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Abstract: Infrared positioning is a critical module in an indoor autonomous vehicle platform. In
an infrared positioning system, the ego vehicle is equipped with an infrared emitter while the
infrared receivers are fixed onto the ceiling. The infrared positioning result is accurate only when
the number of valid infrared receivers is more than three. An infrared receiver easily becomes
invalid if it does not receive light from the infrared emitter due to indoor occlusions. This study
proposes an occlusion-aware path planner that enables an autonomous vehicle to navigate toward the
occlusion-free part of the drivable area. The planner consists of four layers. In layer one, a homotopic
A* path is searched for in the 2D grid map to roughly connect the initial and goal points. In layer
two, a curvature-continuous reference line is planned close to the A* path using numerical optimal
control. In layer three, a Frenet frame is constructed along the reference line, followed by a search for
an occlusion-aware path within that frame via dynamic programming. In layer four, a curvature-
continuous path is optimized via quadratic programming within the Frenet frame. A path planned
within the Frenet frame may violate the curvature bounds in a real-world Cartesian frame; thus, layer
four is implemented through trial and error. Simulation results in CarSim software show that the
derived paths reduce the poor positioning risk and are easily tracked by a controller.

Keywords: autonomous vehicle; infrared positioning; occlusion-aware path planning; numerical
optimal control; dynamic programming; quadratic program

1. Introduction

Indoor positioning is an important area of development with wide applications in
surveillance, human motion analysis, logistics, and entertainment [1–5]. As one of the
most well-known indoor positioning approaches, infrared positioning is characterized
by low energy consumption and high precision [6–8]. In an infrared positioning system,
an infrared emitter is installed on a movable target that is required to be localized, and
infrared receivers are fixed onto the ceiling. The infrared positioning result is accurate
only when the number of valid infrared receivers is more than three. An infrared receiver
becomes invalid if it does not receive the light originating from the infrared emitter due to
indoor occlusions.

Automated guided vehicles (AGVs) are commonly used in warehouses for cargo
delivery [9,10]. However, AGV positioning results easily become inaccurate when cargoes
in a warehouse occlude the light beams originating from the emitter installed on an AGV.
Instead of improving the positioning of the sensors, the current work considers the planning
of occlusion-aware paths that would enable an AGV to drive in the occlusion-free part of
the drivable area in a warehouse.

If the cargoes in a warehouse are permanently fixed, then the poor positioning regions
may be estimated a priori and regarded as static obstacles in an AGV path planning scheme.
In most cases, however, cargo placement is always changing, resulting in unfixed poor
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positioning regions. Thus, the concerned occlusion-aware path planner must work fast
while guaranteeing its outputs are collision-free and kinematically feasible [11].

1.1. Related Work

The most prevalent path planners in robotics may be classified into sampling-, search-,
optimization-, and learning-based methods.

Sampling-based planners generate candidate path/trajectory primitives and then
connect selected ones to form a complete solution. Such primitives are typically formed
using polynomials [12–14], state lattices [15–17], and closed-loop tracking [18].

Search-based methods divide a continuous solution space into nodes in a graph and
then search for a link between the nodes in the graph. Typical searchers include dynamic
programming (DP) [19,20], A* [16,21], and rapidly exploring random tree (RRT) [18,22].

An optimization-based planner formulates the concerned planning task as an optimal
control problem (OCP) before solving the OCP numerically. Herein, solving an OCP nu-
merically refers to discretizing it into a mathematical programming problem and solving it
using a gradient-based optimizer. Typical mathematical programming problems include
quadratic programming (QP) [20,23,24], quadratically constrained QP (QCQP) [25], nonlin-
ear programming (NLP) [26–28], and unconstrained optimization problems [12,29]. Most
gradient-based optimizers suitable for path planning only exhibit local optimization capa-
bilities because global convergence requires a much longer runtime than one can afford.
Given this property, the finally derived optimal path is close to the initial guess [30,31].
Therefore, identifying a good initial guess with global optimality contributes considerably
toward finding a high-quality optimum. A sampling-/search-based planner is commonly
used to provide a good initial guess [32,33].

A learning-based method generates vehicle motions based on trained data. Arti-
ficial neural networks [34], spline-constrained policy networks [35], and double deep
Q-networks [36] are used in offline training. Reinforcement learning-based methods [37,38]
are applied to online training.

The aforementioned four types of planners have their respective strengths and lim-
itations. Sampling- and search-based methods do not handle the configuration space in
its continuous form. Thus, they find suboptimal rather than optimal solutions. They even
fail to find any feasible solution if the complexity of the planning scheme is beyond the
sampling/search resolution level [23]. Increasing the resolution level is inapplicable when
using a sampling-/search-based planner due to the curse of dimensionality. Despite their
drawbacks, sampling-/search-based methods can efficiently describe the non-differentiable
occlusion-related cost [39,40]. An optimization-based planner finds optimal paths in the
continuous solution space; however, it has two typical limitations: (1) occlusion-related
constraints/costs cannot be handled due to non-differentiability, and (2) the runtime is con-
siderably longer than that of a sampling-/search-based method. Learning-based methods
work fast online after a long offline training process, but they lack interpretability, and thus
are rarely tested on real-world vehicles [41,42]. According to the above analysis, concluding
that one type of planner fully outperforms another is difficult; instead, maximizing the
advantages of each planner type while combining multiple types has been a common
practice in this community.

Combining a sampling-/search-based planner with an optimization-based one renders
a hierarchical planning framework; however, the optimization layer is time-consuming if
the planning scheme is described in the Cartesian frame. At this point, the majority of path
planners for on-road cruising scenarios describe the movements of an autonomous vehicle
in the Frenet frame to enhance real-time performance. The Frenet frame, also known as the
curvilinear frame, has been widely used to standardize the irregular trend of a road [43].
When using the Frenet frame, the ego vehicle is regarded as driving in a straight tunnel
with left and right bounds. The Frenet frame helps convert an NLP problem into an easier
form, making an optimization-based planner faster. However, the paths optimized in the
Frenet frame may violate vehicle kinematic constraints because the conversions between
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the Cartesian and Frenet frames are neither unique nor uniform [44]. The situation worsens
when the road is curvy, as it might be in our warehouse scenario. Therefore, a perfect
solution that simultaneously considers kinematic feasibility, optimality, runtime efficiency,
and occlusion-avoidance performance is not yet available.

1.2. Contributions

The current study aims to develop an occlusion-aware path planner for enhancing
the indoor infrared positioning accuracy of an autonomous vehicle system. The planner
is expected to be optimal and fast without violating fundamental restrictions, such as
collision-avoidance and kinematic constraints. In particular, we adopt the first-search-then-
optimize framework to combine search-based and optimization-based planners to find the
global optimum. Both planners work within the Frenet frame, and thus time efficiency is
enhanced. The optimizer is designed through trial and error; hence, the finally derived
path is kinematically feasible within a real-world Cartesian frame.

1.3. Organization

The remainder of this paper is organized as follows. Section 2 briefly presents the
concerned path planning task. Section 3 introduces our occlusion-aware path planner.
Section 4 provides the simulation results and discusses them. Finally, Section 5 concludes
the study.

2. Problem Statement

The purpose of this work is to generate a kinematically feasible and collision-free path
for a car-like robot in a warehouse, such that the impact of infrared positioning inaccuracy
can be reduced. The path planning task is described as the following OCP:

min J(z(s), u(s)),
s.t., f (z(s), u(s)) = 0, s ∈ [0, Smax];

z ≤ z(s) ≤ z, u ≤ u(s) ≤ u, s ∈ [0, Smax];
z(0) = zinit, u(0) = uinit;
z(Smax) = zend, u(Smax) = uend;
f p(z(s)) ⊂ χfree, s ∈ [0, Smax].

(1)

Herein, variable s stands for the distance that the ego vehicle has to travel; variable
Smax denotes the traveled distance when the ego vehicle reaches the destination, thus Smax
may not be known a priori; J(z(s), u(s)) denotes the cost function w.r.t. travel efficiency,
path smoothness, and positioning quality; z denotes the state profiles; u represents the
control profiles; f (z(s), u(s)) = 0 denotes the kinematic constraints written in the form
of ordinary differential equations; z ≤ z(s) ≤ z and u ≤ u(s) ≤ u denote the kinematic
constraints written as algebraic box constraints; z(0) = zinit, u(0) = uinit, z(Smax) = zend,
and u(Smax) = uend denote the two-point boundary constraints; χobs denotes the partial
workspace occupied by obstacles; suppose that χ denotes the entire workspace, then
χfree ≡ χ/χobs denotes the free space drivable for the ego vehicle; f p(·) is a mapping from
the vehicle state z to its footprint, thus f p(z(s)) ⊂ χfree represents the collision-avoidance
constraints [45].

In addition, one may define the poor positioning regions in the workspace as χocclusion,
wherein the ego vehicle cannot touch enough infrared receivers. Ideally, one would
expect the ego vehicle to always keep free from poor positioning and collisions, i.e.,
f p(z(s)) ⊂ χ/(χobs ∪ χocclusion) for any s ∈ [0, Smax]. However, this condition is too harsh
when the infrared beams are seriously blocked by the cargoes. As depicted in Figure 1,
no kinematically feasible paths exist in χ/(χobs ∪ χocclusion). Empirically, the temporary
loss of positioning accuracy is not a serious problem because the inertial measurement
units (IMUs) equipped onboard can accurately estimate the vehicle’s configuration within
a short period. Therefore, (1) allows the ego vehicle to travel in χocclusion, but penalizes
traveling in χocclusion for a long distance using the cost function J.
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Figure 1. A warehouse workspace with poor positioning regions. Note that there are no kinemat-
ically feasible paths if the ego vehicle follows the global route because the goal lies in the poor
positioning region.

3. A Four-Layer Path Planning Method

Our proposed path planner consists of four layers. In layer one, an A* path is searched
for in the 2D grid map to coarsely connect the initial and goal points. The A* path is
deployed to determine the homotopy class. In layer two, a curvature-continuous reference
line is planned close to the A* path via numerical optima control. The reference line is
deployed to construct a Frenet frame. In layer three, a coarse occlusion-aware path is
searched for within the Frenet frame using DP. In layer four, a curvature-continuous path
is optimized using QP. The overall architecture is shown in Figure 2.
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3.1. Layer One: Search an A* Path

As a preliminary step, the homotopy class needs to be identified, which decides how
the ego vehicle bypasses each of the obstacles (i.e., cargoes) from the start point to the
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goal. This work uses the A* algorithm to find a coarse path, given that it explicitly reflects
the determined homotopy class. Concretely, an occupancy grid map is formed based on
the warehouse layout and cargo locations. Dilating the occupancy grid map by L renders
a dilated map. In this work, L is set to the half-width of the ego vehicle. A 2D path is
searched for in the dilated map via the A* algorithm [46], which coarsely connects the
assigned starting and goal points. The output of layer one is a path presented in the form
of N waypoints stored in a set, i.e., Wgr =

{
(xgr

i , ygr
i )|i = 1, . . . , N

}
.

3.2. Layer Two: Generate a Reference Line

The preceding layer identifies a global route from the start point to the goal. This
layer is focused on generating a curvature-continuous path that is close to the global route.
The curvature-continuous path is denoted as a reference line, which is used to construct
a Frenet frame for future usage. The principle for generating a reference line is as follows.

The global route Wgr =
{
(xgr

i , ygr
i )|i = 1, . . . , N

}
derived in layer one is resampled

as NFE equidistant waypoints Wgrrs =
{
(xgrrs

i , ygrrs
i )|i = 1, . . . , NFE

}
. A reference line is

generated by driving a virtual vehicle to track the waypoints. This process can be described
as a trajectory planning-oriented OCP:

min J(z(t), u(t)),
s.t., f (z(t), u(t)) = 0

z ≤ z(t) ≤ z,
u ≤ u(t) ≤ u, t ∈ [0, tmax].

(2)

In (2), t is the time index, z(t) denotes the ego vehicle’s state profiles in the Cartesian
frame, i.e., [x(t), y(t), θ(t), v(t), a(t), φ(t)]. Furthermore, (x(t), y(t)) refers to the location
of the rear-axle midpoint of the ego vehicle, θ(t) is the orientation angle, v(t) is the lon-
gitudinal velocity, a(t) is the corresponding acceleration, and φ(t) is the steering angle.
u(t) denotes the control profiles [jerk(t), ω(t)], wherein jerk(t) is the derivative of a(t), and
ω(t) is the angular velocity of φ(t). All of the constraints in (2) are kinematic constraints,
which are presented by the well-known bicycle model [47]:

dx(t)
dt = v(t) · cos θ(t)

dy(t)
dt = v(t) · sin θ(t)

dθ(t)
dt = v(t)·tan φ(t)

LW
dv(t)

dt = a(t)
dφ(t)

dt = ω(t)
da(t)

dt = jerk(t)

, t ∈ [0, tmax]. (3)

Herein, LW denotes the vehicle wheelbase (Figure 3). The boundary constraints
z ≤ z(t) ≤ z and u ≤ u(t) ≤ u are defined as

−jerkmax ≤ jerk(t) ≤ jerkmax, amin ≤ a(t) ≤ amax, 0 ≤ v(t) ≤ vmax,
−Ωmax ≤ ω(t) ≤ Ωmax,−Φmax ≤ φ(t) ≤ Φmax, t ∈ [0, tmax].

(4)

The cost function J(z(t), u(t)) is defined as:

J =
∫ tmax

τ=0

{[
x(τ)− xgrrs(τ)

]2
+
[
y(τ)− ygrrs(τ)

]2} · dτ + wu ·
∫ tmax

τ=0

[
jerk2(τ) + ω2(τ)

]
· dτ, (5)

wherein wu > 0 is a weighting parameter, and
(
xgrrs(t), ygrrs(t)

)
is a parametric trajec-

tory formed by linearly connecting the NFE waypoints
{
(xgrrs

i , ygrrs
i )|i = 1, . . . , NFE

}
in

a sequence.
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Figure 3. Schematics for vehicle kinematics and geometrics.

Compared with (1), OCP (2) does not contain two-point constraints or collision-
avoidance constraints. Thus, the resultant trajectory may not connect the start point to the
goal and may not guarantee collision avoidance despite being kinematically feasible. At
this point, it should be clarified that the resultant reference line is only used to construct
a Frenet frame; the concerns about collision avoidance, occlusion avoidance, etc., will be
handled in a subsequent layer based on the constructed Frenet frame.

OCP (2) is solved numerically, which involves discretizing the OCP into an NLP
problem and then solving it via a gradient-based NLP solver, such as the interior-point
method (IPM) [48,49]. The solution to the NLP problem is a vector of waypoints together
with the corresponding state/control profiles in their discretized forms. A reference line is
formed by connecting the resultant waypoints smoothly via spline interpolation.

3.3. Layer Three: Search for a DP Path in the Frenet Frame

This layer is focused on generating a coarse path within the Frenet frame with collision
avoidance, occlusion awareness, travel efficiency, and path smoothness considered.

The first step is to map the start point and goal to the reference line so that their Frenet
coordinate values are identified as (sstart, lstart) and (send, lend), respectively (Figure 4). The
second step is to generate (NS + 1) equidistant skeleton points along the reference line
ranging from (sstart, 0) to (send, 0). A normal line is drawn along each skeleton point, which
is orthogonal to the reference line. Along each normal line, NL candidate grids are sampled
(Figure 4), which range in an interval around the skeleton point. For the nominal line
passing through the last skeleton point located at (send, 0), NL is set to 1 and the only
candidate grid left is specified as the goal (send, lend).

The planning task in layer three is to select one and only one candidate grid along
each of the normal lines such that the sequentially connected candidate grids are collision
free, occlusion minimized, short, and smooth. DP is adopted to find the optimal choice for
the candidate grid along each normal line [50]. Compared to enumeration, DP reduces the
search complexity from O

(
NL

NS
)

to O
(

NS · N2
L
)
, and thus promises to find the optimum

in a graph consisting of candidate grids. The brief principle of the DP search-based path
planning method in layer three is presented as follows.
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Figure 4. Schematics for a graph of sampled grids in DP search.

In Algorithm 1, each candidate grid is regarded as a node. InitializeNodes() is used to
initialize the cost of each node as +∞. TraceBack(opti_id) is used to identify a sequence
of nodes from Node(NS, 1), Node(NS − 1, opti_id), to its ancestors until Node(0, 1). The
node sequence, if output in inverse order, forms a coarse path within the Frenet frame.
MeasureCost(Node1, Node2) measures the cost of the path segment from Node1 to Node2.
We define the cost function as a weighted sum of collision cost Jcollision, travel efficiency cost
Jefficiency, smoothness cost Jsmoothness, and positioning-related cost Jpositioning. The collision
cost penalizes the case that the ego vehicle collides with the surrounding cargoes when
driving along the concerned path segment. Jcollision is set to a large value (e.g., 1020) if
a collision occurs, otherwise, Jcollision is set to 0. The efficiency cost Jefficiency is written as
the length of the concerned path segment because this term encourages the ego vehicle to
travel across a short distance. Suppose the parent of Node1 is Node0, Jsmoothness is defined
as |(Node0.config−Node1.config)× (Node1.config−Node2.config)|. Intuitively speak-
ing, the smoothness cost Jsmoothness penalizes the case that the heading direction changes
from Node0, Node1, to Node2. Jpositioning penalizes the case that the ego vehicle stays
in the positioning-poor regions for a long distance. Furthermore, Nsample waypoints{
(swp

i , lwp
i )
∣∣∣i = 1, . . . , Nsample

}
are evenly sampled along the concerned line segment from

Node1 to Node2. Regarding the ith sampled waypoint (swp
i , lwp

i ), the corresponding co-
ordinate value in the Cartesian frame is identified as (xwp

i , ywp
i ) via frame conversion.

Suppose the infrared emitter is installed at the height of h onto the ego vehicle, one may
draw a line from the 3D point (xwp

i , ywp
i , h) to each infrared receiver and then check if the

line is occluded by cargoes in the warehouse. If there is no occlusion, then the receiver is
regarded as valid (Figure 5). If the total number of valid infrared receivers is larger than
three, then the concerned waypoint (swp

i , lwp
i ) is regarded as valid. Jpositioning measures the

rate of valid waypoints along the concerned line segment from Node1 to Node2.

3.4. Layer Four: Optimize a Curvature-Continuous Path

The preceding layer helps to identify a collision-free and occlusion-aware path, which
consists of (NS + 1) waypoints. Since NS is not large, the derived path is quite coarse. This
section is focused on how to refine the coarse path via numerical optimization within the
Frenet frame. In this work, path refinement is performed via Baidu Apollo EM planner [20],
which involves implementing path-velocity decomposition in an iterative loop before
an optimum (rather than sub-optimum) is finally derived. Since there are only static
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obstacles, the EM planner is degraded as a run-once path planning method, the details of
which are given as follows.

Algorithm 1. Path planning via DP search.

Input: Reference line, scenario layout, location of cargoes;

Output: A path Λ =
{
(sdp

i , ldp
i )|i = 0, . . . , NS

}
;

1. InitializeNodes();
2. Set Node(0, 1).config = (xstart, ystart);
3. For each j ∈ {1, . . . , NL}, do
4. Set Node(1, j).parent = Node(0, 1);
5. Identify Node(1, j).config;
6. Set Node(1, j).cost = MeasureCost(Node(0, 1), Node(1, j));
7. End for
8. For each i ∈ {1, . . . , NS − 2}, do
9. For each j ∈ {1, . . . , NL}, do
10. For each k ∈ {1, . . . , NL}, do
11. Identify Node(i + 1, k).config;
12. cost_candidate = MeasureCost(Node(i, j), Node(i + 1, k));
13. If Node(i + 1, k).cost > Node(i, j).cost + cos t_candidate, then
14. Node(i + 1, k).parent = Node(i, j);
15. Node(i + 1, k).cos t = cos t_candidate;
16. End if
17. End for
18. End for
19. End for
20. opti_id = arg min

j=1,...,NL

(Node(NS − 1, j).cost + MeasureCost(Node(NS − 1, j), Node(NS, 1)));

21. Λ = TraceBack(opti_id);
22. Return.
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The first step is to identify the left and right bounds that surround the coarse path
derived in layer three. As depicted in Figure 6, the left and right bounds are determined
using an incremental check. The identified left and right bounds are denoted as functions of
s, namely, ub(s) and lb(s). The optimization-based path planning task involves identifying
a function l(s) between the left and right bounds subject to kinematic constraints and
collision-avoidance constraints. In our concerned task, the decision variables include l(s),
dl(s), ddl(s), and dddl(s), which obey the following kinematic constraints:
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dl(s)
ds = dl(s),

ddl(s)
ds = ddl(s),

dddl(s)
ds = dddl(s),
−dlmax ≤ dl(s) ≤ dlmax,
−ddlmax ≤ ddl(s) ≤ ddlmax,
−dddlmax ≤ dddl(s) ≤ dddlmax,
s ∈ [sstart, send].

(6)

Electronics 2021, 10, x FOR PEER REVIEW 9 of 16 
 

 

3.4. Layer Four: Optimize a Curvature-Continuous Path 
The preceding layer helps to identify a collision-free and occlusion-aware path, 

which consists of (NS + 1) waypoints. Since NS is not large, the derived path is quite coarse. 
This section is focused on how to refine the coarse path via numerical optimization within 
the Frenet frame. In this work, path refinement is performed via Baidu Apollo EM planner 
[20], which involves implementing path-velocity decomposition in an iterative loop be-
fore an optimum (rather than sub-optimum) is finally derived. Since there are only static 
obstacles, the EM planner is degraded as a run-once path planning method, the details of 
which are given as follows. 

The first step is to identify the left and right bounds that surround the coarse path 
derived in layer three. As depicted in Figure 6, the left and right bounds are determined 
using an incremental check. The identified left and right bounds are denoted as functions 
of s, namely, ub(s) and lb(s). The optimization-based path planning task involves identify-
ing a function l(s) between the left and right bounds subject to kinematic constraints and 
collision-avoidance constraints. In our concerned task, the decision variables include l(s), 
dl(s), ddl(s), and dddl(s), which obey the following kinematic constraints: 

ssstart Cargo

l

sendCargo Cargo

Cargo

ub(s)

lb(s)

 
Figure 6. Schematics for the construction of left/right bounds in EM planner. 

max max

max max

max max

start end

d ( ) ( ),        
d

d ( ) ( ),      
d

d ( ) ( ),
d

dl ( ) dl ,           
ddl ( ) ddl ,     
dddl ( ) dddl ,

[s ,s ].

l s dl s
s

dl s ddl s
s

ddl s dddl s
s

dl s
ddl s
dddl s

s

=

=

=

− ≤ ≤
− ≤ ≤
− ≤ ≤

∈

 

(6)

Herein, maxdl , maxddl , and maxdddl  are parameters that determine how fast l 
changes with s, and thus are related to path smoothness. Empirically, the bounding pa-
rameters in (6) should not be set strictly, otherwise the vehicle kinematics easily become 
in conflict with the collision-avoidance constraints that will be introduced later. At this 
point, we believe that the path smoothness can be enhanced via the cost function without 
suffering from the infeasibility risk [23]. 

The two-point boundary constraints are written as 

Figure 6. Schematics for the construction of left/right bounds in EM planner.

Herein, dlmax, ddlmax, and dddlmax are parameters that determine how fast l changes
with s, and thus are related to path smoothness. Empirically, the bounding parameters in
(6) should not be set strictly, otherwise the vehicle kinematics easily become in conflict with
the collision-avoidance constraints that will be introduced later. At this point, we believe
that the path smoothness can be enhanced via the cost function without suffering from the
infeasibility risk [23].

The two-point boundary constraints are written as

l(sstart) = Lstart, dl(sstart) = DLstart, ddl(sstart) = 0, dddl(sstart) = 0,
l(send) = Lend, dl(send) = DLend, ddl(send) = 0, dddl(send) = 0.

(7)

Herein, the parameters Lstart, DLstart, Lend, and DLend reflect the assigned initial and
goal configurations. Particularly, DLstart and DLend are related to the vehicle orientation
angles at s = sstart and send, respectively.

Regarding the collision-avoidance constraints, the vehicle body should not collide
with ub(s) or lb(s). Setting the vehicle body as rectangular is too complex, and thus we use
a series of same-radius circles centered along the longitudinal axle of the ego vehicle to
cover the rectangular vehicle body (Figure 7), and then require that each circle lies between
lb(s) and ub(s). For a circle biased from the vehicle’s rear axle by η, the collision-avoidance
constraints are defined as

η · tan θs + l(s) + 0.5 · LB ≤ ub(s + η),
η · tan θs + l(s)− 0.5 · LB ≥ lb(s + η).

(8)

The complete collision-avoidance constraints are formed by imposing (8) for any
η ∈ [−LR cos θs, (LW + LF) cos θs]. Herein, θs(s) denotes the vehicle’s orientation angle
within the Frenet frame. Inherently, θs(s) stands for the difference between the ego vehicle’s
heading direction and the tangent direction along the reference line at s. |θs(s)| is small
because the ego vehicle’s heading direction, in most cases, is not much biased from the
reference line. Thus, we have

tan θs ≡ dl(s)
ds ≡ dl(s),

cos θs ≈ 1.
(9)
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This yields the following constraints:

η · dl(s) + l(s) + 0.5 · LB ≤ ub(s + η),
η · dl(s) + l(s)− 0.5 · LB ≥ lb(s + η),
∀η ∈ [−LR, LW + LF].

(10)

The cost function is defined as

J = w1 ·
∫ send

s=sstart
(l(s)− lDP(s))

2ds + w2 ·
∫ send

s=sstart
dl2(s)ds+

w3 ·
∫ send

s=sstart
ddl2(s)ds + w4 ·

∫ send
s=sstart

dddl2(s)ds,
(11)

wherein w1, w2, w3, and w4 are weighting parameters, and lDP(s) denotes the coarse path
derived by DP in layer three. An OCP is formed by combining (6), (7), (10), and (11). The
discretized version of this OCP is a QP, which is easily solved using a QP solver, such as
osqp [51] and qpOASES [52]. The resultant path, after being converted back to the Cartesian
frame, may be infeasible if its curvature exceeds the allowable bounds. The infeasibility is
inevitable because the vehicle kinematics cannot be accurately modeled within the Frenet
frame [44]. As a remedy for this, we check the resultant path for violations of curvature
limits in the Cartesian frame; if an infeasible solution is derived, w1 is set smaller before
the QP problem is solved again. This process continues until a curvature-feasible path
is derived.
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4. Simulation Results and Discussion

This section discusses the efficacy, occlusion awareness, and closed-loop tractability of
our proposed path planner.

4.1. Simulation Setup

Simulations were implemented in a MATLAB + CarSim platform and executed
on an Intel Core i9-9900 CPU with 32 GB RAM that runs at 3.10 × 2 GHz. We de-
fine a 50 m× 50 m warehouse with eight infrared receivers that are evenly distributed
along the four edges of the rectangular ceiling, the height of which is 5 m. The geo-
metric size of each cargo is 5 m× 5 m× h, wherein h is a random value ranging from
0 to 5 m. Other parametric settings are presented in our source codes, which are avail-
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able at https://github.com/libai1943/OcclusionAwarePathPlanningForAGV (accessed on
8 December 2021).

4.2. On the Efficacy of the Proposed Planner

The planning results of two typical simulation cases are depicted in Figure 8, which
shows the efficiency of each layer. In each of the two cases, the finally derived path is
collision free and kinematically feasible. Both properties can be reflected by the footprints
and curvature profiles plotted in Figure 9.

4.3. On the Occlusion Awareness of the Proposed Planner

This subsection investigates the occlusion awareness of the paths planned by the
proposed method. Figure 10 shows the results with/without the positioning-related cost
Jpositioning in layer three. When the cost term Jpositioning is discarded, the rate of good
positioning distance along the entire path is 86.5% and 92.5% in the aforementioned two
typical simulation cases, respectively. By contrast, with the cost term included, the rate
grows to 97.0% and 96.5%. This comparative result clearly shows that our proposed planner
can efficiently reduce the positioning inaccuracy caused by occlusions.
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4.4. On the Closed-Loop Tractability of the Proposed Planner

This subsection reports the closed-loop tracking performance in CarSim when follow-
ing the open-loop paths planned by the proposed planner (Figure 11). A linear quadratic
regulator (LQR) is adopted as the controller. As illustrated in Figure 12, the open-loop and
closed-loop paths do not differ much, which indicates that the planned paths are suffi-
ciently smooth and thus easy to track. The concrete closed-loop tracking simulation results
are presented in the following video link: https://www.bilibili.com/video/av677126688
(accessed on 8 December 2021).
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5. Conclusions

This paper has introduced a path planning method for an autonomous vehicle in
a warehouse, wherein the cargoes may occlude the inflated signals emitted by the ego
vehicle for inflated positioning. According to our conducted simulations, the proposed
planner is efficient according to its w.r.t. collision avoidance, kinematic feasibility, occlusion
awareness, and tractability.
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