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Abstract: Since 3D NAND was introduced to the industry with 24 layers, the areal density has been
successfully increased more than ten times, and has exceeded 10 Gb/mm2 with 176 layers. The
physical scaling of XYZ dimensions including layer stacking and footprint scaling enabled the density
scaling. Logical scaling has been successfully realized, too. TLC (triple-level cell, 3 bits per cell)
is now the mainstream in 3D NAND, while QLC (quad-level cell, 4 bits per cell) is increasing the
presence. Several attempts and partial demonstrations were made for PLC (penta-level cell, 5 bits
per cell). CMOS under array (CuA) enabled the die size reduction and performance improvements.
Program and erase schemes to address the technology challenges such as short-term data retention
of the charge-trap cell and the large block size are being investigated.
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1. Introduction

After 2D NAND reached the scaling limit around 15 nm in process node, 3D NAND
was proposed as a solution for the continuous NAND scaling [1]. The 3D NAND was
introduced into production with 24 layers and MLC technology [2]. The scaling trend of the
areal density of 2D NAND and 3D NAND is summarized based on the NAND publications
in IEEE ISSCC conferences, (Figure 1). As seen in Figure 1, 3D NAND successfully replaced
2D NAND and has achieved more than 10 Gb/mm2 areal density [2–31].

At the early stage of the 3D NAND development, various types of 3D NAND technolo-
gies were proposed. A comprehensive survey can be found in [32]. After extensive research
on various technology options, vertical NAND string architecture with gate-all-around
(GAA) cells was introduced to the industry for floating gate (FG) cells and charge-trap
cells [2,33].

In this paper, the status of 3D NAND scaling is reviewed and discussed by using the
ISSCC conference publications as a reference. This review mainly focuses on the vertical 3D
NAND technology adopted in the industry. The physical and logical scaling of 3D NAND
will be discussed. The recent progress and topics since the prior review of 3D NAND [34]
will be reviewed, including progress on the QLC technology and beyond.
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2. 3D NAND Architecture and Operations

Figure 2 shows the 3D NAND cell array architectures. The strings are placed in the
vertical direction. Word lines (WLs) have a plate-like shape and are stacked vertically for
3D cell stacking. There are multiple select gates at the drain side (SGDs) in a block. The
channel of the NAND string has a cylinder shape.
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Figure 2. 3D NAND array architecture [35]. (a) Schematics of 3 × 3 NAND strings and (b) bird’s eye view of 3 × 5 NAND
strings. Only 4 word lines (WLs) in a string are shown for visibility. The actual 3D NAND has more than 128 WLs in
a string.

A block is a unit of the erase operation. As shown in Figure 3, there are two types of erase
methods in 3D NAND—the body erase (Figure 3a) and the GIDL erase (Figure 3b) [1,36]. In
the body erase, NAND strings are connected to the Si-substrate, and holes are supplied to the
NAND string from the Si-substrate, enabling the positive body potential required for erase.
In the GIDL erase, the NAND strings are de-decoupled from the Si-substrate and formed on
the N+ source layer instead. During erase, the electron-hole pairs are generated at source and
drain N+ junctions by GIDL mechanism to supply holes to the NAND strings. The GIDL erase
is used for the CMOS under Array (CuA) technology, which will be discussed later [33].
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During program and read, one of the SGDs is selected in a block so that one NAND
string can be selected per bit line (Figure 4).
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3. Floating Gate NAND and Replacement Gate NAND
3.1. Architectures of FG NAND and RG NAND

The floating gate (FG) cell technology was used in 2D NAND. In 3D NAND, in
addition to the FG technology (FG NAND), replacement gate cell technology (RG NAND)
is also utilized [33,36]. Figure 5 compares the cross-sections of the NAND strings for FG
NAND and RG NAND.

In FG NAND, the FG storages are separated between cells because the FG is made of
the conductive polysilicon material. The advanced cell integration scheme is adopted to
realize the FG separation [33]. In this scheme, the cells are formed outside the pillar holes.
Therefore, the diameter of the pillar etching needs to be aligned with the final channel
diameter of the NAND string.
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In RG NAND, charge-trap cells with a silicon-nitride (SiN) storage layer are em-
ployed [2]. Because the SiN storage is a dielectric material which can trap charges, the
storage layer can be shared and continuous among the cells. The SiN storage film and other
films composing the charge-trap cells are formed after the dry etching of the pillar holes.
Therefore, the diameter of the pillar holes for etching can be larger than that of the final
channel diameter by the thicknesses of the cell dielectrics. This is advantageous for the
pillar etching, especially for the very tall pillar when many cells are stacked vertically. The
word line is formed by tungsten metal by replacing the SiN films stacked originally [36].
Therefore, the technology is called replacement gate NAND. RG NAND is the combination
of the replacement gate technology and the charge-trap cell technology.

3.2. Band-Engineered Tunneling Dielectrics of the Charge-Trap Cell

In the FG cell, electrons are injected to or emitted from the FG by Fowler–Nordheim
(FN) Tunneling (Figure 6a). In the charge-trap cells, the programming is similar to FG cells,
where the electrons are injected to the SiN storage by modified FN tunneling. For erase,
holes are injected to the SiN storage by direct tunneling (DT) (DT erase) (Figure 6b). In the
charge-trap cell, in order to enhance erase efficiently, the cell stack is engineered as shown
in Figure 7a. First, the band engineered (BE) tunnel directrices has been introduced [37].
As BE-tunnel dielectrics, an ONO stacked film or a film with an engineered nitrogen profile
can be used instead of the SiO2 tunnel layer. With BE-tunnel dielectrics, holes can tunnel
only the thin oxide layer during the erase, while the full ONO thickness can be utilized
during the retention. Second, the High-k/Metal gate is used to reduce the unwanted
electron injection from the control gate [38]. By combining the BE-tunnel layer and the
High-k/Metal gate, good erase characteristics can be achieved with the charge-trap cell
(Figure 7b).
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3.3. Data Retention Mechanisms of the Charge-Trap Cell

The short-term data retention has been a challenge for the charge-trap cell [38]. Figure 8
shows various mechanisms potentially causing the short-term data retention [39]. The
first mechanism is charge migration and relaxation. After the programming, the trapped
charge in SiN storage could move both laterally (lateral migration, LM) or vertically (vertical
relaxation, VR). The second mechanism is detrapping from the SiN storage layer by trap-
assisted tunneling (TAT). On top of these, there is trapping at the BE-tunnel oxide as it
includes SiN or a nitrogen-rich layer. Due to the very short distance between the trapping
sites at BE and the poly Si channel, the detrapping can occur in a very short time.
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The impacts on the Vth distribution and programming algorithms solutions for the
short-term data retention will be discussed in a later section.
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4. 3D NAND Array Physical Scaling by Process Integration
4.1. Conventional Scaling

The physical scaling of the 3D NAND array can be described as XYZ scaling, as
shown in Figure 9. XY scaling means reducing the cell footprint. Z scaling means stacking
more layers, which is often done together with layer pitch shrink (Z shrink) in order to
minimize the increase in the physical height. Z scaling (stacking) has been the main scaling
enabler so far. In the ISSCC publications, the steady progress of the layer stacking has
been shown, except for in 2020, when the focus was on circuit design technologies for
single-level-cells (SLC) and quad-level-cells (QLC) rather than the physical array scaling.
In the latest achievement, 176-layer stacked 3D NAND has been demonstrated in both
publication and mass production (Figure 10).
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96-layer NAND baseline.

The effort for XYZ scaling has been focused on efficiency improvement of the pillar
(memory hole) layout [41]. Due to the various layout space requirements such as source
line contacts, SGD-to-SGD separations, block-to-block separations, the pillar layout is
far from the ideal hexagonal close-packed (HCP) layout. There have been continuous
improvements in the array layout so that the pillar arrangement has become closer to HCP,
enabling XY scaling (Figure 11).
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4.2. Disruptive Scaling

As a disruptive XY scaling, the split cells have been investigated (Figure 12). In the
conventional 3D NAND, the cell has a cylinder shape. In the split cell, the cell is split into
two parts so that the cell density increases. There are two different types of the split cell
proposals. One is a planar-like split cell [42] and the other is a half-cylindrical cell [43,44].
The planar-like cell is similar to the 2D NAND cell, while the half-cylindrical cell can be
seen as an evolution of the 3D NAND cylindrical cell. For both split cells, the challenges
are the process integration of the cell split, the increased cell-to-cell interference and the
reduced gate-coupling ratio.
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As discussed earlier, the pitch shrink of the WL layer is critical to manage the pillar
height with layer stacking. In the charge-trap cell, the SiN storage layer is continuous
between neighboring cells. With the WL pitch scaling, the trapped charge migration
between the neighboring cells would raise the reliability concern. In order to overcome
this issue, the SiN storage separation has been proposed (Figure 13) [45]. The process
flow is similar to that of 3D FG NAND where the diameter of the pillar etching is smaller
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compared to the conventional 3D RG NAND. Therefore, the process integration needs to
be well-managed for the successful implementation of the SiN storage separation.
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5. 3D NAND Array Logical Scaling by Cell Device Engineering

In addition to the physical cell density scaling, the logical density scaling (i.e., more
bits per cell scaling) has been actively pursued in 3D NAND.

Figure 14 shows the number of 3D NAND publications in ISSCC conferences. 3D
NAND started as MLC technology and rapidly transitioned to TLC, owing to the excellent
cell characteristics and reliability. Recently, QLC technology has been introduced to mass
production and the presence of the QLC technology has also been increasing in the publica-
tions. Currently, TLC is the mainstream for high-performance and high-endurance usages.
QLC is becoming mainstream for the high-density and low-cost usages.
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Recently, “beyond QLC” efforts have been reported for both FG and charge-trap cells.
PLC (5 bits per cell) distributions were shown with FG cells (Figure 15a) [46]. In this work,
the excellent data-retention properties of the FG cell were identified as critical to enable
PLC. HLC (6 bits per cell) Vth distributions were experimentally shown at a cryogenic
temperature of 77 K for charge-trap cells (Figure 15b) [47]. In that work, it was shown that
random telegraph noise (RTN) improves at the 77 K while it degrades at 300 K relative
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to 358 K. Performance and reliability characteristics as well as the operational conditions
warrant further study to enable further bit-per-cell scaling beyond QLC.
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6. 3D NAND Performance Scaling by Design and Algorithms
6.1. Write Bandwidth for TLC

Write bandwidth is provided by

Page size × number of planes/tProg (1)

Therefore, the large write parallelism (= page size × number of planes) and short tProg
are critical to achieve high write bandwidth. Figure 16 shows the trend of TLC write
bandwidth from the ISSCC publications. There has been incremental improvement over
the years and a steep increase in recent years.
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Figure 16. TLC write bandwidth trend reported in ISSCC conferences.

The former is due to the continuous improvement of TLC tProg. Figure 17 is the TLC
tProg trend published or estimated from ISSCC publications. In TLC RG NAND, all seven
programmed states are programmed in a single programming pass. The improvements in
tProg are realized by combinations of WL and BL bias time reduction, fine tuning of the
programming voltage compensating cell characteristics’ variability across the pillar and the
reduction in the program verify operations. Figure 18 shows the center XDEC (WL-driver)
architecture which shortens the time for WL loading [31].
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The latter (the steep increase in the write bandwidth) is realized by the increased
number of planes owing to the CMOS under Array (CuA) architecture. Figure 19 shows
three different CMOS architectures utilized in 3D NAND. In CMOS outside array (CoA),
the CMOS circuits are placed next to the array. Therefore, the die size increases if the CMOS
area increases. To increase the parallelism, a larger amount of CMOS circuits such as page
buffer circuits need to be placed, which results in the increase in the die size. In the CMOS
under Array (CuA), the CMOS circuits are placed under the array. More parallelism (more
planes) can be realized with CuA because the larger area is available for CMOS circuits.
Another variation is to place the CMOS over array by using wafer bonding technologies
(Wafer on wafer, WoW) [48]. With this architecture, CMOS is processed separately from the
array processing by using a dedicated wafer for CMOS. Therefore, the process flow can be
optimized for CMOS devices and interconnect.
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Figure 20 shows the number of publications in ISSCC for CNA and CuA. After CuA
was presented in 2016 for the first time in an ISSCC conference, publications with CuA
have been increasing, and most of the recent 3D NAND publications are for CuA. CuA
technology is now the mainstream for 3D NAND.
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6.2. QLC Program Schemes

QLC tProg is much longer than TLC tProg (as shown in Figure 21), in order to realize
the tight Vth distributions. As discussed earlier, in RG NAND with the charge-trap cells,
there is a phenomenon known as short-term data retention. This causes shift and widening
of Vth distributions right after programming. To realize the tight Vth distributions for QLC,
it is important to manage the short-term data retention effects.
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The coarse–fine programming scheme has been introduced for QLC RG NAND [26].
As shown in Figure 22a, all 16 levels are programmed in the first pass with relatively
wide distribution widths. Due to the short-term data retention, the Vth distributions shift
and widen right after the coarse programming. The fine programming is performed as
the second programming path, which tightens the Vth distributions by touching up the
distribution tails caused by the short-term data retention. This scheme can be called the
16-16 scheme as the 16-level programming is performed twice. To reduce QLC tProg, an
8-16 scheme was proposed (Figure 22b). With the 8-16 scheme, eight levels are programmed
at the coarse programming pass, contributing to the tProg reduction.
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In the FG NAND, the first programming pass only has four levels. The 16 levels are
then completed at the second pass [30] because the short-term retention is much smaller in
the FG cell and does not require the touch-up operation.

So far, 1.6–2 msec tProg has been reported for QLC and ~0.4 msec tProg has been
reported for TLC. For the further enhancement of QLC tProg, solving the short-term data
retention by programming scheme and cell improvement is critical.
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6.3. Block Size Scaling

With the WL stacking increasing, the block size increases. Figure 23a shows the
TLC block size as a function of number of WL stacking. The number of SGDs per block is
chosen as a parameter. Typically, FG NAND runs 12–16 SGDs/block, while RG NAND
has 4–8 SGDs/blocks. Given that the block size is the minimum granularity of erase,
the increase in the block size could increase the system burden of the data management
and would degrade system performance. In order to mitigate this problem, the block-
by-deck scheme was proposed (Figure 23b) [30]. In this scheme, the NAND string is
divided into multiple segments (three segments in this example) and each segment is
treated as a different block. During erase operation, the entire pillar is biased to the
erase voltage. The WLs of the selected deck block are grounded while the WLs of the
unselected deck blocks are ramped to the channel potential. In this way, the cells in the
unselected deck blocks can be inhibited for erase.
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physical block is divided into three logical blocks [30]. Reprinted with permission from ref. [23], Copyright 2021 IEEE.

7. Conclusions

3D NAND scaling has been successfully achieved. The layer stacking has reached
176 layers. QLC has been introduced in both FG NAND and RG NAND. Research on PLC
is active, with partial demonstrations for cell capability. CMOS under array (CuA) has been
widely adopted and enables performance enhancement by increasing the number of planes.
For future scaling, on top of the continuous XYZ physical scaling, disruptive technologies
such as split cells are proposed. Program and erase schemes are being developed further to
solve cell reliability challenges and block size scaling challenges.
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