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Abstract: Bacterial recognition and classification play a vital role in diagnosing disease by determin-
ing the presence of large bacteria in the specimens and the symptoms. Artificial intelligence and
computer vision widely applied in the medical domain enable improving accuracy and reducing the
bacterial recognition and classification time, which aids in making clinical decisions and choosing
the proper treatment. This paper aims to provide an approach of 33 bacteria strains’ automated
classification from the Digital Images of Bacteria Species (DIBaS) dataset based on small-scale depth-
wise separable convolutional neural networks. Our five-layer architecture has significant advantages
due to the compact model, low computational cost, and reliable recognition accuracy. The experi-
mental results proved that the proposed design reached the highest accuracy of 96.28% with a total
of 6600 images and can be executed on limited-resource devices of 3.23 million parameters and
40.02 million multiply–accumulate operations (MACs). The number of parameters in this architecture
is seven times less than the smallest model listed in the literature.

Keywords: bacteria colony classification; depthwise separable convolutional neural networks
(DS-CNNs); medical image analysis

1. Introduction

Artificial intelligence (AI) has progressed swiftly from object recognition and detection
algorithms to software and hardware’s incredible execution capabilities in recent decades.
Image and video classification [1–3], natural language processing [4], robotics [5], and
health-care [6,7] are just a few of the fields where AI-based solutions have surpassed
human accuracy and insights. Applying AI and computer vision to biomedical sciences has
opened up immense potential for exploring different areas and improving existing medical
technology, particularly bacterial recognition. These methods automatically enhance the
detection and classification of bacteria species, are highly accurate, reduce cost and time,
and avoid researchers’ risk of infection.

Deep-learning approaches, especially deep convolutional neural networks (DCNNs),
are currently some of the most notable machine-learning algorithms for dealing with
complex tasks that only experienced experts could address in the past. In computer vision
or image classification applications, DCNNs may obtain higher accuracy and even exceed
non-learning algorithms. The higher accuracy of DCNNs comes from extracting automated
high-level features after using statistical learning from a large amount of input training data.
Statistical learning supports representing the input space efficiently and well-generalized.
However, this capability also requires high computational effort, as well as large memory
sizes. When the network size grows exponentially, the respective computational effort and
memory size also rise. Due to the personal characteristics of power supply and dimension,
these networks are hard to execute on the limited hardware resources of medical devices.
Therefore, structural model size reduction [8] and parameter optimization [9,10] are offered
to maintain the inference performance of deep neural networks.
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Early detection and identification of pathogenic bacteria in food, water, and bodily flu-
ids are essential, yet challenging, owing to sample complexities and large sample volumes
that need to be rapidly screened. Existing screening methods based on plate counting or
molecular analysis present some tradeoffs regarding detection time, accuracy/sensitivity,
cost, and sample preparation complexity. The standard procedure in bacterial detection
begins with the collection of various types of test materials. Next, the clinical materials are
directly handled on special media (Gram stain, cultivated on medium agar) for 5–20 min.
The material incubates under specific temperature conditions: 37 ◦C, 5–7% CO2 (usually
taking 18–24 h). The initial identification of bacteria depends on the assessment of the
cell shapes observed under the microscope and the growth rate, type, shape, color, and
smell of the colonies (several minutes to 18–24 h). Such analysis allows the assignment to a
bacteria type; however, identifying the species is usually impossible due to their significant
similarity. Because of that, further analysis consisting of biochemical tests is necessary
(16–24 h). As a result, from culture to species identification, the entire diagnostic process
can last 2–3 d.

This paper presents a convolutional-neural-network-based approach for the reliably
accurate recognition of bacterial species in high-resolution microscopy images for rapidly
detecting and classifying related species. The proposed method consists of two crucial
stages. Firstly, data augmentation techniques are applied to create a new dataset of species
derived from the DIBaS dataset to sufficiently take advantage of the fine features from a
large number of bacteria images and to avoid the overfitting issue. Secondly, a small-scale
depthwise separable CNN architecture (DS-CNN) for bacteria recognition is built. With
three main convolutional layers and an efficient classifier, this model aims to recognize
bacteria in the images. The recommended detection and classification method was tested
using the partial DIBaS dataset, with 33 various classes of bacteria, and gained a bacterial
strain classification rate of 96.28%. The obtained results still ensure the superiority of
the stated method over the state-of-the-art CNN model, but at the same time, fit with
low-energy, low-resource devices. More specifically, our design uses only about three
million parameters (equivalent to small memory size utilization), about seven-times less
than the most efficient model in related papers, and the computational complexity ex-
pressed via the MAC operations is forty million. We emphasize the tradeoff between the
model’s accuracy reduction (2–3%) and the resource usage of the lowest memory and
computation complexity.

This paper has the following main contributions:

1. The DS-CNN was exploited to construct a compact network architecture for the
automated recognition and classification of 33 bacteria species in the DIBaS dataset
with reliable accuracy and less time consumption;

2. As part of our methodology, we incorporated preprocessing and data augmentation
strategies to improve the model’s input quality and achieve higher classification accuracy.

We organized the rest of this paper as follows: In Section 2, you will find a few related
articles for the bacterial classification task on the DIBaS dataset using convolutional neural
networks. Section 3 briefly introduces C-Conv and DS-Conv, as well as the proposed
architectural structure. The content of Section 4 gives the materials and methods that we
offer in this study. Setups for the experimentation are discussed in Section 5. Section 6
gives the results of classifying 33 types of bacteria and discusses them. In Section 7, a
conclusion and recommendations for further work are offered.

2. Related Works

Colony morphology, biochemical properties, and molecular phylogenetic approaches
are all used to identify bacteria [11]. Microbiologists prefer the reading of bacteria in
digital microscopic images by colony morphology, which is more accurate than molecular
phylogenetics [12]. Each type of bacteria has distinct structural and geometric character-
istics that describe its size, shape [13], color [14], texture, height, and edge [15,16]. These
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characteristics may help distinguish bacteria species, observe bacteria growth, observe
microbial interactions, and aid in drug discovery and disease diagnosis.

Generally, traditional laboratory methods for analyzing microbiological images some-
times reveal incorrect bacteria recognition, which requires unique experience and a longer
execution time. In recent years, the combination of image-processing techniques with ML
and DL algorithms has become popular to help detect and classify bacteria images, achiev-
ing outstanding results. Image processing currently acts as the data preprocessing stage to
make bacterial classification models more efficient. Therefore, the automatic classification
techniques [17] of bacterial samples are more valuable than traditional visual observations
by biologists due to the accurate classifier, low cost, and rapid diagnosis.

Without labels, Raman optical spectroscopy could detect, identify, and test bacteria
for antibiotic susceptibility. However, the weak Raman signals produced by bacterial
cells and the diversity of bacterial species and phenotypes continue to pose a clinical
challenge. Ho et al. [18] collected Raman spectra from bacteria and used deep learning to
identify 30 common bacterial pathogens. The average accuracy for antibiotic treatment
identification was 97.0± 0.3% even with low signal-to-noise spectra. The authors showed
that this method accurately distinguishes MRSA and MSSA isolates. Their findings were
tested on 50 clinical isolates. The experiment only utilized ten bacterial spectra from each
patient isolate to identify 99.7% of treatments. The method can be used for culture-free
pathogen detection and antibiotic susceptibility testing in blood, urine, and sputum.

Kang et al. [19] designed a set of advanced deep-learning frameworks, including
the long short-term memory (LSTM) network, the deep residual network (ResNet), and
the one-dimensional convolutional neural network (1D-CNN), for the classification of
foodborne bacteria using hyperspectral microscopic imaging (HMI) technology. Five pop-
ular foodborne bacterial cultures (Campylobacter jejuni, generic E. coli, Listeria innocua,
Staphylococcus aureus, and Salmonella typhimurium) were collected by the U.S. Depart-
ment of Agriculture’s Poultry Microbiological Safety and Processing Research Unit (PM-
SPRU) in Athens, Georgia. During the experiment, the given dataset contained 5000 images
that were randomly partitioned into 72% (3600 cells), 18 % (900 cells), and 10% (500 cells)
for training, validation, and testing, respectively. According to the experimental results,
LSTM, ResNet, and 1D-CNN achieved an accuracy of 92.2%, 93.8%, and 96.2%, respectively.

Sajedi et al. [20] employed the extreme gradient boosting classification (XGBoost)
approach combined with a set of common image-processing methods to classify three dif-
ferent Myxobacterial suborders, i.e., Cystobacterineae, Sorangiineae, and Nannocystineae.
The proposed method consisted of two processes: firstly, using the Gabor transform to
extract texture features and then applying XGBoost to recognize three categories of bacte-
ria. The accuracy obtained by the suggested model was 90.28%. In addition, the authors
also wrote some literature reviews related to the classification of bacteria by using ML
algorithms, including deep neural networks.

Tamiev et al. [21] investigated the possibility of using classification-type convolutional
neural networks (cCNNs) to classify bacteria subpopulations (in this case, biofilm stages)
from fluorescent microscope images. Annotated training datasets including null bumper
(NB), blended bumper (BB), and advanced rotation (AR) after the image-processing work-
flow were used to test the classification performance of the cCNN (AR). When trained on a
small dataset (81 images), advanced rotation improved the CNN’s accuracy and confidence
for smaller clusters (debris artifacts, single, double, and triple cells) with an 86% accuracy.
Larger clusters (4–10 cell clusters) would require more training data to the improve accu-
racy (50–66%). While individual classification accuracy was lower than desired when the
total number of cells was added up, these inconsistencies balanced out, and their proposed
algorithm performed nearly as well as manual counting over 24 images. Compared to
multiple manual counts, this AR-trained cCNN algorithm reduced interoperator variability
by 10.2× and increased processing speed by 3.8×.

Mhathesh et al. [22] classified 3D light-sheet fluorescence microscopy images of
larval zebrafish using the DL technique in 2020. The authors applied a CNN for the
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classification of bacterial images. That study utilized various activation functions, i.e.,
sigmoid, Tanh, and ReLU, to analyze the model’s accuracy. The authors then compared the
given results with other classifiers such as the support vector classifier, random forest, and
ConvNet. The presented method achieved an accuracy of 95%, which outperformed the
other selected techniques.

In addition, another approach to bacteria detection is to use microelectronic sensors.
Korzeniewska et al. [23] presented the interaction between silver and Staphylococcus
aureus as being used to detect the presence and measure the numbers of bacteria. The
increase in the number of bacteria caused changes in the electrical parameters of the sensor.
The most extensive changes in electrical parameters were observed at 100 Hz and 120 Hz
and within the 28–69 h time window from initial bacterial infection. The results from this
work can be implemented in various domains, such as biomedical or industrial products.

So far, the deep-learning approach in the analysis of microbiological images (on the
same full DIBaS dataset), taking into account microbial detection and classification, has
been investigated and undertaken in several related papers.

Zielinski et al. [24] publicly, for the first time, offered the DIBaS dataset collected by
the Chair of Microbiology at Jagiellonian University in Krakow, Poland. The DIBaS is
utilized as standard data for biomedical researchers to classify bacteria strains and compare
their solutions. The authors applied the Fisher vector (FV), local image descriptors, and the
pooling encoder to obtain the image descriptors of the DIBaS bacterial image dataset. In
addition, two machine-learning algorithms, the support vector machine (SVM) and random
forest (RF) techniques, combined with convolutional neural network (CNN) models such
as AlexNet, VGG-M, and VGG-VD were employed to group bacterial microorganisms into
33 classes. The classification accuracy in this article was 97.24± 1.07%.

When Nasip and his colleagues [25] used the DIBaS dataset to pretrain deep CNN
architectures based on the VGGNet and AlexNet models, they could classify 33 different
types of bacteria. Images of these species with an original resolution of 2048× 1532 pixels
were divided into 227× 227 (AlexNet input size) and 224× 224 (VGGNet input size) images
to fit with the model inputs. Following this way, in total, the new dataset had 35,600 images
overall. Then, 80% (28,512) of the images were utilized for training and the remaining 20%
(7128) for testing. The classification accuracy of VGGNet and AlexNet was 98.25% and
97.53%, respectively. It could be concluded that the success rate would vary depending on
the training model exploited and the data’s number and size.

M. Talo’s research [26] described an automated deep-learning-based classification
approach to classify bacterial images into 33 categories. The ResNet-50 CNN structure
was pretrained with the full DIBaS dataset, and a transfer learning technique [27] was
employed to pace up the training steps and enhance the network’s overall classification
performance. The model was trained for 50 epochs in about 31 min and 48 s and tested
on an Ubuntu 16.04 server using an NVIDIA GeForce GTX 1080 TI graphic card. A five-
fold cross-validation technique that evaluated the model’s performance was used. The
experiments were repeated five times, and the average of five trials on the validation
sets was given as the classification performance for the overall model. His suggestion
accomplished a perfect classification accuracy of 99.2%.

Khalifa et al. [28] aimed to present a deep neural network architecture based on the
AlexNet model to determine the bacterial colony classification problem. Additionally, a
strategy for training and testing was introduced that heavily relies on data augmentation
methods. The dataset used was limited in size, containing 660 images representing 33 dis-
tinct classes of a bacterial colony. Any neural network could hardly learn directly from this
small amount of data; hence, the neural network could meet overfitting or underfitting
issues when training. The training and testing strategy implemented resulted in a notice-
able improvement in the training and testing phases. It increased the number of images
in the dataset to 6600 for the training phase and 5940 for the verification phase. When
combined with the augmentation techniques, the proposed neural network achieved a
testing accuracy of 98.22%.
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Anna Plichta proposed two different solutions for automatically recognizing 20 species
and genera of bacteria in the DIBaS database. The classification was made based on the
analysis of seven physical characteristics of bacterial cells by means of the product of the
weights of classifiers [29] and a decision tree algorithm [30]. The same images and the
same set of seven implemented classifiers were used to classify the samples and recognize
the analyzed species and genera of bacteria in both methods. The proposed decision tree
tended to use highly correct classifiers, such as the bacterial cell color, which has the highest
correctness of all and can obtain the best possible results if using the boosted decision tree
method. The accuracy (correctness) of this decision tree amounted to 83.77%, although
changes in the decision tree remained at 95.94%. At the same time, classification through
the method based on the product of the weights of the classifiers brought better results.
For all the analyzed species and genera of bacteria, correct classification by this product of
weights method amounted to 90.45%, and its sensitivity was 100%.

Sanskruti Patel [31] created a transfer-learning-based modified CNN model for bac-
terial colony classification. This method made use of a VGG-16 model that had been
previously trained, with the last block being replaced by atrous convolution with a dila-
tion rate of two. The model was implemented on a DIBaS dataset of a bacterial colony,
containing 660 images and 33 classification classes. As a result, the suggested architecture
significantly improved the accuracy, reaching 95.06% training accuracy, 93.38% validation
accuracy, and 94.85% test accuracy. If using more bacterial colony images, a higher achieve-
ment of the architecture could be obtained. In the future, it might be possible to develop an
automated embedded device for in-field bacterial colony classification similar to what is
currently available.

To save time in the training process, as well as improve the accuracy of the models
that were applied in several related works, all authors exploited a method called transfer
learning by using weight files pretrained from the ImageNet dataset and adjusting the
model outputs according to their goals. However, one of the most significant barriers
to transfer learning is currently the problem of negative transfer. Transfer learning only
operates correctly if the initial and target issues are similar enough for the first round of
training to be relevant. If the first training cycle is too far off the mark, the model may
perform worse than if it had never been trained. Right now, there are no clear benchmarks
for determining which types of training are sufficiently related or how this should be
measured. A training process from scratch is chosen to avoid this challenge and ensure the
model’s reliability.

In addition, the major problem is that CNNs include so many parameters (especially
weights) that resource-constrained embedded hardware cannot store them in on-chip mem-
ory. However, accessing the off-chip memory leads to a negative impact on performance.
Another option is to employ high-bandwidth off-chip DRAM, which is found in a graphics
processing units (GPUs). However, this causes considerable power dissipation and hardly
meets the low power consumption requirements. Hence, the DS-Conv block is suggested
for a small-scale CNN model construction to satisfy the needs of power consumption
and resources.

3. Overview of the Depthwise Separable Convolutional Neural Network

This section provides the fundamental structures of the standard convolutional block
(C-Conv) and the depthwise separable convolutional block (DS-Conv). We then analyze
these two main blocks’ computational complexity to demonstrate that DS-Conv has more
computational cost efficiency.

3.1. DS-CNN Layer Primer
3.1.1. Conventional Convolution Block

LeCun et al. [32] published the first version of CNN in 1998, and it has been firmly
applied to address computer vision (CV) tasks such as image classification, speech recogni-
tion, face recognition, and natural language processing. In general, two significant features
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contributed to the CNN’s success. Firstly, it enhances the recognition rate for its receptive
field, similar to human visual cells. Secondly, local connection and weight sharing also
significantly reduce the number of network parameters and alleviate overfitting com-
pared with a fully connected deep neural network. In this paper, we refer to the CNN as
mentioned above as conventional CNN (C-Conv).

As for conventional convolutions, as shown in Figure 1, each input channel requires a
convolution operation such that the number of convolution kernels is the same as the output
channel. The result of each output channel is the sum of its corresponding convolution
kernels and the convolutional results of all input channels. Assume that the dimension
of the input feature is Dk × Dk × M, where Dk, Dk, and M are the width, height, and
the number of input channels, respectively. Each convolutional layer uses filters of size
D f × D f (one channel per filter) with N filters.

Input data N Filters/Kernels Output

M NM 
channelsDk

Dk Dg

Dg

Df

Df

Figure 1. The operation of a conventional convolution.

The common sizes of filters in CNNs are 11× 11, 5× 5, and 3× 3. The output is
Dg × Dg × N, where Dg, Dg, and N are the width, height, and the number of output
channels, respectively. Let the total number of trainable parameters in conventional convo-
lution be PC−Conv (without considering bias) and the number of floating-point calculations
be CC−Conv in a standard convolution process. They may be computed as shown in
Equations (1) and (2) below:

PC−Conv = D2
f ×M× N (1)

CC−Conv = D2
f ×M× D2

g × N (2)

3.1.2. Depthwise Separable Convolution

Depthwise separable convolution first appeared in L. Sifre’s [33] thesis in 2014 and was
applied in MobileNet [34] and the Xception model [35] to replace conventional convolu-
tional layers. DS-Conv is a factorized form of standard spatial convolution. It is composed
of depthwise convolution and 1 × 1 convolution (also known as pointwise convolution).
The traditional spatial convolution algorithm primarily extracts channelwise features and
then combines them to generate new representations. Separately, depthwise and pointwise
convolutions can be used to accomplish such two-step tasks.

This is depicted in Figure 2, in which the size of the input image is Dk×Dk×M, where
Dk is the height and width of the input image, M is the number of input channels. Each
convolutional layer uses filters of size D f ×D f × 1 with M filters. When M filters are taken
to slide through the input image, one intermediate feature map Dg × Dg ×M is produced
by convolving each input feature map with a 2D filter kernel in the depthwise convolution
block. It is applied as the input of the next convolution. For the pointwise convolution,
the convolution kernels size is 1 × 1; the number of channels on each convolution kernel
must be the same as the number of input feature map channels. Let the number of the
convolution kernels be N, and then, the output feature map would become Dg × Dg × N
after convolution.

As illustrated in Figure 2 with a process of depthwise separable convolution, the
parameter PDS−Conv and the floating-point calculation cost CDS−Conv are the sums of the
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depthwise and 1× 1 pointwise convolutions. Hence, PDS−Conv and CDS−Conv are calculated
as shown in Equations (3) and (4), respectively:

PDS−Conv = D2
f ×M + M× N (3)

CDS−Conv = D2
f × 1× D2

g ×M + 12 ×M× D2
g × N = (D2

f + N)× D2
g ×M (4)

Input data

M

Depth-wise Convolution

M Filters

Dk

Dk

1
Df

Df

Df

Df
1

...

M
Dg

Dg

Point-wise Convolution

1
1

M
...
1

1
M

N

Dg

Dg

N Filters
Output

Figure 2. Structure of the depthwise separable convolution block.

Therefore, the ratio of parameters r1 of Equations (1) and (3), the ratio of computation
cost r2 of Equations (2) and (4) between depthwise separable convolution and the normal
convolution can be written as:

r1 =
PDS−Conv
PC−Conv

=
D2

f ×M + M× N

D2
f ×M× N

=
1
N

+
1

D f
2 � 1 (5)

r2 =
CDS−Conv
CC−Conv

=
(D2

f + N)× D2
g ×M

D2
f × N × D2

g ×M
=

1
N

+
1

D f
2 � 1 (6)

due to N � 1 and D2
g > 1.

It can be clearly seen that the parameters and computational cost are reduced to
1
N + 1

D f
2 compared to the conventional convolution operation. Our study employed a

D f × D f = 3× 3 depthwise convolution filter size and the number of filters (N = 64), so
the computation complexity and number of parameters of DS-Conv in each neuron are
∼13-times less than the same neuron in conventional convolution and only tradeoff a slight
accuracy loss for the overall architecture. Further, DS-Conv essentially converts continuous
multiplication into continuous addition, so the network’s redundancy becomes reduced.
As a result, the computational efficiency of the network is greatly improved.

3.1.3. Activation Functions

A differentiable and nonlinear function is applied to the feature map, and then, the
result is sent to the subsequence layer as the input. The function is called the activation
function. Activation provides nonlinearity to the network and aids high-order polynomials’
learning so that the network can learn and perform a more complex task. There are various
types of activation functions, and the most popular kinds that are commonly utilized are
sigmoid and rectified linear units (ReLUs):

• Sigmoid function:

Sigmoid(x) =
ex

1 + ex (7)

The sigmoid function is one of the most typical nonlinear activation function with
an overall S-shape. The sigmoid function that maps a real number to [0, 1] is often used
for binary classification. Besides advantages such as gradient smoothing and precise
predictions, there are some main drawbacks, including the fact that the sigmoid outputs
are not zero-centered, the vanishing gradient problem, where weights in lower layers are
virtually unchanged, and the high-cost computation;
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• Rectified linear unit (ReLU):

ReLU(x) =
{

x x > 0
0 x ≤ 0

(8)

where x is the input to the neuron.

The ReLU layer is a nonlinear operation that is performed after every convolutional
layer. Its output is given by max(0, x). The purpose of ReLU is to introduce nonlinearity
in the CNN after the linear operation of convolution since the network needs to learn
from real-world data, which are nonlinear, and for the network to generalize or adapt
with a variety of data. Compared to sigmoid functions, rectified linear units support faster
and more effective training of deep neural architectures and complex datasets. ReLU has
several benefits: the number of active neurons is reduced due to a zero in the negative
domain and not saturated; it is highly computationally efficient; it speeds up learning; it
prevents the vanishing gradient problem.

3.1.4. Batch Normalization

Controlling the input distribution across layers can speed up the training process
and improve the accuracy significantly. Accordingly, the distribution of the layer input
activation (σ, µ) is normalized such that it has a zero mean and a unit standard deviation.
As visualized in Equation (9), in batch normalization (BN), the normalized value is further
scaled and shifted, where the parameters (γ, β) are learned from the training process [36].
ε is a small constant to avoid numerical problems. BN is mainly performed between the
CONV or FC layer and the nonlinear function.

y =
x− u√
σ2 + ε

γ + β (9)

3.1.5. Pooling Layer

A key aspect of convolutional neural networks is the pooling layer, typically applied
after the convolutional layers. Pooling layers (also called subsampling or downsampling)
reduce each feature map’s dimensionality, but retain the essential information. For the
group of neurons in each receptive field, they return a single value that contains a statistic
about the group, e.g., the maximum or the average value. The well-known methods for
pooling execution consist of three different types: max, average, and sum. In practice, max
pooling has been widely utilized and works better.

3.1.6. Fully Connected Layer

The convolution/pooling process’s output is flattened and transformed into a single
vector of values. Each value represents the probability that the features and labels are
related. By utilizing the features derived from the process of the previous layer, the fully
connected (FC) layer is employed to convert the images to labels. Each neuron prioritizes
the tag that corresponds to the received weight. Following that, all neurons will vote on
which class should win the classification.

3.1.7. Dropout

Multiple hidden layers are used to learn more complex features, followed by FC layers
for decision-making. FC layers are those that are connected to all features and are prone to
overfitting. Over-fitting is a problem that occurs when a model is trained and performs so
well on the training data that it has a detrimental effect on the model’s performance on new
data. The insertion of a dropout layer [37] into the model, where some neurons and their
connections are randomly removed from the network during training, helps avoid this
problem significantly. The network size becomes smaller, and any incoming or outgoing
connections to the dropped out node are also terminated.
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To avoid overfitting during training, one dropout layer was added to the proposed
network. The dropout rate was set at 0.25 and 0.5.

3.1.8. Classifier Layers

In the last layer, we used the softmax activation function, a popular selection for the
final layer in most state-of-the-art deep-learning architectures, to normalize the output of a
probability distribution over predicted output classes that sum to one. This function is a
generalization of the logistic function to multiple dimensions, and its role is to normalize
the output between zero and one. It is frequently employed in both binary and multi-class
tasks, provided that each object belongs to one class. The following Equation (10) computes
the softmax function:

So f tmax(xi) =
exi

∑N
j=0 exj

(i = 1, 2, . . . , N) (10)

where xi are the elements of the input vector to the softmax function, exi is the standard
exponential function applied to each element of the input vector, and ∑N

j=0 exj is the nor-
malization term, which ensures that all the output values of the function will sum to one
and each will be in the range (0, 1).

We designed a dedicated classifier at the end of the final layer. This classifier consists
of 1 FC layer, 1 dropout layer with a rate of 0.25 (which randomly cuts off some connections
to reduce the overfitting problem), and 1 Softmax layer for the image classification tasks.

3.1.9. Learning Rate and Optimizers

The learning rate is an essential component for training a CNN. The learning rate is
the step size taken into account during training, which speeds up the process. However,
choosing the appropriate value for the learning rate is important. If choosing η with a high
value, the network may start diverging instead of converging. On the other hand, selecting
a smaller value for η will result in more time for the network to converge. In addition,
it may quickly become stuck in local minima. The popular solution that addresses this
problem is to reduce the learning rate during training. In this article, we set the learning
rate to η = 1 × 10−4.

In convolutional neural networks, non-convex functions often need to be optimized.
Mathematical methods require massive computing power, so optimizers are utilized in
the training process to minimize the loss function for acquiring optimal network param-
eters within an acceptable time. Standard optimization algorithms including RMSprop,
Adam, Adamax, and Nadam were employed for our model. RMSprop considers only the
magnitude of the gradient of the immediately previous iteration. The Adam optimization
approach is suggested based on the momentum and the magnitude of the gradient for
calculating the adaptive learning rate similar to RMSprop. Adam has improved overall
accuracy and helps with efficient training with the better convergence of deep-learning
algorithms. These solutions provide some advantages, as well as existing drawbacks, so
that each optimizer was verified for the scenarios in the experiment.

3.2. The Proposed Architecture

The proposed block diagram in the bacteria classification process is described in
Figure 3. Our architecture consists of four main blocks, from input microscopy images to
the classification process, in which the second and third blocks are the main contributions.
The data preprocessing block enhances the size and quality of data, as well as resolves
imbalances in the dataset and overfitting issues. This block is composed of three stages.
Firstly, the input images to be detected were resized from the original dimensions to
224× 224, and the number of channels was set at three to fit with the expected input of
the model. Then, data augmentation was applied by using transformation to artificially
increase the number of images for the training process. Last, the new datasets were split
into three sets: training, validation, and testing, with percentages of 70/20/10, respectively.
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Figure 3. Schematic overview of the network architecture.

The schematic overview of the proposed model is intelligibly depicted with five crucial
layers, in which the first three convolutional layers extract image features with a depth
of sixty-four and filter sizes of 3 × 3 and 1× 1. After that, one FC layer and one softmax
function are used for data flattening and bacteria species classification, respectively. In
addition, we inserted BN and dropout layers to normalize the data and avoid overfitting
during training.

Figure 4a,b illustrates the internal structure of C-Conv and DS-Conv in detail, respec-
tively. From Figure 4a, C-Conv only carries out a Conv2D operation, then passes through
the BN layer, and finally enters into the activation function ReLU layer to obtain the output
of C-Conv. Similarly, in Figure 4b, DS-Conv carries out the DW-Conv operation first,
then penetrates the ReLU layer to obtain the output of DW-Conv. After that, the output
of the DW-Conv layer is input into the PW-Conv layer. PW-Conv performs a pointwise
convolution operation with a 1× 1 filter size, then passes through the activation function
ReLU layer to obtain the output of PW-Conv. The output of PW-Conv is that of DS-Conv.
Here, BN after C-Conv helps accelerate deep network training by reducing the internal
covariate shift [36], normalizing the input data x to [0, 1], and conforming to the standard
normal distribution. In addition, ReLU was utilized as an activation function.

Conv2D

Kernel (3x3)

Batch Normalization

ReLU

Depthwise Conv2D

Kernel (3x3)

Pointwise Conv2D

Kernel (1x1)

ReLU

ReLU

C-Conv DS-Conv

DW-Conv

PW-Conv

(a)
(b)

Figure 4. Internal structure. (a) C-Conv ; (b) DS-Conv.

Table 1 represents a small-scale CNN architecture based on depthwise separable
convolution (DS-Conv) with its detailed specification. Following the conventional convolu-
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tional layer (C-Conv), the BN layer, and the max pooling layer, the depthwise convolution
(DW-Conv), pointwise convolution (PW-Conv), and max pooling (Max_pool) layers are
added. After two consecutive depthwise separable and max pooling layers, there are FC
layers and the softmax classifier to classify 33 outputs. We also calculated the trainable
parameters (weight and bias) and the computation cost (multiply–accumulate operations
(MACs)) of the design.

Table 1. The proposed architecture specification.

Layer Type Filter
Size

Output
Shape

Parameters
(M)

MACs
(M)

Input 224 × 224 × 3

Conv1

Conv_1/Stride 2 3 × 3 × 3 × 64 112 × 112 × 64 0.002 21.68

Batch Norm - 112 × 112 × 64 0.0003 0

Max-Pooling_1 Pool 2 × 2 56 × 56 × 64 0 0

Conv2

DW-Conv_2 3 × 3 × 1 × 64
56 × 56 × 64

0.0006 1.80

PW-Conv_2 1 × 1 × 64 × 64 0.004 12.85

Max-Pooling_2 Pool 2 × 2 28 × 28 × 64 0 0

Conv3

DW-Conv_3 3 × 3 × 1 × 64
28 × 28 × 84

0.0006 0.45

PW-Conv_3 1 × 1 × 64 × 64 0.004 3.21

Max Pooling_3 Pool 2 × 2 14 × 14 × 64 0 0

FC Fully Connected_1 256
14 × 14 × 256

3.21

0.03Dropout dropout_1 0.25 0

Classifier Softmax 33 256 × 33 0.008

Total 3.23 40.02

4. Materials and Methods
4.1. Dataset

The Digital Images of Bacteria Species dataset [38] consists of 33 bacteria species, each
with a total of 20 images in the dataset. The Chair of Microbiology at the Jagiellonian
University in Krakow, Poland, was in charge of collecting the samples. Figure 5 shows some
of the images captured in this dataset, which have original dimensions of 2048× 1532× 3.
All samples were stained using Gram’s process. The images were collected via an Olympus
CX31 Upright Biological Microscope paired with an SC30 camera for this project (Olympus
Corporation, Japan). Their performance was assessed using a 100-fold objective while
submerged in oil (Nikon50, Shinagawa Intercity Tower C, 2-15-3, Konan, Minato-ku, Tokyo
108-6290, Japan). Researchers interested in the bacterial colony domain are able to use the
DIBaS dataset on a public-access basis.
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Proteus

Escherichia.coli

Actinomyces.israeli

Lactobacillus.paracasei
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Neisseria.gonorrhoeae

Micrococcus.spp

Figure 5. Bacteria samples in the DIBaS dataset [38].

4.2. Dataset Augmentation

Deep CNNs are particularly dependent on the availability of large quantities of
training data. However, due to the small number of images in the biomedical domain,
it is hard to meet the massive input data requirements of CNNs. Another issue when
using a small amount of data for CNNs is that it leads to overfitting. A sophisticated
solution to alleviate the relative scarcity of the data compared to the number of parameters
involved in CNNs is data augmentation [39]. Data augmentation consists of transforming
the available data into new data without altering its nature. The computer will detect that
the modified model is a different image, but humans still know that the modified image
is the same picture. Simple geometric transformations such as sampling [39], mirroring
[40], rotating [41], shifting [42], and various photometric transformations [43] are popular
augmentation methods.

The number of images in the dataset was significantly increased by using transforma-
tions that do not change the classes. Each image was transformed according to the steps
mentioned below:

• rotation_range is a value in the range of 00 to 1800 within which to rotate pictures
randomly; 400 was the random value selected;

• width_shi f t = 0.2, and height_shi f t = 0.2 are thresholds (as a fraction of total width
or height) within which to randomly shift images vertically or horizontally;

• shear_range is for randomly employing shearing transformations. It is 0.2;
• zoom_range = 0.2 is for randomly zooming the picture sizes;
• horizontal_ f lip is for randomly horizontally reversing the pixels of the image;
• f ill_mode =′ re f lect′ is the strategy used for filling in newly created pixels, which can

appear after a rotation or a width/height shift.

In addition, some CV functions were exploited in the image augmentation and to
open the files in the class folders, as well as save them as .ti f files.

As a result, we made 6600 images from the number of original appearances, then
utilized histogram equalization techniques to check and maintain the valuable information
in the new samples.
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5. Experimental Setups
5.1. Training Strategies

Our model was trained and tested on the computational platform of a 64-bit Windows
10 computer with an Intel Core i9 processor (3.6 GHz), 32 GB RAM, and an NVIDIA
GeForce RTX 2080 SUPER graphics card. The TensorFlow framework [44] and Keras
libraries [45] are the foundations of the Python programming language.

Following preprocessing, the new dataset contained a total of 6600 bacteria images, of
which 70% was allocated to the training set and 20% to the validation set and the remainder
for test set. The learning rate hyperparameter, which controls the speed of weight update,
was set to η = 1 × 10−4, and the weight of the filters was randomly initialized and
automatically updated. The experimental setup for the training process is given in Figure 6.
The suggested architecture was trained from the scratch.

Start

End

Data Storage
2048 x 1532 x 3

Resize image to 
224x 224 x 3

Image 
Preprocessing

Folder Creation: 
Train, Validation, Test

Data Augmentation

Epoch = 0

Training

Accuracy & 
Prediction

Model Evaluation & 
Plot Results

Epoch = Epoch + 1

Epoch >= n

Calculate Loss function and 
weight adjustment

Training Process

1

0

Figure 6. Research methodology.

5.2. Parameter Selection

The fundamental requirement for proper neural network training is the correct se-
lection of the hyperparameters. For this, we employed grid search optimization on the
training set with five-fold cross-validation (Figure 7). We verified some activation func-
tions, including ReLU and sigmoid, for the classifier’s fully (densely) connected layer. The
dropout rate, which indicates how many input units are dropped, varied between 0.25 and
0.5. Table 2 lists the parameters that created the most promising results.
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Fold-1 Fold-2 Fold-4 Fold-5 Fold-3
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Fold-2 Fold-3 Fold-4 Fold-5 Fold-1

Training Validation 

Final Accuracy = Average(Accuracy 1 + Accuracy 2 +...+ Accuracy 5)
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Accuracy 2

Accuracy 3

Accuracy 4

Accuracy 5
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Figure 7. Five-fold cross-validation scheme.

Table 2. Hyperparameters and training settings for the suggested models.

Models Epochs = n Dropout Activations
Functions Optimizers Batch

Size

This work

30–50 0.25–0.5 ReLU Adam 16;32

30–50 0.25–0.5 ReLU RMSprop 16;32

30–50 0.25–0.5 ReLU Adamax 16;32

30–50 0.25–0.5 ReLU Nadam 16;32

6. Results and Discussion

This section consists of two subsections. In the first subsection, we list some evaluation
metrics for the proposed model. Then, we draw a confusion matrix to show the test results
on the test set. Finally, a performance comparison table between our method and other
studies on the DIBaS dataset is made.

6.1. Statistical Analysis

The evaluation metric plays an essential role in achieving the optimal classifier during
the classification training. Thus, determining proper evaluation metrics is a primary key
for discriminating against and obtaining the expected results. The model’s performance
is often measured using the parameters of accuracy, precision, sensitivity, specificity, and
f1 obtained from the confusion matrix (CM) calculation. These metrics, together with the
receiver operating characteristic (ROC) curve, area under the curve (AUC), and precision–
recall (PR) curve, are widely used as verification standards in machine learning and have
been successfully applied in many biomedical studies [46–49] with high evidence. ROC,
AUC, and PR, on the other hand, are better suited to binary classification tasks or a small
number of outputs; as a result, they may face significant challenges when describing many
outcomes. As a result, in this article, we chose the CM, as well as the accuracy, precision,
and F1 as the evaluation metrics.

The values and terms in the CM are shown in Table 3. TP and TN are the correctly
classified positive or negative data; FP is negative, but positively classified data; while FN
is positive data, but classified as negative. After obtaining the CM values, we calculated
the equations’ sensitivity, precision, and F1 indices to evaluate the stated model following
several scenarios in Table 2.
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Table 3. Confusion matrix values.

Class Classified Positive Classified Negative

Positive TP
(True Positive)

FN
(False Negative)

Negative FP
(False Positive)

TN
(True Negative)

• Accuracy is the most straightforward metric that the model evaluation process requires
to quantify a model’s performance. Accuracy is the fraction of correct predictions and
the overall number of forecasts. The formula for calculating accuracy is written by:

Accuracy =
(Number_o f _correct_predictions)
(Total_number_o f _predictions)

; (11)

• Precision is an evaluation metric that describes a fraction of the true positive prediction
and the total number of positive predictions. Precision refers to the frequency with
which we are correct when the predicted value is positive:

Precision =
TP

TP + FP
; (12)

• Sensitivity is the ratio of positive predictions to the total actual number of positives.
Sensitivity is also referred to as the recall or true positive rate. Sensitivity means how
often the forecast is correct when the real value is positive.

Sensitivity =
TP

TP + FN
; (13)

• Specificity is calculated by dividing the total number of negative predictions by the
total number of actual negatives. Specificity is also understood as the true negative
rate. The term “specificity” refers to the frequency with which a prediction is correct
when the actual value is negative.

Speci f icity =
TN

TN + FP
; (14)

• The F1-score, alternatively called the balanced F-score or F-measure, can be calculated
as a weighted average of the precision and sensitivity:

F1 = 2× Precision× Sensitivity
Precision + Sensitivity

. (15)

The detailed performance analysis of the confusion matrix for Fold 5, which was
obtained using validation data, is given in Figure 8. The confusion matrix shows that
almost all the bacteria images were classified correctly by the recommended pretrained
model except for some bacteria images, Enterococcus faecalis, Enterococcus faecium, and
Bacteroides fragilis. The model predictions for misclassified bacteria images were Staphylo-
coccus saprophyticus and Staphylococcus aureus, respectively. This mistaken classification
can be explained due to the relatively similar color and shape of these bacteria samples
and insufficient training images for the model to extract and classify.
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Figure 8. Bacteria classification confusion matrix using 5-fold cross-validation.

Table 4 illustrates the comparison of the performance of different optimizers. The most
effective choices for data augmentation were the recently popular Nadam and RMSprop,
which achieved a maximum of 96.28% accuracy, as well as high precision and sensitivity.
Without data augmentation, the optimizers were significantly worse in terms of accuracy,
with Adamax and Adam reaching an 86.42% and 86.24% accuracy, respectively.

Table 4. Model performance (%).

Models Data Aug Optimizers Accuracy Precision Sensitivity F1

This work Yes

Adam 95.01 94.02 90.78 92.37
Adamax 96.08 94.27 93.22 93.74
Nadam 96.28 95.81 93.26 94.52

RMSprop 95.17 95.44 94.84 95.14

This work No

Adam 86.24 91.11 81.63 86.11
Adamax 86.42 88.99 83.17 85.98
Nadam 83.95 85.69 79.26 82.35

RMSprop 81.48 83.09 75.66 79.21
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6.2. Comparison with Other Studies

Figure 9 presents the recent state-of-the-art results conducted on DIBaS image
classification.

Table 5 depicts a comparison of the results between studies when deployed on the
full DIBaS dataset in terms of model structure, number of layers, number of parameters,
classification accuracy, and data preprocessing methods. As observed from the figure and
table, we concluded that in the present study, the proposed architecture consumed the
lowest resources at a bit lower accuracy level compared to the other studies. The analysis
suggested that ResNet-50 without using data augmentation had the highest accuracy, while
the number of parameters utilized was medium. Nasip et al. and Khalifa et al. announced
the same accuracy (∼98.2% ); however, Nasip used many more parameters and input
images than Khalifa’s study to obtain these results. It has been proven that the Khalifa
method is better than Nasip’s. Our work employed C-Conv and DS-Conv combinations to
obtain the same performance (about 96.3%) as Zielinski’s work and slightly lower (∼3%)
than other works.
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Figure 9. Recent state-of-the-art studies on DIBaS image classification.

On the other hand, the parameters (3.23 M) and model size (five layers) of our design
were the smallest. The optimization caused it to have convolutional computation and good
data augmentation. This approach could pave the way for deep-learning algorithms to be
integrated directly in low-resource devices in biomedical fields.

Table 5. Comparative analysis among the studies conducted on the DIBaS dataset.

Works Zielinski et al. [24] Nasip et al. [25] Khalifa et al. [28] M. Talo [26] S. Patel [31] This Work

Year 2017 2018 2019 2019 2021 2021

CNN Algorithms FV, SVM, RF CNNs VGG-16 AlexNet AlexNet ResNet-50 VGG-16 DS-CNN

Layers 8/8/16 16/8 8 50 16 5

Data Augmentation No Yes Yes No No Yes

Transfer Learning Yes Yes Yes Yes Yes No

Number of Images 660 35,600 6600 689 660 6600

Image Dimensions 224 × 224 × 3
227 × 227 × 3

224 × 224 × 3
227 × 227 × 3 227 × 227 × 3 224 × 224 × 3 224 × 224 × 3 224 × 224 × 3

Parameters (M)
58.42
98.95
134.4

134.4 58.42 23.69 134.4 3.23

Accuracy (%) 97.24 98.25 98.22 99.2 93.38 96.28
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7. Conclusions and Future Work

The experimental results demonstrated that the recommended five-layer DS-CNN
architecture has the broad potential to be deployed in medical imaging analysis tasks,
especially for small datasets. The CNN variants can improve medical imaging technol-
ogy further and strengthen its capabilities, providing a higher level of automation while
speeding up processes and increasing productivity. This study gained a 96.28% accuracy in
bacterial strain classification, as well as the usage of low trainable parameters (3.23 M) and
less computational complexity (40.02 M). This led to consuming less energy and having a
slight accuracy tradeoff (∼3%) to fit limited-resource devices.

This algorithm is weakened by the necessity of manually labeled data, massive data
and training time requirements to be pretrained, and sometimes the incorrect prediction
of the same bacteria species. The network might inherit faults from a specialist, as the
correct judgment of a cell is, in many cases, difficult even for an experienced human. A
more extensive dataset labeled by a larger group of experts is one solution to mitigate this
limitation. Future research will mainly focus on expanding and processing the dataset [50],
optimizing the key blocks (DS-Conv) [51], and fine-tuning the last layers. We also plan to
implement our dedicated architecture on a hardware platform to utilize robust parallel
computation and low energy.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
AUC Area under the curve
BN Batch normalization
C-CNNs Conventional CNNs
CM Confusion matrix
CV Computer vision
DS-CNNs Depthwise separable CNNs
DCNNs Deep convolutional neural networks
DIBaS Digital Images of Bacteria Species
FC Fully connected
LSTM Long short-term memory
MAC Multiply–accumulate
GPU Graphics processing unit
PR Curve Precision-recall curve
ReLU Rectified linear unit
RF Random forest
ROC Receiver operating characteristic
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