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Abstract: Computational intelligence has been widely used in medical information processing. The
deep learning methods, especially, have many successful applications in medical image analysis. In
this paper, we proposed an end-to-end medical lesion segmentation framework based on convolu-
tional neural networks with a dual attention mechanism, which integrates both fully and weakly
supervised segmentation. The weakly supervised segmentation module achieves accurate lesion
segmentation by using bounding-box labels of lesion areas, which solves the problem of the high
cost of pixel-level labels with lesions in the medical images. In addition, a dual attention mecha-
nism is introduced to enhance the network’s ability for visual feature learning. The dual attention
mechanism (channel and spatial attention) can help the network pay attention to feature extraction
from important regions. Compared with the current mainstream method of weakly supervised
segmentation using pseudo labels, it can greatly reduce the gaps between ground-truth labels and
pseudo labels. The final experimental results show that our proposed framework achieved more com-
petitive performances on oral lesion dataset, and our framework further extended to dermatological
lesion segmentation.

Keywords: medical image segmentation; computational intelligence; convolutional neural networks;
weakly supervised segmentation; attention mechanism

1. Introduction

With the rapid development of computer vision, especially the significant improve-
ment of the representation ability of convolutional neural networks [1,2], image segmen-
tation has achieved good performances and laid a solid foundation for the application of
medical image segmentation. Medical images segmentation as an important and difficult
task of computer-aided diagnosis, is the key to further obtain diagnostic information. Tradi-
tional object location in medical images requires professional doctors to manually identify,
which is not only time-consuming and labor-intensive but also vulnerable to subjective
factors. While the lesion segmentation results obtained by deep learning methods are
now becoming a promising method. However, compared with ordinary images, clinical
diagnosis invokes higher requirements for the accuracy of the segmentation results of
medical images. In addition, the high variability, the complex morphological structure,
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the ambiguity and the scarce labels of lesions in medical images pose great challenges to
medical image segmentation [3].

Recently, lesion segmentation methods based on deep convolutional neural networks
have been widely applied to medical image segmentation. Encoder-Decoder, FCNs [4]
(Fully Convolutional Networks for Semantic Segmentation) and the methods based on ex-
tended convolutional neural network have become the mainstream segmentation methods.
For example, U-Net designed in [5] an “U-shaped” network, and symmetric expansion
paths are added to enhance the positioning representation capability of the network. U-Net
is superior to the previous methods in terms of the amount of data required, the efficiency
and accuracy of methods. Since then, more and more variants of U-Net [6–11] are proposed
to enhance the network presentation capabilities, the transmission and fusion of feature in-
formation within and between layers to further improve the segmentation accuracy. U-net
and its variants perform well in medical images such as CT(Computed Tomography) and
MRI(Magnetic Resonance Imaging). On the one hand, the CT and MRI images are mostly
single-channel grayscale images, with simple semantics and relatively fixed structures.
On the other hand, the U-Net network has fewer parameters, and the skip connection of
U-net plays an important role. The skip connection can make the feature graph of the
corresponding position of the encoder fuse on the channel in the up-sampling process of
each level of the network. Through the fusion of low-level features and high-level features,
the network can retain more high-resolution details contained in high-level feature images,
thus improving the accuracy of image segmentation, so as it is not easy to overfit for rela-
tively small medical datasets. Therefore, when there are relatively small medical datasets,
this U-NET model is preferred to avoid overfitting.

There are also some medical image datasets consisting of visible images, such as
our oral leukoplakia dataset and the ISIC2018 [12–14] used in this paper. Different from
radiographic images such as CT and MRI images, this type of medical image taken by con-
ventional visible light cameras have larger size, and relatively richer semantic information,
while they also have challenges in terms of object segmentation. As shown in Figure 1,
the same category of objects has some differences in visual features, while the features of
different categories of objects have similarities. The texture, color, shape, and size of lesions
in the images varies, and the boundary of lesions is blurred. In addition, all of the artifacts
during image capturing, light intensity and reflections, bubbles, hair occlusion, background
boards, and so forth, bring many difficulties to the segmentation task. Specifically, for the
oral leukoplakia dataset built in this paper, the difficulties of leukoplakia lesion segmenta-
tion mainly lie in the morphology diversity of lesion, including granular, crumpled, warty,
and so forth. In addition, the differences in the size of lesions, the blur boundaries between
the lesions and their surrounding tissues, and the changeable locations of lesions, and so
forth, will also increase the difficulty in the segmentation of leukoplakia. At present, there
are few related works to oral lesion segmentation. Camalan et al. [15] developed a image
classification method to identify the “suspicious” oral dysplasia or “normal” oral images
through transfer learning on Inception-ResNet-V2. Jubair et al. [16] proposed a method to
predict oral cancer from oral images using a lightweight transfer learning model. These
methods are designed for the image classification task, while our method is performed for
segmenting the oral lesion, which is the image segmentation task with more complexity.
Figure 1 shows some examples of segmentation results of oral leukoplakia and skin disease
lesions. All of these complex medical images pose big challenges for lesion segmentation,
since the category filling rate loss in traditional image segmentation models often loses its
effects of medical image segmentation.
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Figure 1. Some samples of lesion segmentation (The first two rows are oral leukoplakia dataset, and
the last two rows are ISIC 2018 dataset).

For some types of medical images with extremely complex morphological and multi-
scale features, traditional U-Net can not deal with the multi-scale features of the objects
well, which makes it difficult for U-Net to extract the effective visual features of small
objects. This results from the fact that the models have significant performance degradation.
In order to solve these problems, it is particularly important to improve the network’s
visual feature capturing capabilities for medical images. Fortunately, many attempts have
been made, and introducing the attention mechanism into different deep networks is
a feasible direction. Compared with the U-Net, the structure of Mask R-CNN is more
complex, especially the FPN backbone network. This network can adapt to multi-scale
changes of lesions and extract effective regional features. Therefore, in this paper, we
introduce a dual attention mechanism into Mask R-CNN [17–20], and propose a network
to extract the effective visual features of lesions. The dual attention mechanism can
help the network pay attention to feature extraction from important regions, which can
improve the representation ability of the convolutional networks for lesion areas. The
experimental results show that the models with the dual attention mechanism have the
optimal segmentation boundaries, and fewer missed or false segmentation areas. Although
it is possible to obtain better segmentation results through fully supervised learning, it
requires fine pixel-level labels of the objects in images. Therefore, a professional pathologist
is required to give labels for medical images, which can consume some economic and time
and greatly limits the practical application of intelligent assistance systems. To solve this
problem, the segmentation methods based on weakly supervised learning can use image-
level and box-level coarse-grained labels to train a pixel-level fine segmentation network.
In this paper, we make full use of our network with a dual attention mechanism, and
integrate a weakly supervised segmentation branch. This improvement achieves the weakly
supervised lesion segmentation, which has much less cost in image labeling. Furthermore,
this segmentation framework can also be applied to radiomics lesion segmentation in
the future.
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Main contributions can be concluded as follows:

1. In this paper, the researchers construct an end-to-end medical lesion segmentation
framework, which has both fully supervised segmentation and weakly supervised
segmentation branches. If pixel-level labels are used for the images, the fully super-
vised segmentation branch can be used for lesion segmentation. In the process of
experiments if we only have box-level labels similar to the labels for object detection,
the researchers can use the weakly supervised segmentation branch to achieve ac-
curate lesion segmentation with comparable results to those obtained by the fully
supervised segmentation methods.

2. To solve the problem of inaccurate segmentation of lesion boundaries in the lesion
segmentation task, the researchers introduce the CBAM [21] attention mechanism
into the Mask R-CNN to help the network pay attention to fine-gain feature learning
from the regions of interest. This improvement will be beneficial for the segmentation
results, especially for the segmented lesion boundaries.

This paper is organized as follows. In Section 2, we first state some classical methods
of fully and weakly supervised image segmentation (Sections 2.1 and 2.2), as well as
the basic principles of attention mechanisms (Section 2.3). Then, the proposed image
segmentation framework is described in Section 3, and we specifically give a statement for
weakly supervision segmentation in Section 3.2. The validation experiments and analysis
of the model are described in Section 4; here, we carried out several related methods and
our improved method on public skin image datasets and our own oral leukoplakia image
dataset. While the final conclusion is given in Section 5.

2. Materials and Methods
2.1. Fully Supervised Segmentation Methods

Fully supervised segmentation is divided into semantic segmentation and instance
segmentation. In terms of semantic segmentation, since FCN [22] first introduced full
convolutional neural networks into segmentation, a series of improved or redesigned seg-
mentation methods [23–29] following this paradigm have achieved good results. Currently,
models based on the encoder-decoder structure have gradually become the mainstream
segmentation framework such as SegNet [30,31], U-Net [5] and RefineNet [32]. The main
reason is that this model can extract long-distance semantic information. In addition,
ParseNet [33], DeepLabv2 [34], PSPNet [35] and other models based on spatial pyramid
pooling [36] to capture long-distance contextual semantic features are becoming popular
as well. In addition, among the methods mentioned above, Refine Net is a good network
model. This model is a multipath optimized network for high resolution semantic seg-
mentation. It makes perfect use of all available information in the downsampling process
to achieve high resolution prediction of long-distance residual connections. Moreover, a
network structure for generating high rate segmentation graph is provided by combining
high level semantic features with low level features. This feature makes it suitable for
multi-class semantic segmentation tasks. Compared with semantic segmentation, instance
segmentation also needs to distinguish different instances of the same class of targets
on the basis of semantic segmentation. Many methods [37–42] incorporating the region
proposal network [43] (RPN) have achieved satisfying results. These methods first obtain
the detection box of the target and then use another segmentation branches to segment
the instance.

Among the new methods, Mask-RCNN [18] adds a mask branch based on faster
R-CNN [44]. This branch changes ROI pooling to ROI alignment, so as to obtain pixel-level
mask prediction. It also has the functions of object detection and instance segmentation.
This method has become a general framework.

2.2. Weakly Supervised Segmentation Methods

The fully-supervised segmentation model can segment accurate results after training
with a large number of pixel-wise labels, but it is extremely expensive to obtain pixel-wise la-
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bels. To address this issue, different levels of weakly supervised labels are adopted to solve
the problem of manually labeling large amounts of data, such as image-level [39,45–50],
scribbles [51–53], and point labels [54]. Because these weakly supervised labels provide
limited prior information, it is difficult to produce satisfactory results for the complex med-
ical images. In this article, we focus on using bounding box-level labels to balance labeling
cost and segmentation accuracy. Previous box-level weakly supervised segmentation
methods usually need to manually generate weakly supervised pseudo labels, and then
use pseudo labels for training on fully supervised methods. Specifically, it can be divided
into three stages: the first stage uses GrabCut [55] or MCG [56] to generate pixel-level
pseudo labels, the second stage uses the generated pseudo labels as ground-truth to train
the segmentation model, and the third stage uses an iterative algorithm or conditional
random fields (CRFs) [2,57–60] to optimize and post-process the segmentation results.
Therefore, it is difficult to solve the gap between the ground-truth and the pseudo label,
and the final segmentation result will be significantly worse than the effect of the pseudo
label. Compared with previous work, our weakly supervised segmentation method is
different in the following respects. Firstly, our model does not require manual generation
of pseudo labels. Secondly, we first use box labels to train the target detection model,
and then use GrabCut [55] to separate the foreground and background regions of the de-
tected target region in the inference stage. Thirdly, in terms of final mask optimization, we
abandoned the use of CRFs [2,57–60], and instead adopted the faster ConvCRF [20,61–63]
for post-processing.

2.3. Attention Mechanism

Human vision can quickly scan the global image to obtain the target areas that need
to be focused on. The attention mechanism in deep learning is similar to the human
visual attention mechanism, and the goal is to select the critical information in the current
task. By adjusting the feature map, Wang proposed a residual attention network [64,65],
which not only performs better but also is robust to noisy input. Oktay proposed the
Attention-Unet [6,66] to suppress the information of unimportant regions, which is better
in segmentation. Hu [67–69] proposed the Squeeze-and-Excitation module based on the
relationship between channels. It only uses global average pooling to calculate channel
attention. However, as shown in spatial attention[70], it also plays an important role
in convolutional networks. It will tell the network “where” to focus. Since then, the
application of channel attention and spatial attention have become a consensus. DANet [71]
introduces the idea of self-attention, which can better capture features through a long-range
context. CCNet [72,73] skillfully uses the criss-cross idea, which greatly reduces the amount
of calculation. In this paper, we add CBAM [21] to Mask R-CNN [18] for the first time,
which also has channel attention and spatial attention. Channel attention tells us “what” is
meaningful and spatial attention tells us “where” important information is.

3. Methods

The Mask R-CNN is extended from Faster R-CNN [18,74] and is a two-stage frame-
work. The first stage is the Region Proposal Network [43] (RPN). In the second stage,
further fine-tuning frames for the ROI proposed by RPN. Finally, the parallel Mask head
branch will segment the target mask.

In the weakly supervised segmentation branch, we directly use the detection boxes
to segment the lesion area, to avoid the gap between the pseudo labels and ground-truth
labels. This improves the segmentation performance. The key points and differences of
the method are detailed in the following subsections. The architecture of the segmentation
model is shown in Figure 2.
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Figure 2. Medical lesion segmentation framework based on dual attention mechanism.

3.1. Segmentation Model Based on Dual Attention Guidance

FPN, as the backbone network of Mask R-CNN, performs well in conventional seg-
mentation tasks. However, when segmenting medical images with complex and fuzzy
boundaries, it often results in missing segmentation or wrong segmentation. The reason is
that the correct features of the lesion area are not extracted. Therefore, we add the dual
attention module in the backbone network and the improved attention-FPN structure is
shown in the attention FPN part of Figure 2. As shown in Figure 3, the specific joining
position of the dual attention module is in the Conv block and identity block of ResNet.
Conv block and identity block are the basic modules of ResNet network. Conv block has
convolution operation on branches, which can change the number of output channels of
the block; Identity block has no operation on the branch, and the number of input and
output channels of this block is the same. In our model, a dual attention mechanism is
added to these two different blocks.

Figure 3. Attention conv block and Attention identity block.

In CNN, if the sizes of the convolution kernels are smaller than the step size, the
performance of detection and segmentation will decline linearly. FPN is a clever solution
by up-sampling high-level features and top-down connecting of low-level features. In the
feature extraction and fusion stage, FPN performs well, especially for small target detection.
We then use ResNet [75] series in the backbone network to have more flexible choices.
Taking ResNets as the backbone network, the FPN network contains three paths, a bottom-
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up path, a top-down path, and a horizontal connection in the middle. In the forward
propagation process of CNN, the feature map after the calculation of the convolution
kernel is usually small. The size of the feature map will change after passing through
some layers, but not for the other layers. The layers that do not change the size of the
feature map are classified as a stage. Specifically, for ResNets, the feature output of the
last residual block of each stage is used to activate the output. For conv2, conv3, conv4,
and conv5 outputs, the outputs of these final residual blocks are represented as C2, C3,
C4, C5, and they have a step size of 4, 8, 16, 32 relatively to the original input image.
The top-down process is to perform two times the up-sampling of higher-level features
with more abstract and stronger semantic information, and to merge the output results of
the up-sampling with the feature map of the previous layer generated from the bottom
up through the horizontal connection. After fusion, the high-level features have been
strengthened, and the two horizontally connected features should have the same spatial
size. This is done to make use of the positioning details of the bottom layer. Each feature
map is composed of many channels. In Mask R-CNN, the outputs of ResNet C2, C3, C4, C5
are passed to the next layer of the network for fusion. All channels of these output feature
maps are given the same weight, that is, the same attention, but some of these channels are
meaningless or erroneous features. We use channel attention after C2, C3, C4, C5 to capture
the relationship among global channels. In other words, it encodes different weights for
each channel to enhance the weight of important channels and suppress the features of
unimportant channels.

In order to calculate the channel attention, the spatial dimensions of the input feature
are compressed, the global maximum pooling and global average pooling are performed
respectively, and then the multilayer perceptron model (MLP) output features are added
and operated through the shared MLP. As shown in Figure 4a, after sigmoid activation
operation, the final channel attention map is generated. Multiply the channel attention
map and the input feature to generate the input feature of the spatial attention module.

Figure 4. The overall structure of dual attention ((a). Channel Attention; (b). Spatial Attention).
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The calculation process is as follows:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ
(

W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))
)

(1)

In the above formula, Fc
avg and Fc

max represent the averaged pooling feature and the
maximum pooling feature, respectively, and σ represents the sigmoid activation function.
Mc ∈ Rc×1×1, W0 and W1 are the weights of MLP.

In the original FPN network, the bottom-up and top-down features are fused directly
into the horizontal connection, which lacks the spatial dependence among pixels. We use the
spatial relationship among pixels to generate a spatial attention map, making the network
pay attention to “where” the information is, which supplements channel attention.

In order to calculate the spatial attention, we use the feature map output by the
channel attention module as input to perform global maximum pooling and global average
pooling on the channel axis, respectively. We then conduct the concat operation and the
7× 7 convolution operation. Finally, the 1× H ×W spatial attention map is generated
through the sigmoid activation function, as shown in the Figure 4b. The final feature map
is obtained by multiplying the spatial attention graph and the input features of this module.
Spatial attention is calculated as follows:

Ms(F) = σ
(

f 7×7([ AvgPool(F); MaxPool(F)])
)

= σ
(

f 7×7
([

Fs
avg; Fs

max

]))
.

(2)

In the above formula, Fs
avg and Fs

max represent the averaged pooling feature and the
maximum pooling feature respectively, and the dimension is 1× H ×W. σ represents the
sigmoid activation function.

The outputs of ResNet C2, C3, C4, C5 calculate the one-dimensional channel attention
Mc ∈ Rc×1×1 on the channel axis through channel attention module and a two-dimensional
spatial attention map Ms ∈ R1×H×W is calculated on the spatial axis through the Spatial
Attention module. Then, the final feature map is calculated through the series connection
and the process is shown in Figure 3. The training of the fully supervised segmentation
network is carried out using a dataset with pixel-level labels. The training process is the
same as the original Mask R-CNN. The detection branch and the Mask Head branch will
be trained at the same time; the inference phase will generate the final segmentation result
in the Mask Head branch.

3.2. Weakly Supervised Segmentation

In this section, we will show the weakly supervised segmentation method. Given
a dataset D = {In, Bn}N

n with bounding box labels, N represents the number of samples
datasets, In represents the n th picture, and Bn represents the box-level label of In. In this
section, our goal is to build an end-to-end weakly supervised segmentation model using
only box-level dataset D. We know that Mask R-CNN [18] not only has the function of in-
stance segmentation but also has the ability of target detection. In Section 3.1, the improved
segmentation model also performs well on target detection, which is an important merit
for our weakly supervised segmentation method. Apart from the fully supervised segmen-
tation framework explained before, we abandon the fully supervised mask head branch
and add a weakly supervised segmentation branch (Figure 2). The overall segmentation
framework is shown in Figure 2. In the inference stage, the detection branch will give the
target’s tight bounding box, the area outside the bounding box is the background area, and
there are some background pixels mixed in the target box. We use GrabCut [55,76,77] to
separate the foreground and background in the boundary box. So far, we have obtained
preliminary segmentation results, but the foreground segmented by GrabCut [55,78] has
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holes in the interior, and inaccurate boundaries. In order to obtain better performance, we
use the faster ConvCRF [20,61–63] to generate the final segmentation mask.

When using GrabCut to separate the foreground and background according to the
detection bounding boxes of the lesion area, the efficiency will be slow with large input
image. In order to increase the speed, the image must be zoomed, but the small lesion
area will lose a lot of information after the image size reduction, thus, finding a balance
between efficiency and effect is necessary. In order to calculate the scale of the zooming,
we determine the relative scale of the detection box and the image.

The training process of the weakly supervised segmentation network is different from
the fully supervised process. The latter uses the box-level weakly supervised label dataset
and only trains and updates the parameters of the detection branch, which is essentially the
process of training a target detection network. In the inference stage, the weakly supervised
segmentation branch will generate weakly supervised segmentation results based on the
output bounding box of the target detection network.

4. Result
4.1. Experimental Details and Evaluation Strategies

Experimental details: The proposed method is evaluated on two popular datasets
including the OLK dataset and the ISIC [12] 2018. We use the keras framework to implement
our model. We use ResNets as our backbone network and fine tune the network from a
pre-trained model which is learned on the MS COCO dataset. The batch size, learning
rate, weight decay, momentum and Epoch are 2, 0.001, 10−4, 0.9 and 60, respectively. The
optimizer is Adam, and data enhancement, such as rotation, affine transformation, and
random clipping, are performed. The framework is trained on a machine with a NVIDIA
TITAN RTX 24 GB GPU.

Evaluation strategy: Like most medical image segmentation evaluation strategy, we
use the standard F1-score (F1), sensitivity (SEN), specificity (SPE), accuracy (ACC), and
Jaccard similarity to evaluate our proposed model.

4.2. Oral Leukoplakia Dataset

Oral leukoplakia is an injury to the oral mucosa and a precancerous lesion. We
obtained the oral leukoplakia medical image dataset from the hospital which contains
90 original images and corresponding masks labeled by professional doctors. We divided
the whole image dataset into a training set (55 images), a validation set (15 images), and a
test set (20 images). Since the number of oral leukoplakia datasets is small, there is no test
set. Compared with the ISIC 2018 dataset, the segmentation task of the oral leukoplakia
dataset is more challenging. Not only is the number sparse—only 3% of the ISIC 2018
dataset—but also the boundary of the lesion area is more blurred, the shape is irregular
and changeable. In the fully supervised segmentation experiment, the ground-truth labels
are the binary masks of the original dataset. In the weakly supervised segmentation
experiment, the ground-truth labels are the circumscribed rectangles of the binary masks.

Figure 5 shows the segmentation results of our proposed fully supervised and weakly
supervised methods on the oral leukoplakia dataset. The results obtained by our fully
supervised segmentation method basically remain consistent with the shapes of the ground
truths, although the boundaries do not have very good consistency. Att-Deeplab-V3+ can
achieve good performance in quantitative evaluation indicators, but it does not have good
shape preservation of lesions with the ground truths, and so are the results obtained by
Mask RCNN. In addition, our weakly supervised (WS) segmentation method can achieve
segmentation results with more overlaps with the lesions in the ground truths. Table 1
shows the quantitative evaluation indicators of all the methods. From the experimental
results, we can see that the proposed fully supervised (FS) and weakly supervised (WS)
segmentation methods achieve the best performance, and have many improvements over
the baseline method (Mask RCNN). In addition, the segmentation performance of the
weakly supervised method is very close to that of the fully supervised method. Therefore,
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the new weakly supervised segmentation model greatly reduces the cost of data annotation
for the localization and segmentation of disease regions.

Table 1. Performance comparison of the proposed segmentation network and other methods on the
Oral leukoplakia dataset.

Method F1 SEN SPE ACC Jaccard Similarity

FS

Att-Deeplab v3+ [79] 0.514 0.521 0.953 0.935 0.935
U2-Net [80] 0.759 0.734 0.986 0.967 0.967
Mask R-CNN [18] 0.741 0.704 0.978 0.959 0.959
Ours-full 0.815 0.758 0.990 0.967 0.967

WS Ours-weak 0.684 0.843 0.964 0.943 0.943

Figure 5. Segmentation results of fully supervised and weakly supervised segmentation method on
the Oral leukoplakia dataset.

4.3. ISIC

The ISIC 2018 [12] challenge dataset was published by the international skin imaging
collaboration (ISIC) in 2018. We select the dermatoscopy image lesion boundary segmenta-
tion dataset of challenge task 1, which contains 2594 original images and the corresponding
binary ground-truth masks. In order to compare with other methods, we set up the same set
with other methods, including 1815 training sets, 259 verification sets and 520 test sets. We
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set the image input size to 768 × 768. In the fully supervised segmentation experiment, the
ground-truth labels are the binary masks of the original dataset. In the weakly supervised
segmentation experiment, the ground-truth labels are the circumscribed rectangles of the
binary masks. In addition, ISIC 2017 is also a famous skin image dataset similar to ISIC
2018, we also conducted relevant experiments on ISIC 2017 to verify the performance of
different models.

Figure 6 shows the segmentation results of the proposed fully supervised and weakly
supervised methods on the ISIC 2018 [12] dataset. It is not difficult to find out that some
of the methods suffer a serious performance degradation on the oral leukoplakia dataset,
but achieved much better performance on the ISIC 2018 dataset. The main reason may be
that the lesion regions in the skin disease images are easier segmented than those in oral
leukoplakia images. Therefore, there is little difference in the result images by the image
segmentation methods. In addition, the weakly supervised segmentation methods also
achieved good performance, and their results are almost close to the results obtained by the
fully supervised segmentation methods. However, the results of our weakly supervised
segmentation method have better shape consistency with the ground truths than WSIS-
BBTP. Furthermore, the quantitative evaluation indicators of the experimental results are
shown in Table 2. It can be seen that the proposed fully supervised segmentation method
achieved great improvements over the original mask R-CNN, and also achieves compet-
itive results compared with other methods. At the same time, our weakly supervised
segmentation method has better performance than WSIS-BBTP, and also achieved compa-
rable performance regarding fully supervised segmentation methods, and even surpassed
some fully supervised segmentation methods, such as U-net [5], Att U-net [6], R2U-net [81],
Att R2U-Net [81], BCDU-Net [82]. Furthermore, the experimental results on ISIC 2017 are
shown in Table 3. It can be seen that there have been better performances for different
models compared with ISIC 2018, and our weakly supervised segmentation method also
achieved a competitive performance with other fully supervised segmentation models.

Figure 6. Segmentation results of fully supervised and weakly supervised segmentation methods on
the ISIC 2018 dataset.
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Table 2. Performance comparison of the proposed segmentation network and other methods on the ISIC 2018 dataset.

Method F1 SEN SPE ACC Jaccard Similarity

FS

U-net [5] 0.647 0.708 0.964 0.890 0.549
Att U-net [6] 0.665 0.717 0.967 0.897 0.566
R2U-net [81] 0.679 0.792 0.928 0.880 0.581
Att R2U-Net [81] 0.691 0.726 0.971 0.904 0.592
BCDU-Net [82] 0.851 0.785 0.982 0.937 0.937
MCGU-Net [83] 0.895 0.848 0.986 0.955 0.955
Deeplab v3+ [25] 0.882 0.856 0.977 0.951 0.951
Att-Deeplab v3+ [79] 0.712 0.875 0.988 0.964 0.964
Mask R-CNN [18] 0.872 0.846 0.974 0.947 0.947
Wu’s Method [84] - 0.942 0.941 0.947 -
Ours-full 0.904 0.865 0.987 0.961 0.961

WS WSIS-BBTP [85] 0.858 0.784 0.967 0.937 0.937
Ours-weak 0.874 0.861 0.986 0.950 0.950

Table 3. Performance comparison of the proposed segmentation network and other methods on ISIC 2017 dataset.

Method F1 SEN SPE ACC Jaccard Similarity

FS

U-net [5] 0.8682 0.9479 0.9263 0.9314 0.9314
Melanoma det [86] - - - 0.9340 -
Lesion Analysis [87] - 0.8250 0.9750 0.9340 -
R2U-net [81] 0.8920 0.9414 0.9425 0.9424 0.9421
BCDU-Net [82] 0.8810 0.8647 0.9751 0.9528 0.9528
MCGU-Net [83] 0.8950 0.8480 0.9860 0.9550 0.9550
HRFB [88] - 0.870 0.964 0.938 -
Deeplab v3+ [25] 0.9162 0.8733 0.9921 0.9691 0.9691
Att-Deeplab v3+ [79] 0.9190 0.8851 0.9901 0.9698 0.9698
Mask R-CNN [18] 0.9092 0.8644 0.9794 0.9472 0.9472
Wu’s Method [84] - 0.9061 0.9628 0.9570 -
Ours-full 0.9145 0.8865 0.9879 0.9635 0.9636

WS Ours-weak 0.8845 0.8473 0.9706 0.9384 0.9384

From these related works, performed for skin lesion segmentation, we can see that our
method achieves a competitive performance compared with the classic lesion segmenting
methods—Wu’s method [84], HRFB [88] and Att-Deeplab V3+ [79]. In addition, our method
is different to these related methods. Specifically: (1) The existing methods for skin lesion
segmentation are the methods based on the fully supervised learning, while our proposed
method can carry out lesion segmentation based on weekly supervised learning using box
level annotations; (2) ADAM [84] attention module, which includes Global Average Pooling
(GAP) and Pixel Level Correlation (PC), is designed in Wu’s method to capture global
contextual information. HRFB [88] provides high-resolution feature mapping to preserve
spatial details. Att-Deeplab V3+ [79] introduces two levels of attention mechanism based
on deeplab V3+ to capture the relationships between a group of features. We introduce the
CBAM module into the FPN (Feature Pyramid Networks) network to form an attention
FPN, so as to improve the network’s perception of multi-scale images.

In summary, Figures 5 and 6 show the results of the comparison of the segmentation
details between our method and other methods. It can be seen that after the attention
mechanism is involved, the segmentation of lesion area will have fewer false segmentation
and missing segmentation, and the segmentation of boundary details will be more accurate
than the original network does. These qualitative results are exactly in line with our
expectations of joining the dual attention mechanism, allowing the network to pay attention
to “what” and “where”. However, in the quantitative evaluation, our fully supervised
method achieve the second best results regarding Att-Deeplab v3+ in the ISIC dataset,
and surpassed other methods in all indicators on the oral leukoplakia dataset. However,
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in the oral leukoplakia dataset, Att-Deeplab v3+ achieved the worst results. Even our
weakly supervised segmentation results surpassed Att-Deeplab v3+. It can be seen that
the segmentation framework we proposed can effectively extract the features of the lesion
area; thus, it is robust and adaptive to different datasets. In the segmentation task of
oral leukoplakia, due to the small amount of data in the oral leukoplakia dataset, the
image size is extremely large, and the scale of the lesion area changes greatly, which will
lead to the traditional feature extraction network to lose a lot of details after extracting
higher-level information. If the lesion area is small, this area will be ignored, leading
to missing segmentation. In contrast, our framework backbone network is based on the
feature pyramid network of dual attention. The multi-scale network can fuse the high-level
features with richer semantic information and the low-level features with higher resolution,
and effectively reduce the phenomenon of missing segmentation. In the weakly supervised
segmentation method, the detection model with the attention mechanism also greatly
improved the ability of locating the lesion area, which provides an accurate bounding box
for the segmentation of GrabCut [55].

In addition, we also analyzed the computational complexity of some related segmen-
tation methods, and the results are shown in Table 4. From these results, we can see that
our model have similar computational complexity with most segmentation methods.

Table 4. The computational complexity of related segmentation methods.

Method Params(M) GFLOPs

U-Net [5] 31 233
R2U-Net [81] 75 78

Deeplab V3+ [25] 59 67
Attention U-Net [81] 51 55

Wu’ method [84] 38 33
Our model 44 47

5. Conclusions

In this paper, we propose an end-to-end medical lesion segmentation framework. In
this framework, if pixel-level labels are available, we can use the fully supervised branch
to obtain more precise segmentation results. If you only have box-level labels, you can still
use the weakly supervised branch to obtain better segmentation results. In addition, we
add a dual attention mechanism to improve the network segmentation performance. The
dual attention mechanism in Mask R-CNN can help the network focus on the features of
important regions, but suppress the unimportant features. This mechanism also provides a
more accurate bounding box for weakly supervised branches. In addition, the proposed
weakly supervised segmentation branch can greatly reduce the gap between labels and
pseudo labels, and achieve comparable performance with fully supervised segmentation.
Experimental results on the oral dataset and the ISIC 2018 dataset demonstrate the ef-
fectiveness of our proposed framework. In this paper, the fully and weakly supervision
segmentation branches are used for lesion segmentation separately, rather than integrat-
ing into one model. Therefore, we can design an end-to-end weak supervision image
segmentation model in the future.
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