
electronics

Article

FP-Growth Algorithm for Discovering Region-Based
Association Rule in the IoT Environment

Hong-Jun Jang 1, Yeongwook Yang 2 , Ji Su Park 1 and Byoungwook Kim 3,*

����������
�������

Citation: Jang, H.-J.; Yang, Y.;

Park, J.S.; Kim, B. FP-Growth

Algorithm for Discovering

Region-Based Association Rule in the

IoT Environment. Electronics 2021, 10,

3091. https://doi.org/10.3390/

electronics10243091

Academic Editors: Kevin Lee and

Ka Lok Man

Received: 28 October 2021

Accepted: 7 December 2021

Published: 12 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Engineering, Jeonju University, Jeonju 55069, Korea;
hongjunjang@jj.ac.kr (H.-J.J.); jisupark@jj.ac.kr (J.S.P.)

2 Division of Computer Engineering, Hanshin University, Osan 18101, Korea; yeongwook.yang@hs.ac.kr
3 Department of Computer Science and Engineering, Dongshin University, Naju 58245, Korea
* Correspondence: bwkim@dsu.ac.kr; Tel.: +82-61-330-3358

Abstract: With the development of the Internet of things (IoT), both types and amounts of spatial
data collected from heterogeneous IoT devices are increasing. The increased spatial data are being
actively utilized in the data mining field. The existing association rule mining algorithms find all
items with high correlation in the entire data. Association rules that may appear differently for each
region, however, may not be found when the association rules are searched for all data. In this paper,
we propose region-based frequent pattern growth (RFP-Growth) to search for association rules by
dense regions. First, RFP-Growth divides item transaction included position data into regions by a
density-based clustering algorithm. Second, frequent pattern growth (FP-Growth) is performed for
each transaction divided by region. The experimental results show that RFP-Growth discovers new
association rules that the original FP-Growth cannot find in the whole data.

Keywords: FP-Growth algorithm; association rules; frequency pattern analysis

1. Introduction

With the rapid development of mobile devices and sensor technology, various forms
and vast amounts of spatial data are being collected in the IoT environment [1]. As
the amount of spatial data collected increases in the IoT, the demand for using spatial
information is also increasing in fields where spatial information has not been utilized
before [2]. However, many IoT applications require short response times and depend
on devices with limited resources, so the application of existing data mining techniques
is inefficient and limited [3–6]. Research on spatial data mining techniques to obtain
knowledge specific to a region using the physical location information of the sensor from
which data are collected, is being actively conducted.

Frequent pattern (FP) mining has been extensively studied in the field of data mining.
Apriori algorithm has received a lot of attention in the field of data mining [7–9]. However,
Apriori-based approaches have the disadvantage that they generate many candidate sets
and are expensive due to frequent database scans. In order to overcome this drawback,
many papers have proposed a new data structure that calculates frequency itemsets from
a transactional database. One of the most popular of these data structures is the FP-Tree
structure [10]. FP-Growth algorithm, which is a data mining technique based on FP-Tree,
can discover a set of complete frequency patterns. FP-Tree is an extended prefix-tree
structure to store important and quantitative information related to frequency patterns,
avoiding the shortcomings of the Apriori-based approach. FP-Tree has the advantage of
low tree construction cost by creating a tree with two scans of the entire database. Thus,
FP-Growth algorithm is faster than the Apriori algorithm. FP-Tree requires two database
scans and cannot be applied to a variable database because the frequency of occurrence of
items must be obtained through a full database scan before constructing a tree. In order
to overcome these disadvantages, many methods of generating frequency pattern trees

Electronics 2021, 10, 3091. https://doi.org/10.3390/electronics10243091 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3219-7250
https://orcid.org/0000-0001-9003-1131
https://doi.org/10.3390/electronics10243091
https://doi.org/10.3390/electronics10243091
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10243091
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10243091?type=check_update&version=2

Electronics 2021, 10, 3091 2 of 16

have been studied. The FP-Stream [11] structure is proposed to apply the existing FP-Tree
in the streaming database, and the COFI-tree [12], which allows the conditional tree to be
generated to a minimum through pruning during tree generation, and DRFP-Tree [13,14]
to use a database instead of memory, and CanTree [15], which constructs a tree using
alphabetical specific criteria as a method to reduce database scans to obtain the number of
occurrences of items in FP-Tree.

A representative example of association rule mining is market basket analysis [16].
However, in the existing market basket analysis, one transaction only has a list of purchased
items, not a region for purchasing the items. Table 1 shows an example of the item purchase
region added to the item transaction used in the existing market basket analysis. If the
purchase region is not considered in the market basket analysis, the support of beer→diaper
is 0.5 (5/10) and the confidence of beer→diaper is 0.5 (4/8). If minimum support and
confidence are set higher than 0.5 in order to prevent the generation of massive association
rules, beer→diaper will not be derived.

Table 1. An example of item transaction considering the purchase location.

TID Market Items

1 A Bread, Milk, Peanut
2 A Bread, Diaper, Beer, Eggs, Peanut
3 B Milk, Diaper, Beer, Cola
4 B Bread, Milk, Diapers, Beer
5 C Diaper, Beer, Eggs
6 D Bread, Beer, Peanut, Eggs
7 D Beer, Milk, Peanut
8 E Beer, Peanut, Diaper
9 E Bread, Milk, Cola, Eggs
10 F Beer, Milk, Peanut, Cola, Eggs

In Figure 1, Markets A, B, C are close, and Markets D, E, F are close by distance.
Depending on the density of the market and house, dense markets form a cluster, e.g.,
C1 and C2, and the cluster can be assumed as one commercial district. We can get the
confidence and the support of beer→diaper for each cluster.

Electronics 2021, 10, 3091 2 of 16

constructing a tree. In order to overcome these disadvantages, many methods of generat-

ing frequency pattern trees have been studied. The FP-Stream [11] structure is proposed

to apply the existing FP-Tree in the streaming database, and the COFI-tree [12], which

allows the conditional tree to be generated to a minimum through pruning during tree

generation, and DRFP-Tree [13,14] to use a database instead of memory, and CanTree [15],

which constructs a tree using alphabetical specific criteria as a method to reduce database

scans to obtain the number of occurrences of items in FP-Tree.

A representative example of association rule mining is market basket analysis [16].

However, in the existing market basket analysis, one transaction only has a list of pur-

chased items, not a region for purchasing the items. Table 1 shows an example of the item

purchase region added to the item transaction used in the existing market basket analysis.

If the purchase region is not considered in the market basket analysis, the support of

beer→diaper is 0.5 (5/10) and the confidence of beer→diaper is 0.5 (4/8). If minimum sup-

port and confidence are set higher than 0.5 in order to prevent the generation of massive

association rules, beer→diaper will not be derived.

Table 1. An example of item transaction considering the purchase location.

TID Market Items

1 A Bread, Milk, Peanut

2 A Bread, Diaper, Beer, Eggs, Peanut

3 B Milk, Diaper, Beer, Cola

4 B Bread, Milk, Diapers, Beer

5 C Diaper, Beer, Eggs

6 D Bread, Beer, Peanut, Eggs

7 D Beer, Milk, Peanut

8 E Beer, Peanut, Diaper

9 E Bread, Milk, Cola, Eggs

10 F Beer, Milk, Peanut, Cola, Eggs

In Figure 1, Markets A, B, C are close, and Markets D, E, F are close by distance.

Depending on the density of the market and house, dense markets form a cluster, e.g., C1

and C2, and the cluster can be assumed as one commercial district. We can get the confi-

dence and the support of beer→diaper for each cluster.

house

D

E

F
A

B

C market
C1

C2

C3

Figure 1. An example of association rule mining considering purchase location.

The support of beer→diaper is 0.8 (4/5), and the confidence of beer→diaper is 1 (4/4)

in C1. The support of beer→diaper is 0.2 (1/5), and the confidence of beer→diaper is 0.25

(1/4). Even if the minimum support and confidence are set to 0.5, we can find the associa-

tion rule with beer→diaper [sup: 0.8, conf: 1]. For example, data analysts can infer that

Figure 1. An example of association rule mining considering purchase location.

The support of beer→diaper is 0.8 (4/5), and the confidence of beer→diaper is 1 (4/4)
in C1. The support of beer→diaper is 0.2 (1/5), and the confidence of beer→diaper is
0.25 (1/4). Even if the minimum support and confidence are set to 0.5, we can find the
association rule with beer→diaper [sup: 0.8, conf: 1]. For example, data analysts can infer
that there is a lot of households with babies around the C1 commercial district from these
association rules. With this knowledge, it is possible to set up a strategy for promoting baby
products in the market of the relevant commercial district. In this way, association rules that

Electronics 2021, 10, 3091 3 of 16

were not discovered when analyzing the entire data can be discovered in data generated in a
specific region. Association rules discovered in a specific region can be used as information
to analyze the purchasing patterns or behavioral characteristics of consumers in that region.
Until now, many association rule algorithms have been developed to discover association
rules in the entire data, but no algorithm has yet been proposed to discover association
rules effectively in partial transactions.

In this paper, we propose region-based FP-Growth (RFP-Growth) that discovers fre-
quent patterns for each divided cluster after dividing the entire transaction data into
density-based clusters. RFP-Growth algorithm generates FP-Tree with only transactions in
those regions when the regions to find the association rule is selected. RFP-Growth discov-
ers discover new frequent rules that were not found in the whole data. The contributions
of this paper are summarized as follows.

• We proposed a novel problem of discovering association rules in item transactions
considering the item purchase location.

• We proposed RFP-Growth which organizes item transaction data with location data
into clusters by dense regions and discovers association rules for each cluster.

• We conducted extensive experiments on the real and synthetic datasets to prove that
RFP-Growth discovers the new frequent rules that are not discovered in the analysis
of the entire data.

The rest of this paper is organized as follows. Section 2 reviews related works to
spatial clustering algorithms with FP-Growth and defines the problem. In Section 3, we
describe an overview of RFP-Growth. In Section 4, we present experimental results and
their evaluation. In Section 5, we conclude our work and present some directions for
future research.

2. Background and Related Works
2.1. Background: FP-Growth

Apriori algorithm is the most representative algorithm for association rules and is a
useful algorithm for finding frequent itemsets for binary association rules [9,17]. However,
since candidate itemsets are repeatedly generated and the support is calculated while
scanning the database, a lot of processing time is consumed. To compensate for this
drawback, several studies have been conducted to reduce the number of candidate sets or
the number of database scans. FP-Growth algorithm is attracting attention because it can
analyze frequent patterns with only two database scans without generating a candidate
set [10,18]. Important and quantitative information about frequent itemsets is stored in
an extended prefix tree structure called FP-Tree. FP-Tree generates a frequency pattern
tree with only two database scans. The priority of items is determined by counting
the number of frequent occurrences of each item through the first database scan. Each
set of items entered through the second database scan is sorted using the number of
frequent occurrences.

A simple example of constructing FP-Tree is shown in Figure 2. Figure 2a is an
example transaction database for creating FP-Tree (the minimum support is set to three).
Each row is composed of a set of items that occur simultaneously within one transaction
and is classified by transaction identification (TID). To construct FP-Tree using this example
transactional database, first, we need to find the frequency of the items. The database is
scanned once for the first time to count the number of items represented in the database.
Then, in order to make a list of frequent items, only items with a minimum support rating
or higher are used to create the FP-Tree in the order of the highest frequency. Figure 2b
shows items with a frequency greater than or equal to the minimum support in the order
of the highest frequency.

Electronics 2021, 10, 3091 4 of 16Electronics 2021, 10, 3091 4 of 16

TID Items

100 f,a,c,d,g,i,m,p

200 a,b,c,f,l,m,o

300 b,f,h,j,o,w

400 b,c,k,s,p

500 a,f,c,e,l,p,m,n

(a) Transaction database

TID Items

100 f,c,a,m,p

200 f,c,a,b,m

300 f,b

400 c,b,p

500 f,c,a,m,p

(c) Ordered and truncated
Transactional database

Item Count

f 4

c 4

a 3

m 3

p 3

b 3

(b) Item list ordered
by frequency

Figure 2. An example of transaction database and ordered and truncated transactional database.

The next step is to scan the transaction database a second time to construct FP-Tree.
Starting from the root, transactions are added one by one to the root subtree in a prefix
tree method. After reading each transaction, the items are reordered in reverse order of
frequency. Items that do not meet the minimum support are not considered. Figure 2c
shows the transaction after omitting items with a support rating of less than three from
Figure 2a.

Figure 3 shows that the process of construction of FP-Tree. The process consisted of
the four-step to add the five transactions of Figure 2a to FP-Tree. Figure 4 shows the final
FP-Tree and its header table for the transaction database. FP-Tree reduces frequent data-
base scans compared to Apriori algorithm. Since FP-Tree does not generate candidate sets,
it is useful for finding frequent itemsets from large amounts of data. However, when the
depth of the tree increases and the number of nodes increases, the dependence of the
memory size is large, and a lot of processing time may be consumed for mining.

root

f:1

c:1

a:1

m:1

p:1

root

f:2

c:2

a:2

m:1

p:1

b:1

m:1

(a) (b)

root

f:3

c:2

a:2

m:1

p:1

b:1

m:1

b:1

root

f:4

c:3

a:3

m:2

p:2

b:1

m:1

b:1

c:1

b:1

p:1

(c) (d)
Figure 3. A process of FP-Tree construction. (a) Transaction (f,c,a,m,p) is inserted, (b) transaction
(f,c,a,b,m) is inserted, (c) transaction (f,b) is inserted, (d) transaction (c,b,p) is inserted.

Item Count

f 4

c 4

a 3

m 3

p 3

b 3

root

f:4

c:3

a:3

m:2

p:2

b:1

m:1

b:1

c:1

b:1

p:1

(a) Header Table (b) FP-tree

Head of
node links

Figure 4. FP-Tree built based on the data in Figure 2a.

Figure 2. An example of transaction database and ordered and truncated transactional database.

The next step is to scan the transaction database a second time to construct FP-Tree.
Starting from the root, transactions are added one by one to the root subtree in a prefix
tree method. After reading each transaction, the items are reordered in reverse order of
frequency. Items that do not meet the minimum support are not considered. Figure 2c
shows the transaction after omitting items with a support rating of less than three from
Figure 2a.

Figure 3 shows that the process of construction of FP-Tree. The process consisted
of the four-step to add the five transactions of Figure 2a to FP-Tree. Figure 4 shows the
final FP-Tree and its header table for the transaction database. FP-Tree reduces frequent
database scans compared to Apriori algorithm. Since FP-Tree does not generate candidate
sets, it is useful for finding frequent itemsets from large amounts of data. However, when
the depth of the tree increases and the number of nodes increases, the dependence of the
memory size is large, and a lot of processing time may be consumed for mining.

Electronics 2021, 10, 3091 4 of 16

TID Items

100 f,a,c,d,g,i,m,p

200 a,b,c,f,l,m,o

300 b,f,h,j,o,w

400 b,c,k,s,p

500 a,f,c,e,l,p,m,n

(a) Transaction database

TID Items

100 f,c,a,m,p

200 f,c,a,b,m

300 f,b

400 c,b,p

500 f,c,a,m,p

(c) Ordered and truncated
Transactional database

Item Count

f 4

c 4

a 3

m 3

p 3

b 3

(b) Item list ordered
by frequency

Figure 2. An example of transaction database and ordered and truncated transactional database.

The next step is to scan the transaction database a second time to construct FP-Tree.
Starting from the root, transactions are added one by one to the root subtree in a prefix
tree method. After reading each transaction, the items are reordered in reverse order of
frequency. Items that do not meet the minimum support are not considered. Figure 2c
shows the transaction after omitting items with a support rating of less than three from
Figure 2a.

Figure 3 shows that the process of construction of FP-Tree. The process consisted of
the four-step to add the five transactions of Figure 2a to FP-Tree. Figure 4 shows the final
FP-Tree and its header table for the transaction database. FP-Tree reduces frequent data-
base scans compared to Apriori algorithm. Since FP-Tree does not generate candidate sets,
it is useful for finding frequent itemsets from large amounts of data. However, when the
depth of the tree increases and the number of nodes increases, the dependence of the
memory size is large, and a lot of processing time may be consumed for mining.

root

f:1

c:1

a:1

m:1

p:1

root

f:2

c:2

a:2

m:1

p:1

b:1

m:1

(a) (b)

root

f:3

c:2

a:2

m:1

p:1

b:1

m:1

b:1

root

f:4

c:3

a:3

m:2

p:2

b:1

m:1

b:1

c:1

b:1

p:1

(c) (d)
Figure 3. A process of FP-Tree construction. (a) Transaction (f,c,a,m,p) is inserted, (b) transaction
(f,c,a,b,m) is inserted, (c) transaction (f,b) is inserted, (d) transaction (c,b,p) is inserted.

Item Count

f 4

c 4

a 3

m 3

p 3

b 3

root

f:4

c:3

a:3

m:2

p:2

b:1

m:1

b:1

c:1

b:1

p:1

(a) Header Table (b) FP-tree

Head of
node links

Figure 4. FP-Tree built based on the data in Figure 2a.

Figure 3. A process of FP-Tree construction. (a) Transaction (f,c,a,m,p) is inserted, (b) transaction
(f,c,a,b,m) is inserted, (c) transaction (f,b) is inserted, (d) transaction (c,b,p) is inserted.

Electronics 2021, 10, 3091 5 of 16

Electronics 2021, 10, 3091 4 of 16

TID Items

100 f,a,c,d,g,i,m,p

200 a,b,c,f,l,m,o

300 b,f,h,j,o,w

400 b,c,k,s,p

500 a,f,c,e,l,p,m,n

(a) Transaction database

TID Items

100 f,c,a,m,p

200 f,c,a,b,m

300 f,b

400 c,b,p

500 f,c,a,m,p

(c) Ordered and truncated
Transactional database

Item Count

f 4

c 4

a 3

m 3

p 3

b 3

(b) Item list ordered
by frequency

Figure 2. An example of transaction database and ordered and truncated transactional database.

The next step is to scan the transaction database a second time to construct FP-Tree.
Starting from the root, transactions are added one by one to the root subtree in a prefix
tree method. After reading each transaction, the items are reordered in reverse order of
frequency. Items that do not meet the minimum support are not considered. Figure 2c
shows the transaction after omitting items with a support rating of less than three from
Figure 2a.

Figure 3 shows that the process of construction of FP-Tree. The process consisted of
the four-step to add the five transactions of Figure 2a to FP-Tree. Figure 4 shows the final
FP-Tree and its header table for the transaction database. FP-Tree reduces frequent data-
base scans compared to Apriori algorithm. Since FP-Tree does not generate candidate sets,
it is useful for finding frequent itemsets from large amounts of data. However, when the
depth of the tree increases and the number of nodes increases, the dependence of the
memory size is large, and a lot of processing time may be consumed for mining.

root

f:1

c:1

a:1

m:1

p:1

root

f:2

c:2

a:2

m:1

p:1

b:1

m:1

(a) (b)

root

f:3

c:2

a:2

m:1

p:1

b:1

m:1

b:1

root

f:4

c:3

a:3

m:2

p:2

b:1

m:1

b:1

c:1

b:1

p:1

(c) (d)
Figure 3. A process of FP-Tree construction. (a) Transaction (f,c,a,m,p) is inserted, (b) transaction
(f,c,a,b,m) is inserted, (c) transaction (f,b) is inserted, (d) transaction (c,b,p) is inserted.

Item Count

f 4

c 4

a 3

m 3

p 3

b 3

root

f:4

c:3

a:3

m:2

p:2

b:1

m:1

b:1

c:1

b:1

p:1

(a) Header Table (b) FP-tree

Head of
node links

Figure 4. FP-Tree built based on the data in Figure 2a. Figure 4. FP-Tree built based on the data in Figure 2a.

2.2. Variants of FP-Growth

Since the introduction of FP-Tree, various tree structures for frequency pattern mining
such as COFI-tree [12], DRFP-tree [13,14], CanTree [15], DSTree [19], AFOPT-tree [20],
CATS Tree [21], were presented. Since FP-Tree reads the entire database and constructs a
tree using the number of frequent items, it is a data mining technique that applies only
to a fixed database and cannot be used in a streaming database. In order to overcome
the constraints of FP-Tree, DS-Tree for mining association rules in a streaming database is
presented. DS-Tree does not use the number of frequent items but sorts the items according
to the criteria set by the user so as to fit the characteristics of items such as alphabetical
order or lexical order. After sorting, DS-tree is created by reading a batch, which is a
set of transactions as much as the window size. DS-Tree is a tree construction method
that can be applied not only to a fixed database but also to a data stream environment.
While FP-Tree uses the number of item frequency as the item sorting criterion, DS-Tree
uses a simple criterion such as alphabetical order or lexicographic order as a criterion for
tree construction. Therefore, because the database scan to find the item sorting criteria
can be omitted, a tree can be constructed with only one database scan, and a tree can be
constructed even in a data stream environment. Since only one data scan is required, the
time it takes to construct the tree can be reduced.

2.3. FP-Growth Based on Spatial Data

With the increase in spatiotemporal data, the problem of discovering spatiotemporal
association rules in spatiotemporal databases has received considerable attention in the
field of frequent pattern discovery. In addition, research on spatial frequent pattern analysis
based on FP-Growth is being actively conducted.

Maiti et al. [22] proposed a Map-Reduce-based approach as a method of finding
co-location patterns defined with R-proximity measure and conditional probability. The
purpose of this approach is to find co-location patterns of all sizes from distributed data.
The colocation rule is a model for inferring the existence or nonexistence of spatial features
around the item by using the features of the item included in the rule. This approach
consists of four algorithms, and FP-Growth algorithm is utilized as one method to find
colocation by finding all frequent itemsets.

Lee et al. [23] proposed SFP-Growth algorithms to find spatial frequent patterns from
social data. This study divides the entire space into cells on a 2D grid and manages cells
hierarchically by dividing the side of a cell by four. The SFP-Growth algorithm extracts
spatial frequent patterns of specific locations which explain the relative characteristics
of the location. However, in this method, when a frequent pattern is extracted as the

Electronics 2021, 10, 3091 6 of 16

sum of distant lower cells included in the same upper cell, the frequent pattern becomes
information describing the characteristics of the upper cell. In the upper cell, there are also
lower cells that are not involved in the frequent pattern extraction at all. In this case, even
cells that do not affect the frequent pattern extraction may be misinterpreted as having the
frequent pattern property defined in the upper cell.

Kiran et al. [24] proposed frequent spatial pattern growth (FSP-Growth). This study
defined interesting spatial patterns, including not only frequent items that occurred at close
distances between two items but also items in which the maximum distance between two
items was not greater than the user-specified maxDis.

2.4. Problem Definition

Let I = {i1, i2, . . . , in} be a set of n binary attributes called items. Let D = {t1, t2, . . . , tm}
be a set of transactions called the database. Let R = {r1, r2, . . . , rk} be a set of k density
regions. Each transaction in D has a unique transaction ID, a region where the product was
purchased, and contains a subset of the items in I. A rule is defined as an implication of
the form:

r: X→Y, where X, Y⊆I and r⊆R. (1)

In order to select interesting rules from the set of all possible rules, constraints on
various measures of significance and interest are used. The best-known constraints are
minimum thresholds on support and confidence.

Let X, Y be itemsets and r be regions, r: X→Y an association rule, and T a set of
transactions of a given database.

Definition 1. (Support) Support is an indication of how frequently the itemset appears in the
dataset. The support of X with respect to T is defined as the proportion of transactions t in the
dataset which contains the itemset X.

supp(X, r) = |{t∈T; X⊆t}|/|T|, where T.region = r

The support gives an idea of how frequent an itemset is in all the transactions.

Definition 2. (Confidence) Confidence is an indication of how often the rule has been found to be
true. The confidence value of a rule, X→Y, with respect to a set of transactions T, is the proportion
of the transactions that contain X which also contains Y.

conf(X→Y, r) = supp(X∪Y)/supp(X), where T.region = r (2)

We modified by adding the locality of the transaction to the support and confidence
used in the existing association rule. For conciseness of expression, however, it is expressed
in the same way as support and confidence.

Problem definition. Given a set of transactions, D, containing regions where the items
were purchased, the problem of mining association rules is to generate all association rules
that have support and confidence greater than the user-specified minimum support (called
minsup) and minimum confidence (called minconf) respectively for user-specified regions.

3. Methods
3.1. Overview of RFP-Growth

The purpose of this study is to prove that, if frequent rules are discovered by classifying
transactions by region, frequent rules that cannot be discovered in the entire data can be
found. RFP-Growth first divides transactions into density-based regions. The position data
could be the name or code of the store where the transaction occurred, or it could be the
longitude or latitude where the transaction occurred. We assume that the raw data to be
analyzed contains longitude(x) and latitude(y) data where the transaction occurred.

Electronics 2021, 10, 3091 7 of 16

DBSCAN performs the clustering process using only the location data of the raw data.
Through the DBSCAN, each transaction is assigned to a cluster. In Figure 5, the cluster
column means the cluster number to which each transaction is assigned in the clustered
transaction table. For each cluster, RFP-Tree is generated using the transaction assigned to
the cluster.

Electronics 2021, 10, 3091 7 of 16

Transactions with position data

clustering
transactions

Clustered transactions

cluster Items

1 f,a,c,d,g,i,m,p

1 a,b,c,f,l,m,o

1 b,f,h,j,o,w

2 b,c,k,s,p

2 a,f,c,e,l,p,m,n

Items

f,a,c,d,g,i,m,p

a,b,c,f,l,m,o

b,f,h,j,o,w

b,c,k,s,p

a,f,c,e,l,p,m,n

x y

14 52

12 31

22 45

42 5

78 14 dividing
transactions

(2) RFP-Growth

(1) DBSCAN

ɛ

root

cluster1 cluster2

Figure 5. Overview of RFP-Growth.

3.2. Intersection-Based FP-Tree
The existing FP-Tree constructs a tree based on the criterion of the frequency of oc-

currence. However, in this paper, a method of constructing FP-Tree using the intersection
is adopted. RFP-Tree based on the intersection is not a method of organizing a tree by
sorting items using a specific criterion, but by grouping items generated by intersection
each time each transaction is entered. Only one item may be included in one node, or
multiple items may be included in one node. There is no need to rearrange the items in
the transaction, and there is no need to build a new tree even if a continuous transaction
flows in. When a new subtree is created, the item set with the highest frequency including
the input transaction among the item sets is made as to the parent node. Therefore, the
latest item frequency is continuously applied to the node can be optimized whenever a
transaction is entered.

Figures 6 and 7 show a process to construct RFP-Tree using the example of a trans-
actional database in the aggregate expression method and tree structure. In the case of
transactions 100 and 200 in Figure 6b, the intersection of two sets {f,c,a,m} was generated
twice, and the {p} and {b} item sets were generated once. If this is presented as a tree, it
can be expressed as shown in Figure 7b. Whenever a transaction is entered one by one,
the item sets are finally grouped using the intersection set similar to Figure 7e. If there are
no items intersected with an item of an existing transaction, such as Transaction 600 in
Figure 6, a new node is created in a tree. These nodes are not considered in the process of
deriving the association rule. In this way, a tree can be constructed each time a transaction
is added one by one without the process of scanning the entire transaction once.

Figure 5. Overview of RFP-Growth.

3.2. Intersection-Based FP-Tree

The existing FP-Tree constructs a tree based on the criterion of the frequency of
occurrence. However, in this paper, a method of constructing FP-Tree using the intersection
is adopted. RFP-Tree based on the intersection is not a method of organizing a tree by
sorting items using a specific criterion, but by grouping items generated by intersection
each time each transaction is entered. Only one item may be included in one node, or
multiple items may be included in one node. There is no need to rearrange the items in
the transaction, and there is no need to build a new tree even if a continuous transaction
flows in. When a new subtree is created, the item set with the highest frequency including
the input transaction among the item sets is made as to the parent node. Therefore, the
latest item frequency is continuously applied to the node can be optimized whenever a
transaction is entered.

Figures 6 and 7 show a process to construct RFP-Tree using the example of a trans-
actional database in the aggregate expression method and tree structure. In the case of
transactions 100 and 200 in Figure 6b, the intersection of two sets {f,c,a,m} was generated
twice, and the {p} and {b} item sets were generated once. If this is presented as a tree, it
can be expressed as shown in Figure 7b. Whenever a transaction is entered one by one,
the item sets are finally grouped using the intersection set similar to Figure 7e. If there
are no items intersected with an item of an existing transaction, such as Transaction 600 in
Figure 6, a new node is created in a tree. These nodes are not considered in the process of

Electronics 2021, 10, 3091 8 of 16

deriving the association rule. In this way, a tree can be constructed each time a transaction
is added one by one without the process of scanning the entire transaction once.

Electronics 2021, 10, 3091 8 of 16

TID Items

100 f,c,a,m,p

200 f,c,a,b,m

300

f,b

400

b,c,p

500

Cluster

1

600

1

2

2

1

1

f,c,m,p

f,c,a,m

{p: 1} {b: 1}{f,c,a,m,p: 1} {f,c,a,m: 2}

{p: 1} {b: 1}{c,a,m: 2} {b: 2}{f: 3} {p: 1} {b: 1}{c,a,m: 2} {b: 2}{f: 3} {b,c,p: 1}

(a) (b)

Cluster:1 Cluster:1

(c)

{p: 1} {a: 1}{f,c,m: 2}

Cluster:2

{p: 1} {b: 1}{f,c,a,m: 2}

Cluster:1

Cluster:1

{p: 1} {a: 1}{f,c,m: 2}

Cluster:2

(d)

Cluster:1

{p: 1} {a: 1}{f,c,m: 2}

Cluster:2

(e)

Figure 6. Construction of intersection-based FP-Tree (blue circles indicate newly added transac-
tions). (a) Transaction (f,c,a,m,p) is inserted, (b) transaction (f,c,a,b,m) is inserted, (c) transactions
(f,c,m,p) and (f,c,a,m) are inserted, (d) transaction (f,b) is inserted, (e) transaction (b,c,p) is inserted.

(a)

root

cluster1

(b) (c)

a,c,f,m,p:1

root

cluster1

a,c,f,m:2

p: 1 b: 1

root

cluster1

a,c,f,m:2

p: 1 b: 1

cluster2

c,f,m:2

p: 1 a: 1

(d)

root

cluster1 cluster2

c,f,m:2

p: 1 a: 1a,c,m:2

p: 1 b: 1

f: 3

b: 1

root

cluster1 cluster2

c,f,m:2

p: 1 a: 1a,c,m:2

p: 1 b: 1

f: 3

b: 1

b,c,p:1

(e)

Figure 7. Tree representation of RFP-Tree. (a) Transaction (f,c,a,m,p) is inserted, (b) transac-
tion (f,c,a,b,m) is inserted, (c) transactions (f,c,m,p) and (f,c,a,m) are inserted, (d) transaction
(f,b) is inserted, (e) transaction (b,c,p) is inserted.

A general FP-Tree construction scans the entire database, which is the preprocessing
step of tree construction, calculates the number of items, and uses this to rank the items,
sort the items in each transaction in the reverse order of the number of items. However,
since RFP-Tree does not require the pre-processing step of such tree configuration, it reads
the database transaction and proceeds to construct the tree, thus reducing the pre-pro-
cessing cost. A general FP-Tree composes a tree by reading one transaction from a data-
base and reading items in the transaction one by one, but the proposed FP-Tree reads one
transaction and constructs FP-tree in units of transactions, which reduces the cost of time
compared to a general FP-Tree.

In general, the study of extracting association rules from spatial data first divides the
data into clusters and then applies the traditional association rule mining algorithm to
each cluster to find association rules. Instead of creating a tree after the DBSCAN process
is finished, a tree can be constructed at the same time as one cluster is constructed in
DBSCAN.

A transaction consists of <TID, region, items >where TID means a unique identifying
number and region means a market where the consumer purchased the item and items
mean the list of items purchased by consumers.

Algorithm 1 shows how RFP-tree is built. Through the entire transaction scan, only
transactions with a given region from the user are selected in each transaction. For each
transaction, the treeConstruct function is called and an item is passed as a parameter
(Lines 2–4). If the intersection of the item of the child node (childNode) and the items of the
current transaction is an empty set, items are inserted into the child of the current node
(currentNode) (Lines 6–7). childNode means child node of currentNode. If the intersection of
the item of the child node (childNode) and the items of the current transaction is not an
empty set, a new node is added to the FP-Tree (Lines 8–23). If items and items of child
node are the same, increase the frequency of child node by 1. If the items are a subset of

Figure 6. Construction of intersection-based FP-Tree (blue circles indicate newly added transactions). (a) Transaction
(f,c,a,m,p) is inserted, (b) transaction (f,c,a,b,m) is inserted, (c) transactions (f,c,m,p) and (f,c,a,m) are inserted, (d) transaction
(f,b) is inserted, (e) transaction (b,c,p) is inserted.

Electronics 2021, 10, 3091 8 of 16

TID Items

100 f,c,a,m,p

200 f,c,a,b,m

300

f,b

400

b,c,p

500

Cluster

1

600

1

2

2

1

1

f,c,m,p

f,c,a,m

{p: 1} {b: 1}{f,c,a,m,p: 1} {f,c,a,m: 2}

{p: 1} {b: 1}{c,a,m: 2} {b: 2}{f: 3} {p: 1} {b: 1}{c,a,m: 2} {b: 2}{f: 3} {b,c,p: 1}

(a) (b)

Cluster:1 Cluster:1

(c)

{p: 1} {a: 1}{f,c,m: 2}

Cluster:2

{p: 1} {b: 1}{f,c,a,m: 2}

Cluster:1

Cluster:1

{p: 1} {a: 1}{f,c,m: 2}

Cluster:2

(d)

Cluster:1

{p: 1} {a: 1}{f,c,m: 2}

Cluster:2

(e)

Figure 6. Construction of intersection-based FP-Tree (blue circles indicate newly added transac-
tions). (a) Transaction (f,c,a,m,p) is inserted, (b) transaction (f,c,a,b,m) is inserted, (c) transactions
(f,c,m,p) and (f,c,a,m) are inserted, (d) transaction (f,b) is inserted, (e) transaction (b,c,p) is inserted.

(a)

root

cluster1

(b) (c)

a,c,f,m,p:1

root

cluster1

a,c,f,m:2

p: 1 b: 1

root

cluster1

a,c,f,m:2

p: 1 b: 1

cluster2

c,f,m:2

p: 1 a: 1

(d)

root

cluster1 cluster2

c,f,m:2

p: 1 a: 1a,c,m:2

p: 1 b: 1

f: 3

b: 1

root

cluster1 cluster2

c,f,m:2

p: 1 a: 1a,c,m:2

p: 1 b: 1

f: 3

b: 1

b,c,p:1

(e)

Figure 7. Tree representation of RFP-Tree. (a) Transaction (f,c,a,m,p) is inserted, (b) transac-
tion (f,c,a,b,m) is inserted, (c) transactions (f,c,m,p) and (f,c,a,m) are inserted, (d) transaction
(f,b) is inserted, (e) transaction (b,c,p) is inserted.

A general FP-Tree construction scans the entire database, which is the preprocessing
step of tree construction, calculates the number of items, and uses this to rank the items,
sort the items in each transaction in the reverse order of the number of items. However,
since RFP-Tree does not require the pre-processing step of such tree configuration, it reads
the database transaction and proceeds to construct the tree, thus reducing the pre-pro-
cessing cost. A general FP-Tree composes a tree by reading one transaction from a data-
base and reading items in the transaction one by one, but the proposed FP-Tree reads one
transaction and constructs FP-tree in units of transactions, which reduces the cost of time
compared to a general FP-Tree.

In general, the study of extracting association rules from spatial data first divides the
data into clusters and then applies the traditional association rule mining algorithm to
each cluster to find association rules. Instead of creating a tree after the DBSCAN process
is finished, a tree can be constructed at the same time as one cluster is constructed in
DBSCAN.

A transaction consists of <TID, region, items >where TID means a unique identifying
number and region means a market where the consumer purchased the item and items
mean the list of items purchased by consumers.

Algorithm 1 shows how RFP-tree is built. Through the entire transaction scan, only
transactions with a given region from the user are selected in each transaction. For each
transaction, the treeConstruct function is called and an item is passed as a parameter
(Lines 2–4). If the intersection of the item of the child node (childNode) and the items of the
current transaction is an empty set, items are inserted into the child of the current node
(currentNode) (Lines 6–7). childNode means child node of currentNode. If the intersection of
the item of the child node (childNode) and the items of the current transaction is not an
empty set, a new node is added to the FP-Tree (Lines 8–23). If items and items of child
node are the same, increase the frequency of child node by 1. If the items are a subset of

Figure 7. Tree representation of RFP-Tree. (a) Transaction (f,c,a,m,p) is inserted, (b) transaction (f,c,a,b,m) is inserted,
(c) transactions (f,c,m,p) and (f,c,a,m) are inserted, (d) transaction (f,b) is inserted, (e) transaction (b,c,p) is inserted.

A general FP-Tree construction scans the entire database, which is the preprocessing
step of tree construction, calculates the number of items, and uses this to rank the items, sort
the items in each transaction in the reverse order of the number of items. However, since
RFP-Tree does not require the pre-processing step of such tree configuration, it reads the
database transaction and proceeds to construct the tree, thus reducing the pre-processing
cost. A general FP-Tree composes a tree by reading one transaction from a database and
reading items in the transaction one by one, but the proposed FP-Tree reads one transaction
and constructs FP-tree in units of transactions, which reduces the cost of time compared to
a general FP-Tree.

In general, the study of extracting association rules from spatial data first divides
the data into clusters and then applies the traditional association rule mining algorithm
to each cluster to find association rules. Instead of creating a tree after the DBSCAN
process is finished, a tree can be constructed at the same time as one cluster is constructed
in DBSCAN.

A transaction consists of <TID, region, items >where TID means a unique identifying
number and region means a market where the consumer purchased the item and items
mean the list of items purchased by consumers.

Algorithm 1 shows how RFP-tree is built. Through the entire transaction scan, only
transactions with a given region from the user are selected in each transaction. For each
transaction, the treeConstruct function is called and an item is passed as a parameter

Electronics 2021, 10, 3091 9 of 16

(Lines 2–4). If the intersection of the item of the child node (childNode) and the items of the
current transaction is an empty set, items are inserted into the child of the current node
(currentNode) (Lines 6–7). childNode means child node of currentNode. If the intersection
of the item of the child node (childNode) and the items of the current transaction is not an
empty set, a new node is added to the FP-Tree (Lines 8–23). If items and items of child node
are the same, increase the frequency of child node by 1. If the items are a subset of the items
of a childNode, insert the result of the difference between childNode and items in child of
childNode. The intersection of childNode and items is reinserted in childNode. The frequency
of childnode is increased by 1 (Lines 11–14). If the items of a childNode are a subset of
the items, the frequency of the childNode is increased by 1. The result of the difference
between items and items of childNode is inserted into restItems. treeConstruct function with
restItem and childNode set as parameters is executed (Lines 15–18). If it is not included in
the above three cases, two child nodes are created (Lines 20–21). The difference between
childNode and items is inserted into the first child node (Line 20), and the difference between
items and childNode is inserted into the second child node (Line 21). The intersection of
childNode and items is reinserted in childNode and the frequency of childNode is increased by
1 (Lines 20–23).

Algorithm 1 TreeBuilder

Input: A transaction DB, a set Q of query keywords, a set R of region
Output: FP-tree

1. NODE node = null;
2. for each transaction t∈DB do
3. if t.region ∈ R then
4. treeConstruct(t.items, node)
5. Procedure treeConstruct(items, currentNode)
6. if childNode.items ∩ items == ∅ then
7. currentNode.child← items
8. else
9. if childNode.items == items then
10. childNode.frequency++
11. else if childNode.items ⊃ ⋂

items then
12. childNode.child← childNode–items
13. childNode = childNode ∩ items
14. childNode.frequency++
15. else if childNode.items ⊂ items then
16. childNode.frequency++
17. restItems = items–childNode.items
18. treeConstruct(restItems, childNode);
19. else // split and add node
20. childNode.child← childNode–items
21. childNode.child←items–childNode
22. childNode = childNode ∩ items
23. childNode.frequency++

Complexity. Existing FP-Tree construction algorithms require two database scans
that need 2n, where n is the number of transactions. However, the RFP-Tree construc-
tion algorithm can create a tree with one database scan. Our proposed algorithms can
reduce the number of transactions to n. Whenever a transaction is added one by one, the
item comparison operation of the two transactions executes. The complexity of RFP-Tree
construction algorithm is dominated by comparing two sets of elements. If the average
number of items in one transaction is m, the number of times to compare common items in
two transactions is m2. Thus, the complexity of RFP-Tree construction algorithm is O(nm2).

Electronics 2021, 10, 3091 10 of 16

4. Results and Discussion
4.1. Experiment Setting
4.1.1. Algorithms

The purpose of this study is to verify whether new association rules are found when
the association rule is extracted by dividing a transaction database by region compared
to when the association rule is extracted for the entire data. We compared RFP-Growth
algorithm with the original FP-Growth, dFIN [25] and negFIN [26]. The FP-Growth
algorithm discovers frequent patterns from the transaction that consists solely of items,
while RFP-Growth algorithm considers the transaction with spatial data. RFP-Growth
algorithm consists of two steps.

(1) The transaction is divided into regions by clustering on spatial data included in a
transaction. We used DBSCAN algorithm, a clustering algorithm that allows clusters to
have an arbitrary shape because we considered a commercial area with dense stores as one
region. (2) FP-Growth algorithm is performed for each transaction divided by region.

All the proposed algorithms were implemented in Java, and the experiments were
conducted on an Intel Core i7 at 3.50 GHz with 32 GB memory. The parameters used for
the experiments are summarized and default values are shown in boldface in Table 2.

Table 2. Parameters for the experiments.

Parameters Description Values

n no. of objects 1K, 2K, 3K, 4K, 5K, 6K, 7K, 8K, 9K, 10K
k no. of clusters 5, 10, 15, 20, 25

minsup minimum support
0.20, 0.22, 0.24, 0.26, 0.28, 0.30, 0,32, 0,34, 0.36,
0.38, 0.40, 0.42, 0.44, 0.46, 0.48, 0.50, 0.52, 0.54,

0.56, 0.58, 0.60, 0.62, 0.64, 0.66, 0.68, 0.70

“K” represents 1000.

4.1.2. Data Sets

The real-world datasets and synthetic data sets are used for experiments. For a real
dataset, we collected sets of purchase items made for an online retail company based in
the UK during an eight-month period (https://www.kaggle.com/vijayuv/onlineretail
(accessed on 1 December 2021)). The real dataset consists of 25,900 transactions, and there
are 4070 items. Table 3 shows samples of real datasets. We removed unnecessary columns
for the experiment, i.e., Quantity, Invoice Date, Unit Price, and Customer ID. Since the
same transaction is divided into several rows, the rows of the same invoice number are
combined into one row. We conducted an experiment assuming the same country as one
cluster by using the country column as location information. For the synthetic data, spatial
data are generated in the 2D space (0, 100) × (0, 100) to indicate a store’s location, and item
data are generated among 100 items totally. Items in the synthetic data are generated so
that there are no duplicate items in one transaction which has an average of 20 items.

Table 3. Samples of a real dataset.

Invoice No. Stock Code Quantity Invoice Date Unit Price Customer ID Country

536365 85123A 6 01-12-2010 08:26 2.55 17850 UK
536365 71053 6 01-12-2010 08:26 3.39 17850 UK
356365 84406B 8 01-12-2010 08:26 2.75 17850 UK
536370 22728 24 01-12-2010 08:45 3.75 12583 France
536370 22727 24 01-12-2010 08:45 3.75 12583 France
536370 22726 12 01-12-2010 08:45 3.75 12583 France
536389 22941 6 01-12-2010 10:03 8.5 12431 Australia
536389 22941 8 01-12-2010 10:03 4.95 12431 Australia
536389 22941 12 01-12-2010 10:03 1.25 12431 Australia

https://www.kaggle.com/vijayuv/onlineretail

Electronics 2021, 10, 3091 11 of 16

4.2. The Discovery of New Association Rules

In this section, we evaluate the effect with respect to the minsup on the discovery of
new association rules. The Support means an indication of how frequently the itemset
appears in the dataset. minsup is the minimum support for an itemset to be identified as
frequent. The smaller the minsup, the more frequent rules are discovered. If the support of
an itemset is low, there is not enough information about the relationships between items.
We need to find support that elicits a reasonable number of frequent rules. We conduct
experiments with various minsup [0.2, 0.7], and set n = 10,000 and k = 5. Since FP-Growth,
dFIN, and negFIN algorithms yield the same rules as a result, we compared the results of
the FP-Growth algorithm to see if RFP-Growth algorithm discovers new rules.

Figure 8 shows the number of newly discovered frequent rules according to the
support level from the synthetic datasets. The left y-coordinate represents the number of
the frequent rules found in FP-Growth. The right y-coordinate represents the number of the
frequent rules that are not found in FP-Growth and are newly discovered in RFP-Growth.
As minsup becomes larger, the number of the frequent rules discovered decreases. As
minsup increases, the number of newly discovered rules decreases. In the section where the
number of the frequent rules discovered in FP-Growth is maintained, [0.22–0.3, 0.34–0.44,
0.5–0.68], the number of newly discovered frequent rules in RFP-Growth is low. It can be
seen that when the number of the frequent rules discovered in FP-Growth is reduced, the
number of the frequent rules newly discovered in RFP-Growth increases. When minsup was
0.7, no rules were discovered in FP-Growth, but 20 rules were discovered in RFP-Growth.

Electronics 2021, 10, 3091 11 of 16

experiments with various minsup [0.2, 0.7], and set n = 10,000 and k = 5. Since FP-Growth,
dFIN, and negFIN algorithms yield the same rules as a result, we compared the results of
the FP-Growth algorithm to see if RFP-Growth algorithm discovers new rules.

Figure 8 shows the number of newly discovered frequent rules according to the sup-
port level from the synthetic datasets. The left y-coordinate represents the number of the
frequent rules found in FP-Growth. The right y-coordinate represents the number of the
frequent rules that are not found in FP-Growth and are newly discovered in RFP-Growth.
As minsup becomes larger, the number of the frequent rules discovered decreases. As min-
sup increases, the number of newly discovered rules decreases. In the section where the
number of the frequent rules discovered in FP-Growth is maintained, [0.22–0.3, 0.34–0.44,
0.5–0.68], the number of newly discovered frequent rules in RFP-Growth is low. It can be
seen that when the number of the frequent rules discovered in FP-Growth is reduced, the
number of the frequent rules newly discovered in RFP-Growth increases. When minsup
was 0.7, no rules were discovered in FP-Growth, but 20 rules were discovered in RFP-
Growth.

Figure 8. The number of discovered frequent rules in FP-Growth and RFP-Growth from the syn-
thetic data.

Figure 9 shows the number of newly discovered frequent rules according to the sup-
port level from the real datasets. The left y-coordinate represents the number of the fre-
quent rules found in FP-Growth. The right y-coordinate represents the number of the fre-
quent rules that are not found in FP-Growth and are newly discovered in RFP-Growth.
We conduct experiments with various minsup [0.0001, 0.001], and set n = 1,044,000 and k =
50. In the section where the number of the frequent rules discovered in FP-Growth is
maintained, [0.0001–0.0002, 0.0006–0.001], the number of newly discovered frequent rules
in RFP-Growth is low. It can be also seen that when the number of the frequent rules
discovered in FP-Growth is reduced, the number of the frequent rules newly discovered
in RFP-Growth increases. When minsup was 0.0006, 0.0008 and 0.001, no rules were dis-
covered in FP-Growth, but 206,106, 13,765 and 380 rules were discovered in RFP-Growth
respectively.

Figure 8. The number of discovered frequent rules in FP-Growth and RFP-Growth from the synthetic data.

Figure 9 shows the number of newly discovered frequent rules according to the
support level from the real datasets. The left y-coordinate represents the number of the
frequent rules found in FP-Growth. The right y-coordinate represents the number of
the frequent rules that are not found in FP-Growth and are newly discovered in RFP-
Growth. We conduct experiments with various minsup [0.0001, 0.001], and set n = 1,044,000
and k = 50. In the section where the number of the frequent rules discovered in FP-
Growth is maintained, [0.0001–0.0002, 0.0006–0.001], the number of newly discovered
frequent rules in RFP-Growth is low. It can be also seen that when the number of the
frequent rules discovered in FP-Growth is reduced, the number of the frequent rules
newly discovered in RFP-Growth increases. When minsup was 0.0006, 0.0008 and 0.001, no
rules were discovered in FP-Growth, but 206,106, 13,765 and 380 rules were discovered in
RFP-Growth respectively.

Electronics 2021, 10, 3091 12 of 16Electronics 2021, 10, 3091 12 of 16

Figure 9. The number of discovered frequent rules in FP-Growth and RFP-Growth from the real-

world data.

4.3. Memory Consumption

In this section, we measure the memory consumption with respect to the minsup for

the real-world datasets and the synthetic datasets. Figure 10 shows that the larger the min-

sup, the smaller the memory usage. This is because, in general, as minsup increases, the

number of items treated as a frequent pattern decreases. Comparing the memory usage of

RFP-Growth and FP-Growth, it was found that the memory usage decreased by 34% for

synthetic datasets and 23% for real datasets. This can be explained as follows. RFP-Growth

generates an FP-Tree from transaction data through an intersection operation, whereas

FP-Growth generates an FP-Tree after creating an ordered and truncated transactional ta-

ble in Figure 2c. dFIN and negFIN show higher memory usage than FP-Growth for low

minsup.

(a) (b)

Figure 10. Memory consumption comparison for different datasets, depending on the minsup. (a)

Synthetic datasets, (b) real-world datasets.

The runtime comparison of RFP-Growth against FP-Growth, dFIN, and negFIN with

respect to the minsup is shown in Figure 11. In all algorithms, it appears that the runtime

cost decreases as minsup increases. The best performance at runtime is negFIN, which is

known as the fastest algorithm, followed by dFIN, RFP-Growth, and FP-Growth. RFP-

Growth shows better performance than FP-Growth, and the runtime performance of RFP-

Growth is slightly lower than dFIN and negFIN. Although RFP-Growth uses less

memory, it seems that the set operation to find common items increases the time cost.

Figure 9. The number of discovered frequent rules in FP-Growth and RFP-Growth from the real-
world data.

4.3. Memory Consumption

In this section, we measure the memory consumption with respect to the minsup for
the real-world datasets and the synthetic datasets. Figure 10 shows that the larger the
minsup, the smaller the memory usage. This is because, in general, as minsup increases, the
number of items treated as a frequent pattern decreases. Comparing the memory usage of
RFP-Growth and FP-Growth, it was found that the memory usage decreased by 34% for
synthetic datasets and 23% for real datasets. This can be explained as follows. RFP-Growth
generates an FP-Tree from transaction data through an intersection operation, whereas
FP-Growth generates an FP-Tree after creating an ordered and truncated transactional
table in Figure 2c. dFIN and negFIN show higher memory usage than FP-Growth for
low minsup.

Electronics 2021, 10, 3091 12 of 16

Figure 9. The number of discovered frequent rules in FP-Growth and RFP-Growth from the real-
world data.

4.3. Memory Consumption
In this section, we measure the memory consumption with respect to the minsup for

the real-world datasets and the synthetic datasets. Figure 10 shows that the larger the min-
sup, the smaller the memory usage. This is because, in general, as minsup increases, the
number of items treated as a frequent pattern decreases. Comparing the memory usage of
RFP-Growth and FP-Growth, it was found that the memory usage decreased by 34% for
synthetic datasets and 23% for real datasets. This can be explained as follows. RFP-Growth
generates an FP-Tree from transaction data through an intersection operation, whereas
FP-Growth generates an FP-Tree after creating an ordered and truncated transactional ta-
ble in Figure 2c. dFIN and negFIN show higher memory usage than FP-Growth for low
minsup.

(a) (b)

Figure 10. Memory consumption comparison for different datasets, depending on the minsup. (a)
Synthetic datasets, (b) real-world datasets.

The runtime comparison of RFP-Growth against FP-Growth, dFIN, and negFIN with
respect to the minsup is shown in Figure 11. In all algorithms, it appears that the runtime
cost decreases as minsup increases. The best performance at runtime is negFIN, which is
known as the fastest algorithm, followed by dFIN, RFP-Growth, and FP-Growth. RFP-
Growth shows better performance than FP-Growth, and the runtime performance of RFP-
Growth is slightly lower than dFIN and negFIN. Although RFP-Growth uses less
memory, it seems that the set operation to find common items increases the time cost.

Figure 10. Memory consumption comparison for different datasets, depending on the minsup. (a) Synthetic datasets,
(b) real-world datasets.

The runtime comparison of RFP-Growth against FP-Growth, dFIN, and negFIN with
respect to the minsup is shown in Figure 11. In all algorithms, it appears that the runtime cost
decreases as minsup increases. The best performance at runtime is negFIN, which is known
as the fastest algorithm, followed by dFIN, RFP-Growth, and FP-Growth. RFP-Growth
shows better performance than FP-Growth, and the runtime performance of RFP-Growth
is slightly lower than dFIN and negFIN. Although RFP-Growth uses less memory, it seems
that the set operation to find common items increases the time cost.

Electronics 2021, 10, 3091 13 of 16
Electronics 2021, 10, 3091 13 of 16

(a) (b)

Figure 11. Run time cost comparison for different datasets, depending on the minimum support.
(a) Synthetic datasets, (b) real-world datasets.

4.4. The Effect of the Number of Clusters
In this section, we evaluate the effect with respect to the number of clusters for the

real-world datasets and the synthetic datasets. We conduct experiments with the various
clusters [5, 10, 15, 20, and 25]. In the synthetic datasets, we set n = 10,000, minsup = [0.32,
0.48] and k = 5. In the real-world datasets, we set n = 1,044,000, minsup = [0.0006, 0.0008]
and k = 50.

Figure 12 shows the effects of the number of clusters on the number of newly discov-
ered frequent rules in RFP-Growth. Two graphs are also shown on a linear scale. For each
dataset, the number of newly discovered frequent rules in RFP-Growth is approximately
proportional to the number of clusters. In both graphs, when minsup is high (0.48, 0.006),
the number of newly discovered frequent rules gradually increases. On the other hand,
when minsup is low (0.32, 0.008), the number of newly discovered rules increases rapidly
as the number of clusters increases.

(a) (b)

Figure 12. The number of discovered frequent rules with respect to the number of clusters in RFP-
Growth. (a) Synthetic datasets, (b) real-world datasets.

Figure 13 shows the effects of the number of clusters on the time cost in RFP-Growth.
Two graphs are also shown on a linear scale. For each dataset, the time cost in RFP-Growth
is approximately proportional to the number of clusters. In the synthetic datasets, the time
cost is different for the two minsup (0.32 and 0.48), but in the real dataset, there is little
difference in the time cost for the two minsup (0.0006 and 0.0008). This difference is caused
by the difference in scale for the two datasets. What we can see from this result is that the
time cost increases as the number of clusters increases.

Figure 11. Run time cost comparison for different datasets, depending on the minimum support. (a) Synthetic datasets,
(b) real-world datasets.

4.4. The Effect of the Number of Clusters

In this section, we evaluate the effect with respect to the number of clusters for the real-
world datasets and the synthetic datasets. We conduct experiments with the various clusters
[5, 10, 15, 20, and 25]. In the synthetic datasets, we set n = 10,000, minsup = [0.32, 0.48] and
k = 5. In the real-world datasets, we set n = 1,044,000, minsup = [0.0006, 0.0008] and k = 50.

Figure 12 shows the effects of the number of clusters on the number of newly discov-
ered frequent rules in RFP-Growth. Two graphs are also shown on a linear scale. For each
dataset, the number of newly discovered frequent rules in RFP-Growth is approximately
proportional to the number of clusters. In both graphs, when minsup is high (0.48, 0.006),
the number of newly discovered frequent rules gradually increases. On the other hand,
when minsup is low (0.32, 0.008), the number of newly discovered rules increases rapidly
as the number of clusters increases.

Electronics 2021, 10, 3091 13 of 16

(a) (b)

Figure 11. Run time cost comparison for different datasets, depending on the minimum support.
(a) Synthetic datasets, (b) real-world datasets.

4.4. The Effect of the Number of Clusters
In this section, we evaluate the effect with respect to the number of clusters for the

real-world datasets and the synthetic datasets. We conduct experiments with the various
clusters [5, 10, 15, 20, and 25]. In the synthetic datasets, we set n = 10,000, minsup = [0.32,
0.48] and k = 5. In the real-world datasets, we set n = 1,044,000, minsup = [0.0006, 0.0008]
and k = 50.

Figure 12 shows the effects of the number of clusters on the number of newly discov-
ered frequent rules in RFP-Growth. Two graphs are also shown on a linear scale. For each
dataset, the number of newly discovered frequent rules in RFP-Growth is approximately
proportional to the number of clusters. In both graphs, when minsup is high (0.48, 0.006),
the number of newly discovered frequent rules gradually increases. On the other hand,
when minsup is low (0.32, 0.008), the number of newly discovered rules increases rapidly
as the number of clusters increases.

(a) (b)

Figure 12. The number of discovered frequent rules with respect to the number of clusters in RFP-
Growth. (a) Synthetic datasets, (b) real-world datasets.

Figure 13 shows the effects of the number of clusters on the time cost in RFP-Growth.
Two graphs are also shown on a linear scale. For each dataset, the time cost in RFP-Growth
is approximately proportional to the number of clusters. In the synthetic datasets, the time
cost is different for the two minsup (0.32 and 0.48), but in the real dataset, there is little
difference in the time cost for the two minsup (0.0006 and 0.0008). This difference is caused
by the difference in scale for the two datasets. What we can see from this result is that the
time cost increases as the number of clusters increases.

Figure 12. The number of discovered frequent rules with respect to the number of clusters in RFP-Growth. (a) Synthetic
datasets, (b) real-world datasets.

Figure 13 shows the effects of the number of clusters on the time cost in RFP-Growth.
Two graphs are also shown on a linear scale. For each dataset, the time cost in RFP-Growth
is approximately proportional to the number of clusters. In the synthetic datasets, the time
cost is different for the two minsup (0.32 and 0.48), but in the real dataset, there is little
difference in the time cost for the two minsup (0.0006 and 0.0008). This difference is caused

Electronics 2021, 10, 3091 14 of 16

by the difference in scale for the two datasets. What we can see from this result is that the
time cost increases as the number of clusters increases.

Electronics 2021, 10, 3091 14 of 16

(a) (b)

Figure 13. Time cost with respect to the number of clusters in RFP-Growth algorithm. (a) Synthetic
datasets, (b) real-world datasets.

4.5. The Effect of the Size of Data
To illustrate scalability, we vary the number of objects from 1K to 10K for the syn-

thetic datasets. Other parameters are given their baseline values (Table 2). Figure 14 shows
the effect of the number of objects in FP-Growth, dFIN, negFIN, and RFP-Growth. This
graph is shown on a linear scale. For each algorithm, the runtime is approximately pro-
portional to the number of objects. As shown in Figure 14, the time cost of RFP-Growth
algorithm is lower than the time cost of FP-Growth. It can be seen that processing the
divided data after dividing the data into several groups is faster than processing the entire
data at once.

Figure 14. Effect of the size of datasets.

5. Conclusions
In this paper, we proposed the noble problem of discovering association rules by

regions. Toward this goal, we proposed RFP-Growth, which organizes item transaction
data with location data into groups and discovers association rules for each cluster. RFP-
Growth divides item transaction included position data into regions by a density-based
clustering algorithm. FP-Growth is performed for each transaction divided by region. The
experimental results show that RFP-Growth discovers new association rules that the orig-
inal FP-Growth cannot find in the whole data. RFP-Growth has a disadvantage, however,
that the performance decreases as the number of clusters increases. In future work, we
plan to improve the performance of RFP-Growth, so even if the number of clusters in-
creases, the performance is stabilized.

Figure 13. Time cost with respect to the number of clusters in RFP-Growth algorithm. (a) Synthetic datasets, (b) real-
world datasets.

4.5. The Effect of the Size of Data

To illustrate scalability, we vary the number of objects from 1K to 10K for the synthetic
datasets. Other parameters are given their baseline values (Table 2). Figure 14 shows the
effect of the number of objects in FP-Growth, dFIN, negFIN, and RFP-Growth. This graph
is shown on a linear scale. For each algorithm, the runtime is approximately proportional
to the number of objects. As shown in Figure 14, the time cost of RFP-Growth algorithm is
lower than the time cost of FP-Growth. It can be seen that processing the divided data after
dividing the data into several groups is faster than processing the entire data at once.

Electronics 2021, 10, 3091 14 of 16

(a) (b)

Figure 13. Time cost with respect to the number of clusters in RFP-Growth algorithm. (a) Synthetic
datasets, (b) real-world datasets.

4.5. The Effect of the Size of Data
To illustrate scalability, we vary the number of objects from 1K to 10K for the syn-

thetic datasets. Other parameters are given their baseline values (Table 2). Figure 14 shows
the effect of the number of objects in FP-Growth, dFIN, negFIN, and RFP-Growth. This
graph is shown on a linear scale. For each algorithm, the runtime is approximately pro-
portional to the number of objects. As shown in Figure 14, the time cost of RFP-Growth
algorithm is lower than the time cost of FP-Growth. It can be seen that processing the
divided data after dividing the data into several groups is faster than processing the entire
data at once.

Figure 14. Effect of the size of datasets.

5. Conclusions
In this paper, we proposed the noble problem of discovering association rules by

regions. Toward this goal, we proposed RFP-Growth, which organizes item transaction
data with location data into groups and discovers association rules for each cluster. RFP-
Growth divides item transaction included position data into regions by a density-based
clustering algorithm. FP-Growth is performed for each transaction divided by region. The
experimental results show that RFP-Growth discovers new association rules that the orig-
inal FP-Growth cannot find in the whole data. RFP-Growth has a disadvantage, however,
that the performance decreases as the number of clusters increases. In future work, we
plan to improve the performance of RFP-Growth, so even if the number of clusters in-
creases, the performance is stabilized.

Figure 14. Effect of the size of datasets.

5. Conclusions

In this paper, we proposed the noble problem of discovering association rules by
regions. Toward this goal, we proposed RFP-Growth, which organizes item transaction
data with location data into groups and discovers association rules for each cluster. RFP-
Growth divides item transaction included position data into regions by a density-based
clustering algorithm. FP-Growth is performed for each transaction divided by region.
The experimental results show that RFP-Growth discovers new association rules that
the original FP-Growth cannot find in the whole data. RFP-Growth has a disadvantage,

Electronics 2021, 10, 3091 15 of 16

however, that the performance decreases as the number of clusters increases. In future
work, we plan to improve the performance of RFP-Growth, so even if the number of
clusters increases, the performance is stabilized.

Author Contributions: Conceptualization, H.-J.J., Y.Y. and B.K.; methodology, B.K.; software, B.K.;
validation, H.-J.J.; investigation, Y.Y.; data curation, B.K.; writing—original draft preparation, H.-J.J.
and B.K.; writing—review and editing, J.S.P.; visualization, J.S.P.; supervision, B.K.; project adminis-
tration, B.K.; funding acquisition, B.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by industry-academic Cooperation R&D program funded
by LX Spatial Informaion Research Institute(LXSIRI, Republic of Korea) [Project Name: A Study on
the Establishment of Service Pipe Database for Safety Management of Underground Space/Project
Number: 2021-502) and this research was funded by the Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Korean Government (MSIT)
(No. 2020R1F1A1077369) and by the Korean Government (MSIT) (No. 2021R1F1A1049387).

Data Availability Statement: The spatial transaction dataset is on a public dataset and available at “
https://www.kaggle.com/vijayuv/onlineretail” (accessed on 1 December 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alshammari, H.; El-Ghany, S.A.; Shehab, A. Big IoT Healthcare Data Analytics Framework Based on Fog and Cloud Computing.

J. Inf. Process. Syst. 2020, 16, 1238–1249.
2. Qi, J.; Yang, P.; Hanneghan, M.; Tang, S.; Zhou, B. A Hybrid Hierarchical Framework for Gym Physical Activity Recognition and

Measurement Using Wearable Sensors. IEEE Internet Things J. 2019, 6, 1384–1393. [CrossRef]
3. Wang, T.; Qiu, L.; Sangaiah, A.K.; Liu, A.; Alam Bhuiyan, Z.; Ma, Y. Edge-Computing-Based Trustworthy Data Collection Model

in the Internet of Things. IEEE Internet Things J. 2020, 7, 4218–4227. [CrossRef]
4. Al-Shargabi, A.; Siewe, F. A Lightweight Association Rules Based Prediction Algorithm (LWRCCAR) for Context-Aware Systems

in IoT Ubiquitous, Fog, and Edge Computing Environment. In Proceedings of the Proceedings of the Future Technologies
Conference (FTC) 2020, Vancouver, BC, Canada, 5–6 November 2020. [CrossRef]

5. Lee, C.H.; Park, J.S. An SDN-Based Packet Scheduling Scheme for Transmitting Emergency Data in Mobile Edge Computing
Environments. Hum. Cent. Comput. Inf. Sci. 2021, 11. [CrossRef]

6. He, Y.; Tang, Z. Strategy for Task Offloading of Multi-user and Multi-server Based on Cost Optimization in Mobile Edge
Computing Environment. J. Inf. Process. Syst. 2021, 17, 615–629.

7. Lee, J.-H. Next Task Size Prediction Method for FP-Growth Algorithm. Hum. Cent. Comput. Inf. Sci. 2021, 11. [CrossRef]
8. Agrawal, R.; Imieliski, T.; Swami, A. Mining association rules between sets of items in large databases. In Proceedings of the

ACM SIGMOD Record, New York, NY, USA, 1 June 1993; Volume 22, pp. 207–216.
9. Agrawal, R.; Srikant, R. Fast algorithms for mining association rules in large databases. In Proceedings of the 20th International

Conference on Very Large Data Bases, San Francisco, CA, USA, 12–15 September 1994; pp. 487–499.
10. Han, J.; Pei, J.; Yin, Y. Mining Frequent Patterns without Candidate Generation. ACM SIGMOD Rec. 2000, 29, 1–12. [CrossRef]
11. Giannella, C.; Han, J.; Pei, J.; Yan, X.; Yu, P.S. Mining Frequent Patterns in Data Streams at Multiple Time Granularities. In Data

Mining: Next Generation Challenges and Future Directions; Kargupta, H., Joshi, A., Sivakumar, K., Yesha, Y., Eds.; AAAI Press:
Palo Alto, CA, USA, 2004.

12. Zaïane, O.R.; El-Hajj, M. COFI Approach for Mining Frequent Itemsets Revisited. In Proceedings of the 9th ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discovery, Paris, France, 13 June 2004; pp. 70–75.

13. Adnan, M.; Alhajj, R. DRFP-tree: Disc-resident frequent pattern tree. Appl. Intell. 2009, 30, 84–97. [CrossRef]
14. Adnan, M.; Alhajj, R. A bounded and Adaptive Memory-based Approach to Mine Frequent Patterns from Very Large Databases.

IEEE Trans. Syst. Man Cybern. Part B 2011, 41, 154–172. [CrossRef] [PubMed]
15. Leung, C.K.-S.; Khan, Q.I.; Hoque, T. CanTree:A Tree Structure for Efficient Incremental Mining of Frequent Patterns. In

Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM’05), Houston, TX, USA, 27–30 November 2005;
pp. 274–281.

16. Ünvan, Y.A. Market basket analysis with association rules. Commun. Stat. Theory Methods 2021, 50, 1615–1628. [CrossRef]
17. Mar, Z.; Oo, K.K. An Improvement of Apriori Mining Algorithm using Linked List Based Hash Table. In Proceedings of the 2020

International Conference on Advanced Information Technologies (ICAIT), Yangon, Myanmar, 4–5 November 2020. [CrossRef]
18. Pan, Z.; Liu, P.; Yi, J. An Improved FP-Tree Algorithm for Mining Maximal Frequent Patterns. In Proceedings of the 2018 10th

International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Changsha, China, 10–11 February 2018.
[CrossRef]

https://www.kaggle.com/vijayuv/onlineretail
https://www.kaggle.com/vijayuv/onlineretail
http://doi.org/10.1109/JIOT.2018.2846359
http://doi.org/10.1109/JIOT.2020.2966870
http://doi.org/10.1007/978-3-030-63089-8_2
http://doi.org/10.22967/HCIS.2021.11.028
http://doi.org/10.22967/HCIS.2021.11.013
http://doi.org/10.1145/335191.335372
http://doi.org/10.1007/s10489-007-0099-2
http://doi.org/10.1109/TSMCB.2010.2048900
http://www.ncbi.nlm.nih.gov/pubmed/20483688
http://doi.org/10.1080/03610926.2020.1716255
http://doi.org/10.1109/ICAIT51105.2020.9261804
http://doi.org/10.1109/ICMTMA.2018.00082

Electronics 2021, 10, 3091 16 of 16

19. Leung, C.K.-S.; Khan, Q.I. DSTree: A tree structure for the mining of frequent sets from data streams. In Proceedings of the Sixth
International Conference on Data Mining (ICDM’06), Hong Kong, China, 18–22 December 2006; pp. 928–932.

20. Liu, G.; Lu, H.; Yu, J.X.; Wang, W.; Xiao, X. AFOPT: An efficient implementation of pattern growth approach. In Proceedings of
the ICDM Workshop, Melbourne, FL, USA, 19–22 November 2003.

21. Cheung, W.; Zaiane, O.R. Incremental mining of frequent patterns without candidate generation or support constraint. Database
Engineering and Applications Symposium. In Proceedings of the Seventh International Database Engineering and Applications
Symposium, Hong Kong, China, 18 July 2003; pp. 111–116.

22. Maiti, S.; Subramanyam, R.B.V. Mining co-location patterns from distributed spatial data. J. King Saud Univ. Comput. Inf. Sci.
2020, 33, 1064–1073. [CrossRef]

23. Lee, Y.; Nam, K.W.; Ryu, K.H. Fast mining of spatial frequent wordset from social database. Spat. Inf. Res. 2017, 25, 271–280.
[CrossRef]

24. Kiran, R.U.; Shrivastava, S.; Fournier-Viger, P.; Zettsu, K.; Toyoda, M.; Kitsuregawa, M. Discovering Frequent Spatial Patterns in
Very Large Spatiotemporal Databases. In Proceedings of the SIGSPATIAL ’20: 28th International Conference on Advances in
Geographic Information Systems, Seattle, WA, USA, 3–6 November 2020; pp. 445–448. [CrossRef]

25. Deng, Z.-H. DiffNodesets: An Efficient Structure for Fast Mining Frequent Itemsets. Appl. Soft Comput. 2016, 41, 214–223.
[CrossRef]

26. Aryabarzan, N.; Minaei-Bidgoli, B.; Teshnehlab, M. negFIN: An efficient algorithm for fast mining frequent itemsets. Expert Syst.
Appl. 2018, 105, 129–143. [CrossRef]

http://doi.org/10.1016/j.jksuci.2018.08.010
http://doi.org/10.1007/s41324-017-0094-6
http://doi.org/10.1145/3397536.3422206
http://doi.org/10.1016/j.asoc.2016.01.010
http://doi.org/10.1016/j.eswa.2018.03.041

	Introduction
	Background and Related Works
	Background: FP-Growth
	Variants of FP-Growth
	FP-Growth Based on Spatial Data
	Problem Definition

	Methods
	Overview of RFP-Growth
	Intersection-Based FP-Tree

	Results and Discussion
	Experiment Setting
	Algorithms
	Data Sets

	The Discovery of New Association Rules
	Memory Consumption
	The Effect of the Number of Clusters
	The Effect of the Size of Data

	Conclusions
	References

