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Abstract: The traveling salesman problem (TSP) consists of finding the shortest way between cities,
which passes through all cities and returns to the starting point, given the distance between cities.
The Vehicle Routing Problem (VRP) is the issue of defining the assumptions and limitations in
mapping routes for vehicles performing certain operational activities. It is a major problem in
logistics transportation. In specific areas of business, where transportation can be perceived as
added value to the product, it is estimated that its optimization can lower costs up to 25% in total.
The economic benefits for more open markets are a key point for VRP. This paper discusses the
metaheuristics usage for solving the vehicle routing problem with special attention toward Genetic
Algorithms (GAs). Metaheuristic algorithms are selected to solve the vehicle routing problem,
where GA is implemented as our primary metaheuristic algorithm. GA belongs to the evolutionary
algorithm (EA) family, which works on a “survival of the fittest” mechanism. This paper presents the
idea of implementing different genetic operators, modified for usage with the VRP, and performs
experiments to determine the best combination of genetic operators for solving the VRP and to find
optimal solutions for large-scale real-life examples of the VRP.

Keywords: vehicle routing problem; traveling salesman problem; metaheuristic; genetic algorithms;
optimization

1. Introduction

The traveling salesman problem (TSP) consists of the need to visit many places in the
shortest, safest, and least expensive way and then return to the starting point, so that the
route does not take too much time, wasting company resources. Usually this problem is
presented with the help of a graph or map whose points are expressed by cities and the
edges connecting them—roads.

This problem has a special feature—it is not possible to solve it any other way than
by comparing all possible routes. This feature makes this problem NP-hard. In practice
(that is, having a limited amount of available time), heuristic methods are used to solve
NP-difficult problem. These methods do not guarantee finding the optimal solution but
offer an acceptable approximate solution in a reasonable time. In addition to heuristic
methods, which are created to solve one specific problem, there are metaheuristic methods.
Their main advantage is that they can be used for more than one problem and do not
require prior knowledge of the space available solutions. Most often they combine the
features of random search algorithms (random search) and algorithms that use gradient
navigation in the space of solutions (for example, in the hill-climbing algorithm). They
demand only a measure by which it will be possible to assess how optimal the found
solution so. This measure usually has the form of a polynomial function value, whose
arguments belong to the searched solution space.
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The Vehicle Routing Problem (VRP) is a generic name given to a set of problems in
which a set of routes for a fleet of vehicles based on one or several depots are to be formed
to serve the customers dispersed geographically. The objective of the VRP is to form a
route with the lowest cost to serve all customers.

The vehicle routing problem is a major problem in distribution and logistics. The VRP
was first described in 1959, by Dantizg and Ramser, and was called The Truck Dispatch
Problem. It may be considered a more broad and generalized variation of the traveling
salesman Problem [1], which has a large number of possible solutions (for 15 locations
that have to be visited, there exist 15! solution, in other words, 653,837,184,000 valid and
proper routes that can be created); therefore, it is difficult to determine the best and optimal
solution. In the original traveling salesman problem, the optimization was performed to
minimize mileage, but in modern times, values such as time or petrol usage can be also
used as main optimization values, as they are usually somehow correlated with distance.
VRP is a combinatorial integer programming problem [2,3], which is NP-hard [2].

There are some domains of business, with transportation regarded as added value
to the product, where the optimization of vehicle routing can lower costs up to 25% in
total [4]. The economic benefits of more open markets are a key point for VRP. In addition,
current technology makes it possible to use VRP solutions in more a dynamic environment,
working from live data and performing calculations in realtime [5].

This paper discusses the usage of genetic algorithms for the vehicle routing problem.
The genetic algorithm, as an algorithm of natural selection, searches space for an approxi-
mate solution to problems with multiple solutions. One of the applications is the search for
the optimal path; here, it is a more complex problem, as the limitations of route selection
defined in the VRP problem are imposed. The paper analyzes the influence of genetic
operators on the efficiency of the algorithm, demonstrating their influence on the search
for a solution.

The idea is to find the solution to the NP-hard vehicle routing problem with the use
of metaheuristics. The chosen metaheuristic was a genetic algorithm, that belongs to the
group of evolutionary strategies as a part of Artificial Intelligence. The paper presents
the analysis of metaheuristics usage for solving the vehicle routing problem with special
attention toward genetic algorithms. The created prototype implements different genetic
operators, modified for usage with vehicle routing problem. Set experiment series were
performed to determine which combination of genetic operators is best for solving vehicle
routing problem, to determine how much participation certain genetic operators should
have in the process of producing results for the vehicle routing problem, and finally, which
one will enable finding the optimal solution for large-scale real-life instances of the vehicle
routing problem.

The main contributions of the paper are as follows:

• First, we analyze the use of the GA along with other metaheuristic algorithms to solve
the VRP. Here, a prototype modular and flexible general purpose GA is implemented.

• Second, we show the implementation of different GA operators that are modified to
solve the VRP. Designing and running experiments enable determination of the best
combination of genetic operators for solving the VPR.

• Third, we analyze the impact and participation of GA operators through simulations
of the selected problem.

• Finally, experiments are conducted to find an optimal solution for a large-scale real-life
instance of the VRP.

The paper is structured as follows: Section 2 describes the vehicle routing problem, its
definition, and methods for solving the VRP. Section 3 presents the most important ideas
of a genetic algorithm and its modifications for the vehicle routing problem. Section 4
discusses the implementation details of the genetic algorithm prototype to solve the ve-
hicle routing problem with a description of five experiments run for this solution, while
Section 5 presents the results of the genetic algorithm implementation for the vehicle rout-
ing problem obtained for two of the experiments: all combinations, moderate settings, fast
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experiment, crossover domination experiment, mutation domination experiment, and the
best combinations, long, and large instances experiment.

2. The Vehicle Routing Problem and Its Approach

The vehicle routing problem describes planning routes for logistics or courier com-
panies. The most classical description would incorporate one depot location, where all
vehicles within a logistic fleet start their journeys. Each of the carriers has the same capacity,
and there exists a number of packages that are bound to delivery addresses. The problem
that exists is how to assign packages and deliveries, so that all packages will be delivered,
and the total distance covered by whole fleet will be as small as possible [6]. Figure 1
presents an instance of a VRP on the left, with its solution on the right.

Figure 1. Example of a VRP with a valid solution [6].

2.1. Definition of a VRP

Let us assume that Q is a vector of deliveries Q = [q1, q2, q3 . . . qn]. Given the
capacity C

C ≥
n

∑
i=1

qi (1)

The problem is no different than the traveling salesman problem, as one entity in the
fleet could take all the deliveries. Therefore, C must be bound by condition

C <
n

∑
i=1

qi (2)

Now we describe the real VRP problem that has to be solved. The same mathematical
model can be used for different sizes of carriers and different goods to be delivered to
certain points. The only restriction is the one mentioned above, along with C = ∑m

i=1 ci
where ci is capacity of a single carrier in whole fleet. For simplicity, let us consider that all
carriers have the same and constant capacity of c [1].

The next step is based on the idea of determining into how many stages of aggregation
the problem should be divided. Each step is suboptimized, and the synthesis of these
suboptimizations is the final solution to the problem [1]. Let us define an ordered sequence
of deliveries q1, q2, q3 . . . qi, qi + 1, . . . qn such that qi ≤ qi + 1 for any i = 1, . . . n − 1. Then t
has to be determined in a way that two conditions must be met

C ≥
t

∑
i=1

qi and C <
t+1

∑
i=1

qi (3)

t can be perceived as the representation of how many deliveries one truck can perform
at maximum. The number of aggregations to be employed must take into the consideration
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the ordered subset of Q, which is q1, q2, q3 . . . qt in the final aggregation. Obviously, such a
case would take place if N, defined as the number of aggregations, is described as

N ≈ log2 t (4)

This can be derived from the fact that 2N is the largest number of points aggregated in
the Nth and final stage of aggregation.

Formally, the vehicle routing problem can be described as follows [1]:

1. Define n points that are delivery locations Pi (i = 1, 2, 3 . . . n), define P0 to represent
the depot.

2. Define a distance matrix that stores the distances between pairs of points [D] =
[dij] (i, j = 1, 2, 3 . . . n).

3. Define a delivery vector that describes how many goods have to be delivered to each
point (Q) = (qi) (i = 1, 2, 3 . . . n).

4. Define each single truck capacity C > maxqi.
5. If xij = xji = 1, define points Pi, Pj as paired.
6. If xij = xji = 0, define points Pi, Pj as not paired.
7. Derive the condition

n

∑
j=0

xij = 1 (i = 1, 2, 3 . . . n). (5)

Each point Pi is connected with P0 or at most one other point.
8. By all previous definitions xij = 0 for every i = 0, 1, 2 . . . n.
9. Finally, define the problem as finding such values of xij that have a total distance

D =
n

∑
i,j=0

dijxij (6)

where D is minimum, given all the conditions specified above.

2.2. Methods for Solving the VRP

Since the first formulation of the problem of optimal vehicle routing, there have
been many algorithms designed to solve it. The first type of algorithm (i.e., exact) was
focused on finding the best solution among all available, which becomes problematic with
a large number of knots in the illustrative graph problem. The second kind of algorithm
(metaheuristic and heuristic) tried to find a “good enough” solution in an acceptable time.
In addition, they adapted themselves well to the changing conditions of the problem, and
therefore, are widely used in dynamic route planning. Heuristic algorithms are designed
for a specific problem, which is why using them on a wider scale is limited. In addition,
they tend to “get stuck” in the local optimum, while exploring the crawl space. In contrast,
metaheuristic algorithms work at a higher level of abstraction and are not susceptible to
the aforementioned problem, due to the fact that they search the solution space to a much
greater extent.

Heuristic methods are focused primarily on finding a solution within the allowed time.
This may not be optimal, but it is good enough–further improvement solutions may be tem-
porarily inefficient. They are capable of finding a relatively good solution in a short period
of time, although a very limited solution space is being explored. The heuristic approach
known as constructive methods builds a solution that meets given constraints, while the
costs of the operation are limited and observed [7–9]. Such an approach does not explicitly
contain a phase where improvement is made. Algorithms such as: Matching Based [10,11],
Clark Furthermore, Wright [12] or Multi-Route Improvement Heuristics [13–15] are used in
that approach.

Finally, decomposition of a problem into two phases, known as a 2-phase algorithm
has been performed–with division into two separate sub-problems: clustering vertices and
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route construction. Two main groups of such algorithms exist, depending on which subtask
is to be performed first [16,17]: Cluster-First, Route-Second Algorithms and Route-First,
Cluster-Second Algorithms.

As an NP-hard problem, a classical deterministic approach can lead to complex and
time-consuming computations, which poses many algorithmic challenges. It is natural to
search for fast and scalable solutions to solve such a problem with the use of optimizing
metaheuristics, as a function can be naturally formed for the whole problem. There exist
several metaheuristics than can be used to solve the VRP, some of which are:

• Simulated Annealing—a method which mimics the metallurgical process of cooling
a batch of smithed ingot slowly. A value called temperature is defined that is being
evolved during a single run, moving to a minimum. The temperature value is used
to escape local minimal values; when the temperature rises, the algorithm selects a
worse solution; it then moves away from a local minimum valley to search in the
maximum possible search area. A modification known as Deterministic Annealing
has produced good results in the VRP problem, where a decision to choose a worse
solution is made, based on deterministic threshold calculations, rather than random
number generator results [18,19]. In [20], they propose a violation of constraints for a
penalty in an objective function.

• Ant algorithms—that is, based on observation of how ant colonies establish routes
around their nest. Artificial ant objects are introduced into the VRP, and each moving
ant leaves behind a pheromone trail that encourages other ants to move using the same
route. There should at least as many ants, as there are customers, for the algorithm to
work efficiently [11,21]. In [11], a nearest-neighbour heuristic with probabilistic rules
was proposed. Two colonies that cooperate in updating the best solution are proposed
to minimize the number of vehicles and total distance.

• Tabu Search—can be described as a metaheuristic that is instituted on another heuris-
tic. The Tabu search explores space by moving from one solution to its neighbours.
There may exist a situation where all neighbours are worse than the currently chosen
solution, and to prevent the algorithm from coming back to a stronger position that
was recently considered as best, the idea of forbidden, or tabu, moves is introduced.
Such actions have the capacity of introducing a larger error, but also can gain a better
solution, as declaring tabu moves encourages the algorithm to visit more solutions,
thus expanding the search area [11]. In [22], Li and Lim present a new approach to
insertion and an extended sweep heuristic to simulated annealing with elements of a
tabu search.

• Genetic Algorithms—group of well known metaheuristics that mimic biological Dar-
winian evolution. Solutions are randomly chosen from a group of all possible solutions,
and then by modifications, known as genetic operators, they are transformed to cre-
ate the next generation of solutions. Evaluation is performed on every iteration of
the algorithm (meaning, every time a generation is created) and stops after the ini-
tially set termination event (number of generations, the solution being good enough,
etc.) [2,8,23,24]. In [25], they proposed an evolutionary search based on mutation—
each offspring is optimized to improve the total distance by using a local search and
route elimination.

• Particle Swarm Optimization, PSO—was designed by Kennedy and Eberhart [26]. This
method imitates swarm behavior such as fish schooling and bird flocking. Bird can
find food and share this information with others. Therefore, birds flock into a promis-
ing position or region for food and this information is shared, and other birds will
likely move into this location. The PSO imitates bird behavior by using a population
called swarm. Each member in the group is a particle. Each particle finds a solution to
the problem. Thus, position sharing of experience or information takes place and the
particles update their positions and search for the solution themselves [27]. Similar
constraints were found in [28–30] even taking in consideration the weight and size of
the cargo, as we see in [31].
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2.3. Genetic Algorithm Comparison with Other Algorithms

Particle Swarm is similar to a genetic algorithm in that it creates a population or in
this case a swarm of possible solutions at each iteration. Each solution or particle in the
swarm has a direction and a velocity. At each iteration the movement of the particle is
determined by a mixture of the directions in which it is currently moving. The direction of
the best point is found in the past, which is the direction the whole swarm has discovered.
The idea is that more and more particles will eventually move towards areas where better
solutions are found and that the swarm will eventually converge on the optimal value [32].
Analyzing these algorithms, the following commonalities can be distinguished:

• PSO and GA are both population-based stochastic optimization.
• Both algorithms start with a randomly generated population.
• Both algorithms have fitness values to evaluate the population.
• PSO and GA update the population and search for the optimum with random techniques.
• Both algorithms do not guarantee success.

As for differences:

• PSO does not use genetic operators, such as crossover and mutation. Particles update
themselves with internal velocity.

• Particles also have memory, which is important to the algorithm.

– Not “what” that best solution was, but “where” that best solution was.

• Particles do not die.
• The information sharing mechanism in PSO is significantly different.

– The information moves from best to others, where the GA population moves
together.

The vehicle routing problem can also be solved using Tabu Search (TS). Tabu search is
based on introducing flexible memory structures in conjunction with strategic restrictions
and aspiration levels as a means for exploring search spaces. It is a metaheuristic that guides
a local heuristic search procedure to explore the solution space beyond local optimum
by use of a Tabu list. It is used to solve combinatorial (finite solution set) optimization
problems by a dynamic neighborhood search method. It uses a flexible memory to restrict
the next solution choice to some subset of neighborhood of the current solution [33]. The
main advantage of TS over GA is the use of its memorized approach, which prevents the
algorithm from searching for the solution in previously visited areas. Therefore, TS has
an ability to easily escape from a local optimum and find a global optimum in a shorter
time [34].

3. Genetic Algorithm and Its Modifications for the Vehicle Routing Problem

Work on evolutionary systems, of which genetic algorithms are part, began in the
1950s. In the 1960s, Rechenberg introduced the idea of evolution strategies, and Fogels,
Walsh and Owens developed the first evolution programming working example. Based
on these inventions, Holland with a group of other researchers from the University of
Michigan developed in the 1960s and 1970s the idea of genetic algorithms (GA) [35]. In
contrast to research on evolutionary programming, Holland’s idea was to explore the
general idea of adaptation based on natural observations and find a way to incorporate
that knowledge in machine processing. It was proposed as a randomized global search
technique based on natural evolution [36].

Originally, GA was a method that takes a population of problem solutions, repre-
sented as a binary string, and transforms the whole population to another one by a set
of modifications inspired by Darwinian natural selection. These operators were selection,
reproduction, and mutation. Selection ensured that the strongest individuals, understood
as better solutions, have a larger probability to produce offspring. Offspring on the other
hand were generated by reproduction, that took the form of crossing parts of one solutions
with parts of another one. Finally, randomized mutation was introduced, usually in the
form of swapping two bits or negating just one of them in an individual in the whole
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population. Holland’s model not only described the idea but was theoretically proven and
is still used today as a starting point for all modern genetic algorithms [37].

The classical approach to genetic algorithms is not valid for sequential problems such
as the traveling salesman problem or the vehicle routing problem. The main problem is that
a single solution cannot be represented as a set of bits. The proper encoding of a solution is
a string of integer numbers, representing vertices of a problem-space graph [4].

3.1. Representation of VRP Solution for Genetic Algorithm

Number 0 represents a starting point in a graph, or in other words, a depot in a real
life. Clients or delivery points are assigned an integer number from 1 to n, where n is the
number of deliveries to be performed. Cars in the fleet are assigned to the numbers from
n + 1 to m − 1. Obviously the quantity of the vehicles in a fleet is equal to m − n, but one
truck is always skipped. Given all of the above, the proper solution can be constructed in
modular manner. A string of integers is built with as many blocks as there are vehicles
performing the task. The basic structure of a single module consists of an integer assigned
to the vehicle and two zeroes, as each routes starts and ends in the depot. Each customer’s
number that is being serviced by that vehicle is placed in between the zeroes, in order of
the delivery. All modules are put together to create a final solution representation. Zeroes
can be removed to increase readability. An exception exists, as the first module in the whole
representation does not need to have a vehicle representing an integer in the first position.
After that operation, if two integers representing vehicles are adjacent to each other, or a
string ends with such an integer, that means that not all vehicles take part in the solution,
and can be safely removed too, if all vehicles have the same capacity. Figure 2 shows a
proper way to encode the solution to the VRP with 10 deliveries and 4 trucks.

Figure 2. Example of a chromosome encoding one solution of VRP.

3.2. Selection

Selection is a step where the population part that will be reproduced and alive in next
step is chosen. Generally, the only formal requirement that has to be met is the fact that
the fittest individuals must have a higher probability of being chosen. Some examples of
possible selection methods are [37]:

• Roulette wheel selection (RWS)—chances of an individual being chosen are propor-
tional to its fitness value; thus, selection may be imagined as a spinning roulette,
where each individual takes an amount of space on the roulette wheel according to
its fitness.

• Elitism selection (ES)—a certain percentage of the population, ordered by fitness, is
always transferred to the next population. In that scenario, the algorithm makes sure
that best so far known solutions would not be lost in the process of selection.

• Rank selection (RS)—similar to RWS, but each individual solution’s space on the
roulette wheel is not proportional to its fitness, but to its rank in the list of all individ-
uals, ordered by fitness.

• Stochastic universal sampling selection (SUSS)—instead of spinning the wheel of the
roulette for a certain amount of times, spin it once. If selecting n individuals, there
must exist n spaces on the wheel, and the chosen individual is copied n times to the
next generation.

• Tournament selection (TS)—as many times as required, choose two individuals ran-
domly, and let the more fit one be chosen.
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3.3. Crossover Operators

With the change in chromosome representation, all genetic operators must be adjusted
accordingly. Firstly, simple crossover operators that incorporate swapping parts of two
parent chromosomes to produce offspring no longer suffice for the needs of the new
representation [4]. Figure 3 shows the problem.

Figure 3. Simple crossover operation for VRP integer solution.

Swapping parts of a chromosome can introduce unwanted pathology in the form of
doubling delivery points or trucks. Such a solution can be automatically marked as invalid.
There exist many different solutions to that problem, but this paper only focus on the simple
solution derived from crossover operators for TSP, as VRP is nothing else than generalized
version of a problem described in the literature as the traveling salesman problem.

3.3.1. Order Crossover

One of the most simple, yet effective ideas for TSP crossover [38,39] is order crossover,
and its variation for the VRP [40,41] is presented in Figure 4. To perform order crossover,
certain actions have to be taken:

1. Label parents randomly as male and female.
2. Take both parents and randomly choose two crossover points, the same for both

of them.
3. Copy the integers in between the crossover points, from male parent to child, keeping

them at the same positions.
4. Take the female parent, and starting from the gene after the second crossover point,

iterate through all genes. If the end is met, start from the beginning.
5. Take the child and starting from the gene after the second crossover point, copy the

female parent gene that is considered in the current iteration, only if it is not present
yet in the child’s chromosome. If the end is met, start from the beginning.

6. The operation is finished if all empty spaces in the child chromosome are filled.
7. Optionally, swap the roles of female and male parents, and repeat the whole process

to produce a second offspring.

Such a simple technique enables creation of valid chromosomes for the next popula-
tion, where the order of the parent’s vertices is preserved [42].

3.3.2. Partially Mapped Crossover

Start the same as order crossover, with choosing two crossing points and copying part
of the first parent to the new child.

Then, to preserve as much order as possible from the second parent, integers that are
not included in the part copied from first parent are inherited from second one, together
with their positions.
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Figure 4. Order crossover operation for the VRP integer solution.

3.3.3. Edge Recombination Crossover

This is based on the idea of randomly inheriting as many parent’s edges as possible,
promoting edges that are common for both parents, by introducing the idea of neighbor-
hood. For each integer in the representation, a neighborhood vector can be created, by
choosing vertices that are adjacent to this integer in both parents’ representations.

3.3.4. Cycle Crossover

Cycle crossover performs two operations for copying a single element. First, the ele-
ment itself is chosen from one parent, then the element’s position in the child is determined
by the element’s position in the other parent. One parent is always used to determine the
choice of elements, and the other one is always responsible for position choices. Let us
assume parents p1 and p2. The process starts with copying the first element from p1 to
the first position of the child, then, a loop starts. In the loop, from p2, the first integer is
nominated, but it is copied to the child in the fourth position, as this is the position it takes
in p1. Then, in p2, integer 8 is nominated, as it lies in position four, but it is copied to the
child in position eight, as in p1,

3.4. Mutation Operator Changes in Regard to Integer Solution Representation

Mutation operators do not need to be completely reinvented. Swap mutation is still
valid, but instead of swapping two bits, two integer values are swapped in the entire
solution. It does not matter what these values represented, it is safe to mutate by swapping
location and vehicle integers [4]. The negation mutator can be replaced by a very similar
remove-and-reinsert operation, as shown in Figure 5.

Figure 5. Remove-and-reinsert mutation.

The idea behind this kind of mutation is simple. Take a vertex at a certain posi-
tion, reduce its representation size, and randomly place it in another spot, restoring the
original size.

It is worth noting at this point that it is believed that simple mutation operators should
act as a secondary entropy source in the algorithm and not provide as many perturbations
to produce competitive results as compared to other techniques. Based on that fact, hybrid
genetic algorithms have been designed that incorporate local search methods that act as
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mutation operators. Hybrid genetic algorithms are beyond the scope of this paper, but
some of them worth mentioning introduce a local descent [43] or Tabu search [44].

3.5. Related Works on Genetic Algorithm and the Vehicle Routing Problem

One of the first works presenting a genetic algorithm to solve the VRP with a time
window was [45]. The author described a genetic algorithm heuristic, named GIDEON, for
solving the VRPTW (vehicle routing problem with time windows). GIDEON consisted of
two methods: global customer clustering and local post-optimization. The global customer
clustering method used an adaptive search strategy based upon population genetics to
assign vehicles to customers. The second method was used to improve the best solution
obtained from the clustering method.

The first effective implementation of the genetic algorithm for VRPTW was proposed
by [46]. The authors described the GENEtic ROUting System (GENEROUS), which was
based on a natural evolution paradigm. Using this paradigm, a population of solutions
evolved from one generation to the next to form new offspring solutions, with the use of
“mating” parent solutions, that exhibited characteristics inherited from the parents. The
specialized methodology was devised for merging two vehicle routing solutions into a
single solution that was likely to be feasible with respect to the time window constraints.

Many other papers presented different modifications of genetic algorithms, especially
with different versions of the select, cross, and mutation operators. The authors of [47]
considered a combined objective Capacitated Vehicle Routing Problem (CVRP) as a com-
binatorial optimization problem in which a fleet of vehicles with limits on capacity were
available to service a set of customers from a central depot with their individual demands
known in advance. To solve this problem a Genetic Algorithm technique was used by two
different crossovers to enhance the quality of generated solutions. The proposed model
was validated using the information obtained from a distribution company.

Recently, a hybrid solution using metaheuristics and heuristic or adopting the GA for
new variants of the VRP was proposed.

The authors of [48] considered the optimization of the Capacitated Vehicle Routing
Problem with Alternative Delivery, Pickup, and Time windows. This problem was pre-
sented based on postal and courier delivery issues as a combination of many variants
of the classical VRP, such as CVRP, VRPTW, and VRPPD (Vehicle Routing Problem with
Pickup and Delivery). However, the presented problem introduced alternative delivery
points and parcel lockers incorporated into the distribution network and the ability to
take into account logical constraints. It was formulated in the form of BIP (Binary Integer
Programming) with integration of CP (Constraint Programming), GA (Genetic Algorithm),
and MP (Mathematical Programming) to implement and optimize the model.

Euchi and Sadok [49] proposed a hybrid approach to improve the combination of
sweep and genetic algorithms to solve the VRPD (VRD with drones) problem. A MILP
(mixed integer linear programing) model was presented to describe the problem, and it
was formulated via CPLEX software with small examples. The experiments were carried
out on examples taken from the literature in different settings.

Ongcunaruk et al. [50] proposed improving the transportation planning decisions for
a production company by a collaborative decision routing model for a logistics provider
and food manufacturer. The authors formulated the mixed integer programming model to
minimize a cost function, which consists of fixed vehicle costs, variable vehicle costs, and
fuel costs. To approximate the optimal solution, the genetic algorithm (GA) was developed.
Moreover, a partial factorial design of GA parameters was implemented to determine the
suitable parameter values to guide the genetic algorithm.

The authors of [51] proposed using the Big Data frameworks to solve an optimization
of the Dynamic Vehicle Routing Problem (DVRP). They developed a parallel Spark Genetic
Algorithm to take the advantage of Spark’s in-memory computing ability and GA’s itera-
tions operations. Based on the parallel S-GA, a decision support system was developed for
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the DVRP in order to generate the best routes. The realized experiments showed that the
proposed architecture was improved due to its capacity.

He et al. [52] considered the Yard crane (YC) scheduling problem with the uncertainty
of task groups’ arriving times and handling volumes. They optimized the efficiency of
YC operations. Furthermore, a mathematical model was proposed to optimize the total
delay to the estimated ending time of all task groups. Moreover, the GA-based framework
combined with a three-stage algorithm was proposed to solve the problem, together with
numerical experiments.

4. Implementation of Genetic Algorithm to Solve the Vehicle Routing Problem

The key point during implementation of the genetic algorithm to solve the vehicle
routing problem was to provide as much modularity as possible. Therefore, the core of the
genetic algorithm is a completely separate module that is written in such a way that it can
be used not only to solve VRP problems but any problem feasible for GA solutions [53–55].

Another modular component is chromosome representation. Objects representing
chromosomes are of a class that implements all mutation operators for them. Such an ap-
proach provides encapsulation of all logic related to the genome and operations performed
on it. The last required module is a goal function calculating mechanism. The algorithm
must be seeded with the following parameters:

• initial population size,
• amount of population that will be transferred to the next population,
• amount of population transferred, which is allowed to reproduce,
• amount of population transferred, which is allowed to mutate,
• number of generations after which the algorithm will terminate itself, and
• the class name representing the chromosome with its genetic operators.

Population parts that are transferred, mutated, and crossed-over must all together
equal the initial population size, in each generation. All additional parameters, such as
vehicle count, their capacity, locations with coordinates, and the quantity of goods that
needs to be delivered are provided as additional parameters and usually are passed to
the algorithm in the third module, together with the fitness function, as almost only that
function makes use of them.

4.1. Vehicle Routing Problem Test Instances

In order to obtain comparable results, all experiments were performed on well-known
and described test examples. The choice of examples was made to ensure variety and
to cover the usually chosen test examples for all the experiments. Six main groups of
examples were chosen:

1. Augerat Set A—described by the Augerat team in 1995 [56], set A consists of 27 exam-
ples that were generated randomly. Points are randomly spread across a 100 × 100
square, with demand in each point usually around 15. Demand is chosen in a uniform
manner, and 10% of all coordinates have their demand tripled. Capacity for a single
vehicle is always 100.

2. Augerat Set B—described by the Augerat team in 1995 [56], set B consists of 23 exam-
ples, created in a way, such that coordinates are randomly spread but joined together
in n clusters, and n is always larger than number of available vehicles. Demand
is randomly distributed from 1 to 30, with 10% of all places to visit having their
demand tripled.

3. Augerat Set P—described by the Augerat team in 1995 [56] is a set of modified exam-
ples previously known in the literature.

4. Christofides and Eilon Set E—described in the literature in 1969 [57], which contains
13 examples, with coordinates always spread uniformly in the search space.

5. Fisher Set F—a set of three, real life problems, used by Fisher in their work [9]. Two are
days of grocery deliveries from the Peterboro (Ontario terminal) of National Grocers
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Limited, and the third one is generated based on data obtained from Exxon associated
with the delivery of tires, batteries, and accessories to gasoline service stations.

6. TSPLIB converted Ulysses instances—two classic examples, converted to a VRP problem
from TSPLIB, which is a library of traveling salesman problem examples. Both chosen
ones were based on the mythical journey that Ulysses took, represented on a map.

All examples are sets of coordinates, meaning that they take place in euclidean two-
dimensional space, with only vertices given. No cost of traveling through graph edges
is provided, and only distance counts. The examples were used in standard format,
containing example settings, and coordinate data.

4.2. Design of Experiments for the Genetic Algorithm in the Vehicle Routing Problem

One of the aims was to determined how the genetic operator percentage usage on
population affected the results, how the combinations of selections with crossover operators
behaved, and finally, how well a properly scaled genetic algorithm instance can perform in
large-scale real life instances; hence, a few different experiments had to be performed.

4.2.1. All Combinations, Moderate Settings, Fast Experiment (AcMsF)

The initial experiment aim was to observe how combinations of selection and crossover
operator behaved in situations, when a balanced small population was reproduced for fairly
short number of iterations. This will enable observing the behavior of all combinations,
nominating promising ones for later experiments, and seeing how close each of them
converged to the optimal result.

To provide a wide variety of instances, all the Ulysses and Fisher examples were used.
From sets A, B, P, and E, the smallest, largest, and moderate in size examples were chosen.
This provided 17 examples, on each of which 20 combinations of selection and crossover
operators were performed, resulting in total 340 GA runs. The population was always
100, of which 40% was kept alive, 10% was mutated, and 50% was crossed-over. All runs
were performed for 1000 generations. It was suspected that for smaller examples, some
reasonable results would be presented, but the short duration of time given would not
produce any good results for larger examples.

4.2.2. All Combinations, Moderate Settings, Long Experiment (AcMsL)

In this experiment, large populations of individuals were enabled to reproduce for
an extended number of generations. The aim of this experiment was to examine how
combinations of operators perform close to the maximum efficiency. The best results from
this experiment would surely be described as the strongest possible combinations, and
therefore, would be used in later experiments.

Similar to the previous experiment, 17 examples were chosen, 340 runs were per-
formed. The population structure stayed the same, but the algorithm would be allowed to
terminate after ten times more iterations.

4.2.3. Crossover Domination Experiment (CD)

This experiment was designed to determine if crossover alone was sufficient and
would produce reasonable results. This time, from each set A, B, P, and E, two moderate in
size examples were used. That way, repetitiveness would be forced.

The three top performing combinations from previous experiments were used. The
algorithm ran for 1000, 5000, and 10,000 generations, population sizes were 100, 500, and
1000, with only 10% of the population copied, and 90% crossed-over. It is believed that
the crossover operator should be strong enough alone to provide good results, but lack of
mutation may lead to slower convergence to optimal results in the first thousand iterations.
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4.2.4. Mutation Domination Experiment (MD)

This experiment was designed to determine if mutation alone was sufficient and
would produce reasonable results. As above, from each set A, B, P, and E, two moderate in
size examples were used. That way, repetitiveness would be forced.

Only the remove-and-reinsert mutation was used. The algorithm ran for 1000, 5000,
and 10,000 generations, population sizes were 100, 500, and 1000, with only 10% of the
population copied, 5% crossed-over, and 85% mutated. Fast increase in fitness in early
iterations should be observed, due to the enormous entropy of the whole system, but
mutation alone should not be sufficient to converge to satisfying results, no matter how
much time was given.

4.2.5. Best Combinations, Long, Large Examples Experiment (BcLBi)

This final experiment was to test whether the proposed implementation of the genetic
algorithm was capable of reaching the top results, very close to optimal ones, in case of the
largest data sets. The most important instance here, was the Fisher 135 nodes example, as
this was a certified real life instance, that mostly reassembled what difficulties would face
a VRP solving system in everyday use. The largest examples from all sets were also used.

The optimal template of the population structure was used, with around 30% to 40%
of individuals being copied over. The rest was determined, based on the two previous
experiments. Three top performing crossover-selection combinations were used. The
algorithm was terminated after 20,000–30,000, with a population count of 10,000. At least
one result should be close to the optimal value of the Fisher instance. We also observed how
the results compared to the ones from the first two experiments, to state how convergence
changed based on the size of the population and number of iterations.

Table 1 sums up all the experiments that were performed.

Table 1. Experiments for the genetic algorithm in the vehicle routing problem.

Experiment Large
Examples

Medium
Examples

Small
Examples

Total
Instances Combinations Populations Generations

AcMsF 5 5 7 17 20 100 1000

AcMsL 5 5 7 17 20 500 10,000

CD 0 8 0 8 3 100, 500, 1000 1000, 5000,
10,000

MD 0 8 0 8 1 100, 500, 1000 1000, 5000,
10,000

BcLBi 5 0 0 5 3 10,000 25,000

5. Results of the Genetic Algorithm Implementation for the Vehicle Routing Problem

This section presents the results of selected cases of the genetic algorithm implementa-
tion for the vehicle routing problem:

• The all combinations, moderate settings, fast experiment;
• The crossover domination experiment;
• The mutation domination experiment;
• And the best combinations, long, large examples experiment.

The optimal value is known for all instances. All settings, optimal value, distance
of the best found solution from that optimum and the representation of the best fitted
individual are presented. Distance was calculated such that solutions worse than the
best-known have a negative number. If in any case the algorithm found a better fitted
individual, its distance would was a positive floating point number.

How far a solution was from an optimal one could not be analyzed, as traveled
distances differ for each instance and are dependent on large amount of constraints written
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into them, introduced during the generation process. With that in mind, all the results
analyzed were percentage values of how far from the best-known result the algorithm was.
The equation used to compute these values is as follows:

v =
f ∗ 100%

o
− 100% (7)

where v is value calculated in percent, f is the best value found in a single run by the GA,
and o is the optimal solution fitness value for the example that was used in the GA run.

5.1. All Combinations, Moderate Settings, Fast Experiment

In this experiment, to cut computation time as much as possible and observe how
well all combinations of the used selection and cross-over operators behaved with hard
constraints, populations of one hundred individuals were allowed to reproduce for one
thousand generations. In each of them, half were copied over, four-tenths were allowed
to reproduce, and one tenth were mutated. Such settings provided stressful conditions
for reproduction and were used to observe, how fast each combination, and the genetic
algorithm in general, started to approach optimal results.

A wide selection of examples brought as much variety as possible. The examples
used were:

• Small examples:

– Augerat, Set A, 32 deliveries, 5 vehicles,
– Augerat, Set B, 32 deliveries, 5 vehicles,
– Augerat, Set P, 35 deliveries, 5 vehicles,
– Christophides and Eilon, Set E, 22 deliveries, 4 vehicles,
– Fisher, Set F, 45 deliveries, 4 vehicles,
– Ulysses, Set U, 16 deliveries, 3 vehicles,
– Ulysses, Set U, 22 deliveries, 4 vehicles.

• Medium examples:

– Augerat, Set A, 55 deliveries, 9 vehicles,
– Augerat, Set B, 57 deliveries, 9 vehicles,
– Augerat, Set P, 57 deliveries, 5 vehicles,
– Christophides and Eilon, Set E, 51 deliveries, 5 vehicles,
– Fisher, Set F, 72 deliveries, 4 vehicles.

• Large examples:

– Augerat, Set A, 80 deliveries, 10 vehicles,
– Augerat, Set B, 78 deliveries, 10 vehicles,
– Augerat, Set P, 78 deliveries, 10 vehicles,
– Christophides and Eilon, Set E, 101 deliveries, 14 vehicles,
– Fisher, Set F, 135 deliveries, 7 vehicles.

Given the above choices, seventeen instances were chosen, with all twenty possible
combinations, resulting in three hundred and forty GA runs.

5.1.1. Averaged Results for All Combinations

Table 2 shows the averaged data gathered for all combinations, from all instances.
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Table 2. All combinations, moderate settings, fast experiment–averaged results from all instances
from first experiment.

Elitism Rank Roulette Tournament

alternating_edges_crossover 78.98% 67.81% 78.18% 69.53%

cycle_crossover 52.20% 49.87% 47.36% 48.57%

edge_recombination_crossover 79.53% 80.18% 82.40% 77.13%

order_crossover 49.31% 50.12% 50.78% 45.76%

partially_mapped_crossover 46.76% 42.28% 48.73% 43.63%

What is very interesting is the fact that all cross-over methods working on vertices,
rather than whole edges, generated better results. To be precise, in no case, alternating
edges crossover and edge recombination crossover, produced averaged results lower than 69%,
while the other three crossovers never exceeded the averaged result of 53%. To investigate
this matter more closely, it seems reasonable to analyze the data with regard to the size of
the used examples. Let us divide the examples used as described in the list representing
examples for the experiment, grouping by small, medium, and large labels. Table 3 shows
the averaged data divided into these groups, for each crossover technique.

Table 3. All combinations, moderate settings, fast experiment—averaged results for small, medium,
large, and all instances, grouped by crossover methods.

Small Medium Large All

alternating_edges_crossover 14.69% 74.92% 142.79% 73.62%

cycle_crossover 20.41% 49.72% 84.13% 49.50%

edge_recombination_crossover 12.88% 82.42% 157.00% 79.81%

order_crossover 20.26% 50.68% 81.43% 48.99%

partially_mapped_crossover 19.04% 49.95% 71.40% 45.35%

The column All in Table 3 reinforces the data from Table 2. Crossovers that incor-
porated working on edges rather than vertices, performed worse compared to others.
This can be explained by their results for the large examples, which were far above 100%.
Surprisingly, when analyzing the data, which was generated by running GA on smaller
examples, it can be observed that edge crossovers performed better than ones working
on single vertices. The reason behind such behavior is possibly the limited amount of
generations, during which evolution was performed, so for smaller instances, less time
was required to start observing stable optimization in the global minimum well of search
space. That would mean that edge-based operators need more time, and they are far more
superior to vertex-based ones in long less constrained calculations. In the first generations,
it is important to produce enough entropy, so that individuals can spread roughly through-
out the whole search space. Vertex-based crossovers, possibly generate more entropy, as
they do not pay attention to edge inheritance, resulting in more random offspring during
reproduction. Backed up with mutation, they start finding optimal solutions faster, but
that amount of entropy does not allow them to produce satisfying results in the long run.
On the other hand, edge-based methods spread throughout the search space in a slower
manner, but when approaching extremum, it is easier for them to actually reach it, as
less randomization provides more stability and control for the optimization process. It
can be also observed, that partially mapped crossover performed very well, and should be
used in cases when it is unknown or hard to estimate how much time is required to reach
satisfying results.
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In Table 4, averaged results for small, medium, large, and all instances are grouped by
selection methods. Here, differences were smaller, in general, selection methods differed at
most by no more than 7%, and in case of the averaged data from all instances the difference
was no larger than 5%. It may be observed that despite small differences, the tournament
selection was best. If a decision was to be made, the tournament selection should be chosen,
but rank selection also behaved quite well.

Table 4. All combinations, moderate settings, fast experiment—averaged results for small, medium,
large, and all instances, grouped by selection methods.

Small Medium Large All

elitism 16.85% 63.87% 111.74% 61.36%

rank 18.97% 58.05% 104.95% 58.05%

roulette 16.87% 66.18% 109.40% 61.49%

tournament 17.14% 58.05% 103.31% 56.92%

5.1.2. Graphical Representation of Results and Best Found Solutions

Firstly, the global average calculated from all the results in this experiment was equal
to 59.55% and could not be by any means considered as satisfying and optimal. Solutions
that had combined routes path larger than the currently known best ones, were still usually,
when plotted, random and unsatisfactory. To illustrate this, Figure 6 represents the plotted
solution that had almost the same distance from the optimal solution as on average. The
used combination was a partially mapped crossover with elitism, performed on a middle
sized, Christophides&Ellion example from set E.

The x and y axes enabled specifying the x/y coordinates of individual points of
the generated routes. The lines presented in different colors represent different routes
generated by different algorithms during the realization of experiments.

Figure 6. All combinations, moderate settings, fast experiment—example with fitness close to average.
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It can be seen, that as mentioned, the solution looks slightly random, with routes
intersecting one another many times. From a more optimistic perspective, round-shaped
routes started to appear, meaning that the algorithm started the optimization process and
the solution was not completely bad. In the first generations, as starting population have
only random solutions, not all vehicles are usually used and paths are jagged, with a
possibility of a route going from one end to the other. Such bad solutions can be observed
in larger examples in this experiment, because of the fact that, for many of them, one
thousand generations was not enough to even start finding more properly organized
routes. An example of such a situation was one of the worst obtained results, also from
the Christophides and Ellion example from set E. This time, edge recombination was used
with rank selection, and the solution was as far from the optimal one as 172% (Figure 7).

This jagged pattern without even proper routes starting to form can be seen in almost
all results from large examples. On the other hand, the experiment was designed in a
way to still provide the ability to achieve good results. In such a short time it is hard, but
not impossible to achieve good results, varying no more than 5% from the best known
one. The high factor describing the amount of population being copied over can ensure
that such solution would be carried over through the generations to the end of GA run.
It basically counts on luck, and can be suspected in smaller instances, as the probability
of randomly constructing a good initial genome is higher if there are fewer variables. It
actually happened quite often, given the constraints, to obtain solutions below 10% of the
distance from optimal ones, but there is one lucky exception found in the results from
the mentioned set E. Figure 8 shows the solution from the smallest Christophides&Ellion
example, only 3.2% worse than the best one.

Figure 7. All combinations, moderate settings, fast experiment - example with fitness distance from
the best-known one of more than 172.
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Figure 8. All combinations, moderate settings, fast experiment—example with fitness distance from
the best-known one around 3%.

5.2. Crossover Domination Experiment

The crossover domination experiment was designed to check how well the dominant
crossover genetic operator could behave in comparison to experiments with more restrained
and balanced settings. Although the part of the population that was crossed over was
actually 85%, still 10% of the best individuals were copied over throughout all generations.
Additionally, mutation was present, although only 5% of the population was allowed
to mutate.

Originally, the experiment was designed in a way that no mutation would be present
at all, but the results from such altered GA runs were catastrophically bad, as even during
longer runs, the algorithm was usually not capable of reaching any reasonable results at
all. Lack of mutation in any form made it unable to descend into proper fitness function
minimal values, resulting in the crossover operator looking for results near the starting
random positions. The results were distant in percentages of more than a couple thousand
from the optimal solution. That indicated that the spread throughout the search space was
so minimal that path sequences were not fulfilling the capacity constraint, as the fitness
function could produce such wrong results only when the penalty function started to take
a dominant place in the final fitness of individuals. Figure 9 presents such an individual,
seemingly a completely random solution, despite ten thousand iterations performed on a
population from which this best one was chosen.
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Figure 9. Crossover domination experiment—example from wrongly designed experiment, medium
Augerat set P example, fitness distance from best-known one around a few thousand.

Selected instances for the experiment were all medium sized, chosen from sets that
were created by random set distribution. From each of these sets two such examples were
chosen. The complete list of instances used in this experiment was as follows:

• Augerat, Set A, 45 deliveries, 7 vehicles,
• Augerat, Set A, 54 deliveries, 7 vehicles,
• Augerat, Set B, 45 deliveries, 6 vehicles,
• Augerat, Set B, 56 deliveries, 7 vehicles,
• Augerat, Set P, 45 deliveries, 6 vehicles,
• Augerat, Set P, 56 deliveries, 7 vehicles,
• Christophides and Eilon, Set E, 33 deliveries, 4 vehicles,
• Christophides and Eilon, Set E, 51 deliveries, 5 vehicles.

Based on previous experiments, the three best performing on the long run combina-
tions of selection and crossover operators were nominated and used:

• alternating edges crossover with rank selection,
• alternating edges crossover with tournament selection,
• edge recombination crossover with tournament selection,

Each combination was run on each instance for three times to emulate different
lengths of GA runs, for 1000 generations with 100 population size, 5000 generations with
500 population size, and 10,000 generations with 1000 population size. These resulted in
72 GA runs.

5.2.1. Averaged Results for Crossover Domination

Table 5 contains the data from the crossover domination experiment, averaged and
grouped by population sizes and iterations performed.
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Table 5. Crossover domination experiment—averaged results from all examples, grouped by popula-
tion sizes and iterations count.

Size Generations Average Distance

100 1000 56.05%

500 5000 17.48%

1000 10000 12.57%

For shorter runs, the average result was at the same level as the results from the first
experiment. Increasing population size and allowing the algorithm to work for longer
periods of time caused the results to become dramatically better. That means that dominant
crossover, with just a small amount of entropy generated by mutation operator is capable of
finding very competitive results. At first, the improvement was linear. However, it must be
pointed out that when the algorithm descended below the threshold of 20% distance from
best known solutions, the improvement with each increase in computational resources
began to be less and less noticeable. That relationship can be observed in Figure 10, where
the average result is plotted with regard to the resources assigned to the algorithm.

Figure 10. Crossover domination experiment—average result of iterations and population count.

Reinforcing the data gathered in previous experiments, alternating edges crossover
with rank selection seemed to be the strongest combination, producing the best individuals,
as represented in Table 6.

The global average for the whole experiment was equal to 28.7%, but when runs with
100 population size and 1000 iterations were removed from the calculations, the global
difference from the world optimal results dropped to 15% and was lower than the medium
examples average from experiment two, which equaled 18.6%. Allowing individuals to
reproduce, and ensuring that their offspring take a majority of space in the next generation
can help improve the final results.
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Table 6. Crossover domination experiment—averaged results from all instances, grouped by
crossover and selection.

Crossover Selection Average Distance

alternating_edges rank 26.06%

alternating_edges tournament 27.28%

edge_recombination tournament 32.76%

5.2.2. Graphical Representation of Results and Best Found Solutions

As mentioned, excluding the shortest runs from the calculation produced an average
fitness value of the best individuals around 15% worse than the globally best solution.
Such results can be regarded as good. Figure 11 presents the plotted solution for the
Christophides and Eilon, Set E examples, distant by 15.43% from the optimum. Such a
solution can be used to represent the average individual for the whole experiment.

Figure 11. Crossover domination experiment—example for medium Christophides and Eilon set E ,
fitness distance from best-known one around 15.5%.

The same situation as in experiment two occurred. It can be expected from such
promising results to find at least a few very good solutions. There were 17 solutions with
distance from the best ones no larger than 10%. There were again two exceptional ones,
both from Christophides and Eilon, Set E, smaller examples that had a fitness closer than
1% to the best one. They are presented in Figures 12 and 13.
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Figure 12. Crossover domination experiment—example for medium Christophides and Eilon set E,
fitness distance from the best-known one around 0.97%.

Figure 13. Crossover domination experiment—example for medium Christophides and Eilon set E,
fitness distance from the best-known one around 0.32%.

5.3. Mutation Domination Experiment

As discussed in the previous experiment, lack of mutation makes the genetic algorithm
unable to descend into proper solutions, but mutation alone, as a dominant operator, could
not produce competitive results, compared to the situation when most of the population
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was copied and crossed-over. To determine if that was actually true, this experiment
was designed. Analyzing the results from both the crossover domination and mutation
domination experiment will enable to see the difference between usage of these two
operators in terms of solving the VRP.

The design of the experiment was from one point of view similar to the previous
one, as exactly the same examples, population sizes, and generation counts were used.
The only changed part was the symmetrical swap in the percentage of the population
being reproduced and mutated. Now, 85% of the population was mutated each iteration
and only 5% allowed to produce offspring. As crossover played a minimal role, only one
combination, alternating edges crossover with rank selection was used, reducing the global
run count to 24.

5.3.1. Averaged Results for Mutation Domination

Table 7 presents the averaged data gathered from all examples, grouped by generation
count and population size. When mutation had precedence above crossover, the relation
between the averaged results settings of the genetic algorithm became perfectly linear. It
was suspected that the line in a plot in Figure 14 would eventually flatten out, but in the
measured area the relation was slowly but steadily decreasing.

Table 7. Mutation domination experiment—averaged results from all instances, grouped by popula-
tion sizes and iterations count.

Size Generations Average Distance

100 1000 34.51%

500 5000 24.01%

1000 10,000 13.09%

Figure 14. Mutation domination experiment—dominant mutation, average result of iterations and
population count.

Table 8 shows the average results from the examples, grouped by example sets. What
is interesting, from set E, smaller examples were chosen than from the other ones, but the
results were worse. The difference lies in the placement of the depot and locations to visit,
as set E instances tend to group them. Hence, the mutation operator performed better and
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could help to find good results faster, if the VRP instance destinations were spread more
uniformly throughout the space rather than clustered in subgroups.

The general average fitness from the whole mutation domination experiments equalled
23.9%, and it was roughly on the same level as the one from the second experiment. It
has to be noted that the average result from the second experiment was highly affected
by the results from the small examples, and for medium-only examples was higher for
about 10%, equaling 34.8%. However, the best crossover operator, the edge recombination
crossover, had an average in small examples from experiment two as low as 18%. Therefore,
mutation performed better than the majority of crossovers, but when the settings were
chosen reasonably, more stable solutions were still better than the mutation domination.

Table 8. Mutation domination experiment—averaged results from all examples, grouped by
instance sets.

Instance Average Distance

set A 18.34%

set B 22.13%

set P 24.17%

set E 25.73%

5.3.2. Graphical Representation of Results and Best Found Solutions

With a larger amount of population carried to the next generations with the use of
mutation operator, GA was capable of producing only two results that were worse than 7%
from the world’s best individuals. As suspected, both were obtained by running instances
for ten thousand generations. Figure 15 shows the plotted paths for an individual from
the Augerat set A example with fitness values worse than the globally known optimum
by 6.75%.

Figure 15. Mutation domination experiment—dominant mutation, Augerat set A solution, 6.75%
worse than the optimal one.
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The result seemed to be well formed. However, two major flaws can be spotted. The
right blue path was convoluted, and there was a weak, small, circular purple route, which
could be used to visit some of the points from the right side of the area, therefore, making
it easier to visit all of them by three not two paths. In Figure 16, the solution from a smaller
Christophides and Eilon, Set E example can be observed. The fitness was worse from the
optimal one by 6.38%. Clearly, three out of four paths could be optimized further, as they
intersected one another.

Figure 16. Mutation domination experiment—dominant mutation, Christophides and Eilon set E,
6.38% worse than the optimal one.

5.4. Comparison of Mutation and Crossover Domination

After two experiments, testing the domination of two different genetic operators, it
can be seen that the dominance of either one of them produced reasonable but not the
best possible solutions. While major mutated populations descended in a more linear
manner, it can be suspected that the function describing the best fitted average individual
would flatten out, and both experiments would end with little improvement, when granted
significantly greater computational resources. The linear part of the descent was just
starting with better solutions at the beginning and in the case of the mutation domination
had not yet reached the plateau. Figure 17 shows the two plots from both experiments side
by side.
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Figure 17. Dominant mutation and crossover descent plotted together.

It has to be pointed out that on longer runs, crossover domination provided better
solutions than GA runs performed with relatively large numbers of examples from experi-
ment 2. Such a situation hints that a slight boost to the number of crossover offspring in the
population structure could improve the results. This knowledge was used in the last, fifth,
experiment. The mutated population count was not increased, as data observed in the third
experiment led to the conclusion that even minimal participation of mutation products in
upcoming generations was enough to spread solutions through the search space, to enable
crossover methods to start descending into wells of the search space, where the minimal
values of the fitness function were. The main idea, when setting up operator proportions
for the VRP solving genetic algorithm, should revolve around providing enough time
for the stability from the combined crossover and mutation to reach satisfying solutions.
After that, repetition should be forced to increase the probability of finding exceptional
individuals, as still a factor of luck counts towards achieving genomes with path meshes
very close to or even better than the worldwide best-known current solutions.

5.5. Best Combinations, Long, Large Examples Experiment

The last experiment, using all the knowledge from previous ones was used to check
how good a result could be obtained on the largest examples from all the sets, except
Ulysses. The examples chosen for this experiment were:

• Augerat, Set A, 80 deliveries, 10 vehicles,
• Augerat, Set B, 78 deliveries, 10 vehicles,
• Augerat, Set P, 78 deliveries, 10 vehicles,
• Christophides and Eilon, Set E, 101 deliveries, 14 vehicles,
• Fisher, Set F, 135 deliveries, 7 vehicles.

The Fisher instance is the most interesting one, not only because of its size but also the
fact that it is based on a real life problem, that the VRP algorithms have to solve everyday
if used commercially. The other difficulty in the Fisher example is that it is very much
constrained. Firstly, many destinations are clustered around the depot, and a minority is
far from it. Secondly, the example makes use of relatively small fleet, so there is very little
room for error, as the capacities of each vehicle in the fleet are used close to the maximum.

All instances ran three times, with three selection and crossover combinations:

• alternating edges crossover with rank selection,
• alternating edges crossover with tournament selection,
• edge recombination crossover with tournament selection.
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The alternating edges crossover/rank selection combination was supposed to produce
the best results, as its prominence was shown in all previous experiments. The algorithm
was run with a population size of one thousand, and it was allowed to reproduce for twenty
five thousand iterations. The alive structure of the generation would be altered, with 40%
of individuals being copied over, 10% mutated, and 50% coming to the population as
offspring from crossover reproduction. The genetic algorithm was run fifteen times.

5.5.1. Averaged Results for Mutation Domination

The general average from all fifteen runs was equal to 14.76%, which was a very
good improvement compared to almost 37% average results for the larger examples from
experiment two. The full results from the fifth experiment are gathered together and shown
in Table 9.

Unfortunately, the results for the Fisher example were no less than 20% from the best-
known solutions for this set of destinations. This means that real life instances are difficult
to explore and need even more computational power to establish good solutions. The
times required for the genetic algorithm implementation to compute such large examples
were around a few hours, which is too long to consider everyday use of it, as a working
method of establishing routes. On smaller, randomly distributed test cases, the algorithm
was capable of finding good results. In general, the alternating edges crossover with rank
selection produced the best solutions in a stable manner, as seen in Table 10. The edge
recombination technique seemed to be a more varying method, as it produced both the
best and worst individuals. Using edge recombination is therefore considered as a kind of
gamble, as luck is a variable in obtaining good results. The method generally descend in a
similar manner but behaves in more unpredictable way than alternating edges.

Table 9. Best combinations, long, large examples experiment–results for all combinations, from
all instances.

Instance Type Instance Size Crossover Selection Result

set A n80k10 alternating_edges rank 12.16%

set A n80k10 alternating_edge tournament 12.52%

set A n80k10 edge_recombination tournament 18.76%

set B n78k10 alternating_edges rank 7.13%

set B n78k10 alternating_edges tournament 7.52%

set B n78k10 edge_recombination tournament 6.64%

set P n78k10 alternating_edges rank 7.33%

set P n78k10 alternating_edges tournament 13.48%

set P n78k10 edge_recombination tournament 31.17%

set E n101k14 alternating_edges rank 10.49%

set E n101k14 alternating_edges tournament 11.30%

set E n101k14 edge_recombination tournament 9.36%

set F n135k7 alternating_edges rank 25.51%

set F n135k7 alternating_edges tournament 26.18%

set F n135k7 edge_recombination tournament 21.96%
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Table 10. Best combinations, long, large instances experiment—averaged data from all instances,
grouped by selection and crossover combinations.

Crossover Selection Average Distance

alternating_edges rank 12.52%

alternating_edges tournament 14.20%

edge_recombination tournament 17.58%

5.5.2. Graphical Representation of Results and Best Found Solutions

As many as one third of the results in this experiment had the best fitted individuals
with fitness values closer to best known solution than 10%. The best results were obtained
for the Augerat set B example. In Figure 18, the plot for the solution obtained with
alternating edges crossover and rank selection combination can be observed. The paths
are not intersecting themselves, but intersections between different routes still occur. The
algorithm has roughly properly clustered the space and divided it for different vehicles.
In Figure 19, an even better solution can be seen plotted. The difference in results is less
than 1%, but here, a clear division for western and eastern routes can be seen. There are
less intersections, and the algorithm tries to optimize by including smaller paths in larger
ones. It is surprising that the best results were obtained for this instance, as intuitively, the
set E largest example was much simpler, with a roughly uniform spread of destination
throughout the whole task area. In the example from set B, the largest optimization problem
came from the fact of three groups, tightly packed together in small areas. As seen, proper
paths for them were found, but the capacity constraints made it hard to further improve
the results, leaving the path to far destinations not entirely well optimized.

Figure 18. Best combinations, long, large instances experiment—example for largest Augerat set B,
with fitness distance from the best-known one around 7.13%.
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Figure 19. Best combinations, long, large examples experiment–example for largest Augerat set B,
with fitness distance from the best-known one around 6.64%.

Christophides and Eilon’s largest example is a graceful one to optimize, as uniform
spread should result in all paths having different directions. Its plot should look like a flower
pattern. The best result in this experiment was 9% worse than optimal, shown in Figure 20
and can be considered good but not very good. Most of the difficulties were present in the
south-west and north-east part of the space, where routes intersected badly. The rightmost
yellow route was also badly optimized, as the furthest points visited by the vehicle traveling
that way, should be split, and some of them should belong to green route. It can be said that
a flower-like pattern started to appear, but there certainly was room for improvement.

Figure 20. Best combinations, long, large examples experiment–example for largest Christophides
and Eilon set E, with fitness distance from the best known one around 9.36%.
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Finally, in the last Figure 21, the best fitted individual for the Fisher largest example is
graphically presented. The fitness is distant from the best one by around 22%. The same
problems as in the Augerat set B example can be seen. The algorithm coped well with
the tricky high density area around the depot. However, paths leading to the far left-side
destinations were optimized badly. Due to the large distances that have to be covered to
reach them, worse optimization on these areas led to not very competitive results.

Figure 21. Best combinations, long, large examples experiment–example for largest Fisher set F, with
fitness distance from best known one around 21.96%.

6. Discussion and Conclusions

The genetic algorithm seemed to be a good choice for solving the vehicle routing
problem. The results revealed that GA converged to the global optimum quickly, which
reduced the cost of computation. It was noted that selection operators, searching operators,
along with chromosome representation had an impact in finding the global solution without
getting trapped at a local optimum. The results revealed that a large domination of either
of the genetic operators was not positive for the final results. In general, for the VRP and
possibly other problems that revolve around finding paths in large graphs, operators that
pay attention to whole edges rather than single vertexes are far more superior. It was
noted that GA is capable of finding good results for large examples of the VRP. However,
instances based on real life problems tended to be less trivial than randomly generated ones,
and for them, the GA needs to be altered or modified to provide competitive solutions.

The results of the AcMsF (“All combinations, moderate settings, fast experiment”)
experiment are summarized as follows:

• Vertex-based crossovers provide higher entropy, therefore perform better in short runs.
• Edge-based crossovers perform better, when given enough time. relative to instance size.
• Selection method does not seem to impact final results very much.
• If any selection method were to be chosen, tournament would be the one, as it provides

slightly better results than rest.
• The average solution is not optimal but not completely random.
• Better results were obtained in case of smaller examples.
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• One thousand iterations is definitely not enough for the GA to even start producing
non-random solutions for larger examples.

• Despite harsh conditions for the algorithm, it was still able to find a very optimal
solution for one of the examples.

The results of the CD (“Crossover domination”) experiment are summarized as follows:

1. Making crossover a dominating genetic operator provides reasonable results.
2. Complete lack of mutation results in very bad individuals.
3. In general, when the algorithm is run with enough computational resources, more domi-

nant crossover provides better individuals, than more dominant best individuals’ copying.
4. With tight constraints, crossover domination behaves as badly as more stable approaches.
5. When crossover is dominant, at some point the algorithm starts to rapidly descend and

find good representatives, but after that rapid inflation process, further improvement
is slow.

The results of the MD (“Mutation domination”) experiment are summarized as follows:

1. Making mutation a dominating genetic operator provides reasonable results.
2. Mutation alone cannot provide results as well as a properly adjusted more stable run

with edge crossover.
3. Mutation behaves well, when the example has a uniform distribution of destinations.
4. On a smaller scale, assigning more computational resources results in a linear decrease

in the average results.
5. It is recommended to use slightly higher amounts of mutated offspring in the first

iteration of the algorithm, as mutation is better than any type of crossover in spreading
solutions across the search area.

The results of the BcLBi (“Best combinations, long, large examples experiment”)
experiment are summarized as follows:

1. Reasonably chosen genetic algorithm parameters can provide enough stability to start
reaching satisfying results even for large examples.

2. Real life instances pose greater difficulties compared to randomly distributed ones.
3. Given enough time and computational power, genetic algorithm implementation can

produce competitive results even in the largest known test instances.
4. Optimizations of paths in areas with higher density is easier and appears earlier in

the whole optimization process than optimization of routes leading to further points
of interest.

5. Alternating edges crossover combined with rank selection is the most stable choice
for genetic operators, capable of finding results comparable with the worldwide
best-known ones.

The experiment results concluded that large domination of neither of the genetic
operators was positive for the final results. In general, for the vehicle routing problem
and possibly other problems that revolve around finding paths in large graphs, operators
that pay attention to whole edges rather than single vertexes were far more superior. The
algorithm was capable of finding good results for large examples of the vehicle routing
problem. However, instances based on real life problems tended to be less trivial than
randomly generated ones and for them, the algorithm needs to be altered or modified to
provide competitive solutions.

Without any modifications to the implementation, experiments could be run multiple
times again, possibly for extended amounts of iterations. Promising results from executed
runs are an indicator that more close to optimal or even better solutions can be possibly
found. However, this task revolves around luck, as the function of best fitted individual
through generations flattens dramatically.

The fitness function and instances representation could be altered to enable capability
of testing examples that are not only based on euclidean two-dimensional space but also,
for example, on explicit graph representation with weights. With costs of journey from one
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point to another, additional crossover operators from group of heuristic crossovers could
be implemented and used. The fitness function and genetic operators could be modified to
enable testing of other vehicle routing problem variants such as ones with time windows
or split delivery.

One interesting area of further study is combining genetic algorithms with other tech-
niques that partially or totally solve the vehicle routing problem. Such hybrid algorithms
can be based on many different ideas:

• Simple cooperation with clustering methods for initial routes and then running in-
dependent genetic algorithms for each cluster in order to find proper routes on
smaller scale,

• Hybrid usage of deterministic or heuristic methods incorporated to aid the genetic
algorithm in finding better individuals,

• Exchanging parts of the genetic algorithm, especially mutation with, for example,
local search methods, as mentioned in Section 2,

• Combining the work of the genetic algorithm with other metaheuristics, such as Tabu
Search or Deterministic Annealing.
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