rod is adjusted
to coincide with that of the patch array. The dielectric rod is fed by a planar SIW rather
than a bulky 3-D waveguide. A novel ME dipole is constructed to amend the radiation
distortion caused by the planar SIW feeder. The measured reflection coefficient bandwidth
is 0.35 GHz in the 5.8 GHz band and 1.8 GHz in the 24 GHz band, with port isolation
higher than 30 dB. The measured 3-dB beamwidth is around 40◦ in the two bands. The
equal beamwidth illumination property is attractive in dual-band radar. The proposed
dual-band antenna will be applied in cloud radar that uses two independent frequency
channels to detect cloud particles.
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