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Abstract: Pedestrian detection is at the core of autonomous road vehicle navigation systems as they
allow a vehicle to understand where potential hazards lie in the surrounding area and enable it
to act in such a way that avoids traffic-accidents, which may result in individuals being harmed.
In this work, a review of the convolutional neural networks (CNN) to tackle pedestrian detection
is presented. We further present models based on CNN and transfer learning. The CNN model
with the VGG-16 architecture is further optimised using the transfer learning approach. This paper
demonstrates that the use of image augmentation on training data can yield varying results. In
addition, a pre-processing system that can be used to prepare 3D spatial data obtained via LiDAR
sensors is proposed. This pre-processing system is able to identify candidate regions that can be
put forward for classification, whether that be 3D classification or a combination of 2D and 3D
classifications via sensor fusion. We proposed a number of models based on transfer learning
and convolutional neural networks and achieved over 98% accuracy with the adaptive transfer
learning model.

Keywords: pedestrian identification; classification; autonomous vehicles; CNN; transfer learning

1. Introduction

Autonomous vehicles are becoming increasingly prevalent on roadways around the
world; a study conducted in 2020 by Mordor Intelligence [1] reports that “the autonomous
(driverless) car market was valued at USD 20.97 billion in 2020” and is projected to increase
by 22.75%, to USD 61.93 billion by 2026. While consistent and significant technological
advancements are being made in related fields, confidence in autonomous systems for use
on roadways is declining. AAA reported in 2018 [2] that 73% of adults in the United States
claim to be “too afraid” of allowing a vehicle to autonomously control itself—this is an
increase of 10% from a similar study conducted one year prior.

Eliminating the human element of vehicular control, of course, subsequently elimi-
nates the risk of traffic collisions resulting from human error. Furthermore, the occupants
of autonomous vehicles are free to spend travel time recreationally or occupationally; this
is especially beneficial considering the increasing congestion on roadways within major
settlements, alongside a growing world population.

In the event that most, if not all, vehicles on roadways possess fully autonomous
capabilities, it would be possible for a system to be implemented wherein these vehicles
communicate with one another by sharing information on hazards ahead and manoeuvres
they wish to perform. The resulting improvements to travel efficiency would likely have a
cascading effect through iterative increases to speed limits.

Additionally, the Mobility-as-a-Service (MAAS) market is likely to see an increase
in potential as autonomous vehicles acquire mass-adoption. Fully autonomous MAAS
would hypothetically enable individuals to, rather than owning a personal vehicle, lease a
vehicle for each journey they embark upon, similar to how companies such as Uber and
Lyft currently operate, however in this case, without the need for a driver. Alternatively,
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those who do opt to purchase their own autonomous vehicle would have the opportunity
to lease the vehicle out when not in use, providing an additional stream of income.

In an autonomous driving system, the safety of vehicle occupants, as well as individu-
als in the surrounding environment, should be guaranteed. One recent study conducted
by Najada and Mahgoub [3] revealed that approximately 80% of casualties resulting from
vehicle-related accidents were pedestrians.

The safety of vehicle occupants and pedestrians can be achieved through collision
avoidance warning systems (CAWS). A key component of CAWS is vehicular situational
awareness, which can be facilitated through the use of different types of sensors. These
sensors gather data pertaining to the vehicle’s surroundings, which can then be processed,
with useful information being extracted. LiDAR, RADAR, and camera sensors are the three
most prominent sensors currently in use.

In this paper, the use of cameras and computer vision in the scope of pedestrian
detection and classification, touching on methods by which LiDAR can be used to improve
such a system through sensor fusion are investigated. Here, pedestrian detection can
be defined as the process of determining whether an image, generally a frame extracted
from a video sequence, contains pedestrian instances. A successful system should be able
to leverage computer vision technologies in order to extract the specific locations of any
pedestrians in the frame [4], the results of which are usually in the form of bounding boxes
encapsulating individual pedestrian instances.

Machine learning models are generally bespoke, designed with a specific use-case
in mind. While the performance of these models can be exceptional, the training process
requires a substantial amount of labelled data, which can be incredibly time-consuming.
ImageNet [5] is an example of such a dataset, consisting of over 14 million images across
thousands of classes. Models trained using ImageNet may be exceptional at differentiating
between a wide variety of classes, however, applying such a model to a more specific
use-case would likely result in a significant loss of performance. Hence, the motivation to
make use of transfer learning in this paper to reduce computer complexity and enable the
transfer of learning from a previously trained model.

Identifying and localizing pedestrian shapes in images has, perhaps, been one of the
greater challenges facing computer vision researchers over the past decades [6], largely due
to the variable appearance of the human body and variations in illumination, occlusion,
and poses [7]. Recently, however, with the advent of increasingly powerful and compact
hardware, pedestrian detection systems have taken great strides in terms of efficiency and
accuracy [8–10].

There are two primary methods of achieving pedestrian classification through com-
puter vision: deep learning [11] and machine learning [12] based methods; both approaches
follow similar computational pipelines. First, candidate regions must be identified—this
can be achieved through the application of either a sliding window, or some more complex
region proposal algorithm [13,14]. Once candidate regions are identified, feature extraction
is applied to these regions to obtain an accurate classification on the basis of subsequent
classification algorithms.

In 1999, Lowe proposed a visual recognition system [15] which makes use of local
features which are scale-invariant and partially invariant to changes in illumination. This
publication is indicative of researchers’ shift in focus at the time, from attempts to recon-
struct objects as three-dimensional objects [16], to feature-based object recognition. Soon
after, Viola and Jones published a real-time facial recognition framework [17] in the form
of a binary classifier consisting of numerous, weaker, classifiers which are trained using
Adaboost [18]. Viola and Jones later went on to propose a pedestrian detection algorithm
which used motion and appearance information in order to detect a moving person [19].
Dalal and Triggs expanded this work [20] and proposed the use of Histogram of Oriented
Gradients (HOG) as a feature extractor, with the resulting HOG features being fed into
a linear Support-Vector Machine (SVM) [21] classifier. This HOG-SVM combination is
capable of differentiating between regions which contain pedestrians and those which
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do not. The resulting reduction in the number of false positives was over an order of
magnitude, compared to the best performing Haar wavelet detector at the time [22]. While
HOG-SVM offers exceptional performance in classification tasks, it fails to achieve a low
mean average precision [23].

In 2008, Felzenswalb et al. utilised the HOG-based detector in their multiscale De-
formable Part Model (DPM) [24] which deconstructs objects into groups based on pictorial
models [25]. The DPM was suggested to be state-of-the-art at the time, outperforming
other methods of object detection, such as template matching.

McCulloch and Pitts first proposed the McCulloch-Pitts (MCP) model in 1943 [26],
which is widely accepted as the genesis of Artificial Neural Networks. In 1980, Fukushima
introduced Neocognitron, a hierarchical, multilayer Artificial Neural Network which was
designed for use in handwritten character recognition and similar pattern recognition tasks.
The model consisted of several pooling and convolutional layers, which provided the ability
to learn how to identify visual patterns in images. LeCun et al. inspired from Neocognitron
proposed the concept of Convolutional Neural Networks (CNNs) which utilize error
gradient, yielding impressive results in a range of pattern recognition applications [27–29].

CNNs [30] are perhaps the most prevalent application of deep learning for computer
vision tasks, as they have proven to be exceptionally well-suited for tackling object detection
problems, in part due to their ability to extract discriminative features. CNNs are composed
of three different types of neural layers: convolutional layers, pooling layers, and fully
connected layers. In the context of computer vision tasks, Yosinski et al. [31] deduced that
the lower layers (i.e., convolutional and pooling) act in a similar manner to conventional
computer vision-based feature extractors such as edge detectors, while the final, fully
connected layers, are more task-specific. In [32] authors showed that CNNs outperformed
both HOG descriptor and Haar-classifier.

As discussed in earlier sections, deep learning and machine learning models require
significant volumes of data for use during training. This was identified in 2001 in a research
report published by Gartner [33], which alluded to the impending surge of big data. An on-
board pedestrian detection system is proposed in [34] based on 2D and 3D cues. Just under
a decade later, the ImageNet database was introduced by Deng et al. in 2009 [5]. Authors
in [35] propose a dataset that includes challenges related to dense urban traffic, based on
their dataset they propose a fusion framework for multi-object detection. The advent of
larger datasets such as ImageNet required more capable deep learning models and, in
2012, Krizhevsky et al. introduced AlexNet [36]: a breakthrough in CNN architecture
which makes use of the Rectified Linear Units (ReLU) activation function which provided
a sixfold reduction in training time, compared to the TanH activation function which, at
the time, was standard. Additionally, AlexNet has the capability of being trained across
multiple GPUs simultaneously, which enabled more complex models to be produced and
was a key enabler of the significant reduction in training time.

Transfer learning (TF) aims to provide a middle ground, where knowledge acquired
from larger datasets can be used in conjunction with smaller, domain-specific, datasets in
order to improve performance in subsequent domain-specific tasks. In this context, prior
knowledge can be model weights or low-level image features which describe what is being
classified such as edges, shapes, corners, pixel intensity, etc.

Therefore, the models produced in this work make use of transfer learning as it
enhances the performance of the proposed CNN model with the VGG-16 architecture,
proposed by Simonyan and Zisserman in 2014 [37]. The VGG-16 CNN model improves
upon the work carried out for AlexNet by switching the 11 × 11 and 5 × 5 kernel-sized
filters with two consecutive 3 × 3 filters in the first two convolutional layers.

The main contributions of this paper are threefold—(i) a review of CNNs in pedes-
trian classification, (ii) classification models trained on CNNs and transfer learning and
(iii) a pre-processing system with LiDAR point cloud with applications in a 3D object
classification model.



Electronics 2021, 10, 3159 4 of 22

The rest of the paper is organized as follows. Section 2 presents the review of CNNs.
The models developed are explained in Section 3. Results and discussions are elaborated
in Section 4 with a conclusion in Section 5.

2. Review of CNNs for Pedestrian Recognition

R. Hecht-Nielsen [38] described neural networks as “a computing system made up of
a number of simple, highly interconnected processing elements, which process information
by their dynamic state response to external inputs”. The review presented here expands on
the CNN and deep learning principle presented in [39,40] in the context of AlexNet [36].
They are modelled to mimic the human brain in order to recognize patterns. This is
achieved through numerical input vectors that describe real-world information such as
images and text, from which an output response can be generated. In the context of
pedestrian classification, once a candidate region has been recognized through recognition
techniques, it can be classified through the use of a neural network which allows for an
appropriate response to be made by the vehicle.

Convolutional Neural Networks (CNNs) mostly used in the computer vision field.
CNNs are structured in a three-dimensional layers and processes information first through
“convolution”, layer where small portions of data are analysed in order to create a “feature
map”, before passing it to “pooling” layer. Here, each feature of the data set has its
dimensionality reduced while retaining the most relevant information. This next section
covers the related theory behind CNNs.

2.1. Single Layer Perceptrons

Perceptrons, sometimes referred to as “linear binary classifiers”, are a form of super-
vised classification algorithm that can be used to determine the classification of a given
input. If neural networks are considered to be computational representations of the human
brain the perceptrons act as individual neurons, which take the form of a single-layer
neural network and consist of four key elements: input values, weight and bias, the net
sum, and an activation function.

Input values are multidimensional vector values that are fed into the perceptron in
order to be processed. The input values are multiplied by a weighting parameter, which
is indicative of an individual input’s influence over the output value. The sum of the
weighted input values is referred to as the “net sum” or “weighted sum”, and can be
calculated with the following equation:

s = ∑m
i wi Ii, (1)

where s is the weighted sum, m is the number of inputs, w represents the weight for each
input, and I represents the value of each input. Once a weighted sum has been calculated,
it is then applied to the activation function, which normalizes it. In simple perceptron
models, the activation is a step function. See Figure 1.
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2.2. Multi-Layer Perceptrons

Multi-layer perceptron (MLP) is simply another way of referring to a neural network
and consists of a collection of individual single-layer perceptrons (SLP) arranged into
distinct “layers”. The most basic form of MLP consists of three layers: an input layer,
output layer, hidden layer. The input and output layers serve the same purpose as in an
SLP, the hidden layer is where most of the MLP’s computation is performed.

MLPs allow for non-linear classification, such as XOR functions, which is not possible
with SLPs as they are not capable of modelling feature hierarchy. It is for that reason
that SLPs generally only find use as building blocks for MLPs, which have been shown
to approximate non-linear functions. Furthermore, SLPs simply use the step function as
an activation function, whereas MLPs can use more complex activation functions which
enable the classification of items into multiple labels as well as to provide probability-
based prediction.

2.3. Activation Functions

Activation functions are mathematical equations that are not only used to determine
the output of the individual perceptrons, but also the accuracy, computational efficiency
during training, and the output of a deep learning model in its entirety. Additionally,
selecting an appropriate activation function for the task the neural network is attempting
to perform is crucial, as they have a significant influence over the network’s ability to
converge and the speed at which it can converge. Examples of activation functions include
the binary step, linear, sigmoid, TanH, rectified linear unit (ReLU), SoftMax and back
propagation. ReLU is the most frequently used activation function due to their simplicity
where positive values are treated linearly, and negative values are assigned a value of
zero [41].

2.4. Hyperparameters
2.4.1. Hidden Layers and Units

Hidden layers are layers within a neural network that lie between the input and output
layers. Increasing the number of hidden layers has the potential of increasing the accuracy
of a model, however as more hidden layers are added, computational requirements will
increase yet will yield diminishing returns on the error function.

Not having an adequate number of hidden layers on the other hand will result in
poor generalization and unreliable predictions, so it is important to strike a balance in the
selection of number of hidden layers.



Electronics 2021, 10, 3159 6 of 22

2.4.2. Dropout

Dropout is a technique used during the training of a model in which certain nodes are
deactivated so that it does not become overwhelmed with information, which can isolate
nodes that may not be contributing to an improved error function, which in turn should
produce a more efficient model.

2.4.3. Activation Function

Activation functions, which have been discussed earlier in this section, can be added
to any point of a neural network and there is no limit to the amount that can be added
which again results in the process of determining a suitable balance between the number
of activation functions and the overall efficiency of the model.

2.4.4. Learning Rate

The learning rate determines the strength of changes made to weights during the
process of backpropagation. A lower learning rate results in smoother convergence at the
cost of an increase in training time and a higher learning rate will have opposing effects,
which means the appropriate learning rate will be model-specific.

2.4.5. Epochs and Batch Size

The number of epochs represents the number of instances that the training dataset is
fed into a neural network during the training process. Increasing the number of epochs
will increase the accuracy to a certain extent, after which overfitting will start to occur,
and training accuracy can decrease. Batch size controls the percentage of the dataset to be
exposed to the network through each iteration (epoch) of the training process, which can
reduce the over generalization of the model.

2.4.6. Optimisation Algorithm

Optimisation algorithms are those that attempt to minimize the error function of a
model. There are two subcategories of optimization algorithms: “first-order” (e.g., gradient
descent), which adjust the loss function with respect to given parameters, and “second-
order”, which use what is known as the ‘second order derivative’ or “Hessian” to adjust
the loss function.

First order optimizations are easier to compute and require less computational time to
converge reasonably well with larger data sets. Second order derivatives are only able to
outperform first order optimizations when a second order derivative is known, otherwise
they are more computationally intensive and take longer to execute.

2.4.7. Momentum

Momentum is the process of tracking changes made to a model and the direction of
those changes, which can be used to influence subsequent changes so that they follow the
same direction, towards a lower error function.

3. Proposed Pedestrian Classification Models

Pedestrian detection can be described as a binary classification problem, where the
goal is to predict whether candidate regions contain an instance of a pedestrian (positive
sample, denoted as 1) or not (negative sample, denoted as 0).

All models and software produced for this project were developed using Python
3.8. TensorFlow 2.3.0, Keras 2.4.3, and scikit-learn 0.24.2 were used in the development
of deep learning models. Scikit-learn also found use in the development of our 3D pre-
processing system, in the creation of the DBSCAN clustering algorithm and RANSAC
regressor. TensorBoard was used during the training of CNN models in order to monitor
training progress in real-time.

The overall concept of our proposed method is presented in Figure 2.
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In Figure 2, at the pre-processing stage the training and validation images have their
pixel values scaled from (0 to 255) to (0 to 1) upon import. In the next block, image
generators augment the imported images before supplying them to our models. This
includes minimal random rescaling, as well as random zooming and shear-transformations
by a factor of 0.3. In the TF adaptive model block, we do not use bottleneck features as
we use image generators, whereas the TF feature extractor model makes use of the VGG
bottleneck features.

This section presents the datasets used, data preparation and image augmentation parameters.

3.1. Datasets
3.1.1. CVC-02 Dataset

The CVC-02 [34] dataset was used during the development of the pedestrian classifica-
tion systems for an autonomous vehicle. Images provided by the CVC-02 dataset have been
recorded in urban scenarios in and around Barcelona, Spain. Images have been recorded
using a colour stereo camera with a resolution of 640 × 480 pixels and 6 mm focal length.
Specifically, the classification subset which consists of 3140 positive and 6175 negative
samples (in which pedestrians are present, and are not present, respectively) were prepared
for this paper; these images have also been rescaled to a size of 64 × 128 pixels and have
been split into training, validation, and testing dataset. Table 1 presents the overview of
the CVC-02 data splits used in the development of pedestrian classification models.

Table 1. Overview of CVC-02 data splits.

Data Split Total Samples No. of Positive Samples No. of Negative Samples

Training 3000 1500 1500
Validation 1000 500 500

Testing 1000 500 500

3.1.2. NuScenes Dataset

The NuScenes [42] dataset is a large-scale dataset provided for use in autonomous
driving research and has been used here in the development of a 3D LiDAR pre-processing
system. The entire database consists of 1000 20-s scenes recorded in Boston, United
States and Singapore under challenging driving conditions. Each scene contains data
captured using 6 cameras, 1 LiDAR sensor, 5 RADAR sensors, a GPS, and an IMU. The
10 scenes which is a subset of the main dataset are used here to show the effectiveness of
this approach.
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3.2. Image Augmentation

When training deep learning models such as CNNs, the quantity of available data
may be a limiting factor for model performance—this can be somewhat alleviated through
the application of image augmentation, which artificially creates a new data samples
based on original samples. While there are appropriately sized datasets available for the
training of pedestrian classification models, image augmentation can also be used to apply
artificial transformations to input images such as rotation, scale, shearing, zoom, etc. These
augmentations are employed in an effort to mimic noise, variations in illumination, and
variations in fundamental image properties (e.g., scale, rotation).

It is preferable that the types of augmentation, and the intensity to which they are
applied, strike a balance between providing a suitable amount of noise and variation,
which can increase the complexity of the data, and preserving the image features, which is
crucial in a model being able to generate accurate predictions. Figure 3a,b demonstrates
examples of suitable and unsuitable image augmentation. The images can be improved by
pre-processing techniques such as wavelet-based de-noising to remove the noise. Note that
in the unsuitable data, parts of the pedestrian have been cropped out of the image—this,
of course, will not provide the model with representative information. Furthermore, the
augmentations should make sense in the context of the problem being solved; applying a
vertical flip to a pedestrian dataset is ill-suited as it is unlikely that a deployed model will
encounter a pedestrian in such a position, although edge cases will exist.
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All models trained during this project made use of identical image preparation tech-
niques. Augmentation was applied to all models, except for the model described in
Section 3.5.1, which takes the VGG-16 bottleneck features as input.

Image dimensions are first changed to 150 × 150, with three channels corresponding to
the RGB colour space. Image pixel values are then normalized, from values between 0 and
255, to values between 0 and 1. The normalization of pixel values is to increase the rate at
which models learn; large pixel values can disrupt or slow down the process. The original
sample labels, which are strings (“positive” or “negative”) are encoded to numerical values
(1 or 0, respectively), which is more suitable for machine learning techniques.

Once the data has been prepared, image augmentation is applied. Keras’ Image-Data
Generator() method was used to facilitate this augmentation. The parameters of this
augmentation are as follows: a shear range of 0.1, a zoom range of 0.1 with the fill mode set
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to “nearest” (new pixels are set to the nearest neighbouring pixel values), with horizontal
flipping enabled. Figure 3b illustrates the effects of these parameters on training data.

During the development of the models, it was found that prior configurations for
image augmentation resulted in models that were unable to identify pedestrians in the ma-
jority of samples (REF RESULTS). After investigation, it was found that the augmentation
being applied was too intense, resulting in images which contained pedestrians who could
not be identified by the model. The offending parameters included: A zoom range of 0.3,
rotational range of 90 degrees, width and height shift ranges of 0.2, and shear range of 0.2.
This faulty image augmentation is illustrated in Figure 3a.

3.3. Rudimentary CNN Classifier

The first CNN model produced in this paper was developed to serve as a benchmark
for comparison against transfer learning-based models. The architecture of this model is
relatively simple, consisting of three blocks of convolutional layers, the output of which are
flattened into feature maps of shape 17 × 17 × 128, which are then processed by two dense
layers as shown in Figure 4.
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In the convolutional layers, a kernel size of 3 × 3 has been used—this is based on the
kernel filter size used in the VGG-16 architecture which, in-part, resulted in an improvement
of performance over the AlexNet architecture (see Section 3.4). The final output of the
dense layers is a confidence score for each class, indicating how confident the model is that
a sample does or does not contain a pedestrian instance.

Training of the first rudimentary model spanned 100 epochs, with a batch size of 30.
100 iterations per epoch was used to cover the training data consisting of 3000 samples
(Table 1), with each sample being used to generate 30 additional samples via image aug-
mentation. As the augmentation of validation data results in only 20 images per original
sample (scaling is the only augmentation applied to the validation set), the number of
validation steps per epoch has been set to 50, such that the model is able to validate on all
available samples.

As observed in Figure 5, during training, the model began to overfit after the fourth
epoch, as illustrated by the increase in loss on validation data. This means that the model
was not capable of generalizing unseen data. However, decent results with a final validation
accuracy of 96% were obtained.
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Figure 5 is composed of two training summary plots. The left plot details the accuracy
of the model during training, i.e., what percentage of data samples can it accurately
identify; the red line corresponds to the model accuracy on training data, while the blue
line corresponds to the model accuracy on validation data. The right plot details the model
loss during training. Loss is a measure of how far an estimated value is from its true value.
In all models described in this paper, binary cross entropy is used as a loss function.

3.4. Rudimentary CNN Classifier with Regularization

In an attempt to improve upon the performance of the previous model, a second
model has been developed which incorporates regularization in the fully connected layers.
This is achieved via the addition of two dropout layers, one after each of the first two dense
layers. A fourth convolutional block, consisting of a convolution and max-pooling layer is
also added. The parameters of this new block (depth, filter size, and activation function)
are identical to those in the preceding layer (Figure 6). The reasoning behind the addition
of a fourth convolutional block is to enable the model to extract more features from input
samples, resulting in an improvement of performance.
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Dropout layers enable regularization in deep learning models, which simulates the
use of multiple architectures during training. Dropout layers randomly mask a fraction
of units’ output by setting their values to zero. Dropout is a computationally inexpensive
and effective technique of reducing the rate of overfitting in a model and improves its
generalization error.

Here, a second rudimentary model which makes use of regularization through the
addition of dropout layers is presented. In this case, a dropout of 0.3 is applied to the
output of the first two dense layers. The result of this is that 30% of the units in these dense
layers are masked (i.e., 30% of the units in each layer have their output nullified; set to
zero). Additionally, a fourth convolutional block has been added. This enables the model
to extract more features from input samples, with the goal of an increase in performance
over the original model.

The regularized model is trained with the same hyper parameters as in the original
model, spanning 100 iterations across 30 epochs. The addition of regularization and a
fourth convolutional block, while resulting in similar validation accuracy (96%), reduces
the validation loss considerably (approx. 0.51%, down to approx. 0.40%). Furthermore,
the model begins overfitting later in the training cycle, and the rate of overfitting is less
intense than that in the previous model. The training data indicates that this model is more
suitable for use on unseen data than the former model, suggesting that this model is more
capable of generalizing better (Figure 7).
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3.5. Transfer Learning Classification Models

VGG-16 [36] is a CNN architecture which specializes in computer vision recognition
tasks and has been trained on the ImageNet dataset [5]. It takes 224 × 224 RGB images
as input. The “16” in its name refers to the 16 composite layers, which are split into five
convolutional blocks and a single fully connected block, that make up the architecture
(Figure 8).
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Figure 8. VGG architecture diagram [41].

The convolutional layers all make use of 3 × 3 convolution filters, with each convolu-
tional block paired with a max pooling layer. The max pooling layers are applied over a
2 × 2 window with a stride of 2, for down sampling purposes. Note that, in blocks 3 and 4,
VGG-16’s use of 3 × 3 filters resulted in an improvement of performance over AlexNet and
ZF-Net, which used 11 × 11 and 7 × 7 filters, respectively. It is also worth highlighting that
3 × 3 filters are the smallest dimensions that allow a model to learn directional features
(e.g., up, left, centre, etc.).

Convolutional block 5 produces a feature map of shape 7 × 7 × 512, which is flattened
into a feature vector containing bottleneck features. These bottleneck features are then
processed by a block of fully connected layers consisting of two 4096-channel layers and a
single 1000-channel layer (with one channel for each class in the ImageNet dataset). Finally,
a SoftMax activation layer normalizes the classification vector, ensuring that the sum of all
probabilities is equal to zero.

In this sub-section, we describe three models developed via transfer learning: the
first two of which “freezes” the convolutional blocks in order to preserve the original
VGG-16 model weights, which are not updated during training. The original dense layers
are replaced with bespoke dense layers which are more suited to the specific task of
pedestrian classification. The second and third models make use of previously discussed
image augmentation methods, while the first does not. Instead, aforementioned bottleneck
features are provided to the model during training. These features must also be processed
for subsequent classifications on new data.

The third model enables the updating of weights in convolutional blocks 4 and 5.
These weights are initialized as those in the vanilla VGG-16 model. The dense layers are
also replaced with those used in the previously described model.

In all three approaches outlined above, the dense layers are replaced. This is in-line
with the findings of Yosinski et al. [31], described in the literature review: convolutional
layers act as conventional computer vision feature extractors, which can be applied to
a wide scope of tasks. The outputs of the final convolutional block take the form of
‘bottleneck features’ (Figure 9) which are the final activation maps prior, processed by the
fully connected dense layers. The blurriness in Figure 9 can be improved by pre-processing
the image.
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3.5.1. VGG-16 Feature Extractor Model

This section describes the first of three models with the VGG-16 architecture used
in the transfer learning model. In this model, all convolutional layers of the original
architecture have been frozen; their weights will remain the same throughout the training
process, not being updated as in the traditional process of training CNN models. The
dense layers have been replaced: the new dense layers follow the same form as in the
rudimentary models proposed in Section 3.3. Furthermore, no image augmentation has
been applied to the data samples provided during training– this is to compare the results of
image augmentation and will be compared to a subsequent model which does incorporate
image augmentation. Instead, the vanilla VGG-16 model is used to generate bottleneck
features for all training and validation data samples, these bottleneck features are then
flattened for use as inputs for our model.

The hyper parameters used in the training of this model are identical to those used in
the training of the rudimentary models described previously: 30 epochs of 100 iterations
in training, with 50 iterations during validation. The model performance appears to
have significantly improved over the aforementioned rudimentary models (Figure 10):
validation loss, while still indicative of overfitting at the fifth epoch, has been reduced by
approximately 30%. Furthermore, the training and validation accuracies are more closely
correlated (a variation of approximately 2%) which suggests that the transfer learning
model is more capable of generalizing on unseen data, than the rudimentary models.
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3.5.2. Applying Image Augmentation

In this model, image augmentation is applied to input samples—the process of which
is identical to that in the rudimentary models (Section 3.3). The model has been trained
for 100 epochs of 100 iterations, with 50 iterations for validation steps. Additionally,
the learning rate is reduced (from 1 × 10−4 to 2 × 10−5) in order to avoid rapid and
abrupt changes to weight values during backpropagation which may adversely affect
model performance.

The training of this model spanned 100 epochs of 100 iterations, with a batch size of 32:
the default batch size for Keras. The training summary of this model (Figure 11) is similar
to that of the previous model, suggesting that the application of image augmentation did
not provide significant improvements to model performance in this case.
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3.5.3. Adaptive VGG-16 Model

This section describes the third and final transfer learning model developed during
this project. This model enables the updating of weights in convolutional blocks 4 and 5;
blocks 1–3 remain frozen, preventing the weights of these blocks from being updated
during backpropagation. The learning rate is further reduced from 1 × 10−4 to 1 × 10−5,
again to prevent adverse effects on model performance as a result of intense adjustments
to weight values and avoid the model from getting stuck in local minima. This model has
been trained with the same image augmentation as in previously discussed models.

The training of this model, again, spanned 100 epochs of 100 iterations, with a batch
size of 32. The training summary of this model (Figure 12) illustrates that, while validation
loss appears to have increased from previous models, the validation accuracy has improved
(approx. 98%). This is likely due to the model’s ability to better understand the provided
data though the adjustment of weight values during backpropagation.
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3.6. 3D Point Cloud Pre-Processing

In the development of the 3D pre-processing system described in this section, a
number of tools and software were used in this paper to produce results. Most notably:
Python 3.8, NumPy, Pandas, and the NuScenes devkit. Furthermore, Scikit-Learn facilitated
the implementation of our RANSAC regressor and DBSCAN clustering algorithm.

3.6.1. Identification and Removal of Ground Points

LiDAR point cloud data is inherently noisy and can contain large amounts of data
which may not be pertinent to the task at hand. Examples of such points are those which
correspond to the ground on which a vehicle is travelling. While information about the
ground can be useful in the identification of road markings, it does not provide meaningful
information in the context of pedestrian detection (there are specific use-cases, an example
of which being the identification of regions of high pedestrian activity such as crossings,
however). Removing ground points not only removes points which may skew the results of
further operations, it also significantly improves the computational time and effort required
to process the entire dataset.

3.6.2. Data Preparation

A crucial and effective method of removing irrelevant points from the provided point
clouds is to identify and remove points which reside outside of the target camera’s field
of view (FOV). The NuScenes dataset provides images and point cloud information for
each “snapshot” (i.e., frame) within each 20-s scene. The point cloud data retrieved from
the dataset resides in the point sensor frame: in order to determine which points lie within
the camera FOV and which points do not; the point cloud must be transformed from the
point sensor frame to the image frame. Once the driving data have been collected, well-
synchronized keyframes are sampled (image, LIDAR, RADAR) at 2 Hz. These samples
are annotated using expert annotators and multiple validation steps in order to produce
highly accurate annotations. All objects in the nuScenes dataset comes with a semantic
category, as well as a 3D bounding box and attributes for each frame they occur in.

First, the point cloud is rotated and transformed from the point sensor frame to the
vehicle ego frame for the timestamp of the relevant LiDAR sweep. This same process is
subsequently used to transform the data from the vehicle ego frame to the global frame,
from the global frame to the ego vehicle frame, and finally, the ego vehicle frame to the
camera plane.
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Next, a “snapshot” of the LiDAR point cloud is taken. The resulting 2D matrix is
multiplied by the camera intrinsic matrix, and renormalization is applied. Points which lie
outside of the camera FOV can now be removed using logical AND functions. A margin
of 1 pixel is applied for aesthetic purposes, and we ensure that all points are positioned
at least 1 m in front of the sensor in order to exclude points which pertain to the camera
casing. This process returns a 2D mask of points, whose IDs are matched with the original
3D point cloud in order to identify and remove the points which lie outside of the camera
FOV. Figure 13 illustrates the significance of removing points which fall outside of the
camera FOV.
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3.6.3. RANSAC Regression

RANSAC (random sample consensus) is a simple, yet highly effective, method of
handling outliers through trial and error. It separates data into inliers and outliers, which
can be used in further processing techniques. In the context of this paper, a plane on which
the majority of points lie is identified with an that this plane is likely to be the ground
plane, these points can be removed.

In 3D space, RANSAC functions by first selecting three data points at random from
a given point cloud—three points are chosen as this is the minimum number of points
required in order to define a plane in 3D space. These identified points are assumed to be
inliers and, once the plane has been defined, the number of data points which lie on this
plane is tallied. This tally, alongside the points used to define the plane, is stored. This
process is repeated for n number of trials or until a plane, on which x% of points lie, has
been defined.

Here, a residual threshold of 0.4 is used. The algorithm is halted when a plane
is identified which consists of 30% of the total point cloud data, or 50 trials have been
conducted. The result is a mask of inlier points, which correspond to those lie on the ground
plane; these points are removed from the original point cloud data. Figure 13 illustrates the
effectiveness of RANSAC. Yellow points on Figure 13 distinguish the identified ground
points and indicate the RANSAC-identified ground plane.

Note that it would be possible for the algorithm to misidentify objects as ground
points. Consider the case where a vehicle approaches a T-intersection with a large office
building directly ahead; it is likely that the points which make up the office building
far outnumber those which lie on the ground and would subsequently be identified as
‘ground’. This can be alleviated through the definition of an angle threshold, relative to the
vehicle, which must be respected by proposed ground planes (e.g., if a plane is angled at
>5◦ from the vehicle, it is ignored).
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3.6.4. Clustering Objects

DBSCAN is a widely used clustering technique. It makes use of two parameters:
epsilon and minimum points. It works by randomly selecting a point within the dataset
from which a potential cluster can be defined. The epsilon is a distance parameter which
forms a radius around the selected data point; all other points which fall within this radius
are considered “core” points. If the number of core points exceeds the defined number
of minimum points, a cluster is initialized. Once a cluster has been initialized, all points
which lie within the epsilon of the core points are added to the cluster-these are known as
“border” points. Border points are those which are considered to be part of the cluster, but
do not lie within the epsilon of the starting point. These border points then project their
own radius, which gathers further related points and adds them to the cluster-this process
is repeated until no further points are identified. Once a cluster is finalized, and no further
points have been identified in an iteration, a new starting point is randomly selected from
the remaining points which do not belong to an existing cluster, and the entire process is
repeated.

The algorithm developed during this project made use of DBSCAN, with an epsilon
of 0.3 and a minimum point’s value of 2. The results can be seen in Figure 14a. Individual
objects in Figure 14 are distinguished by colour. Each colour indicates a separate DBSCAN-
identified cluster. Those on the left are pedestrians, and the yellow cluster to the right is a
false detection of a traffic light pole. Figure 14b shows the actual image.
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While the system described here is incapable of classifying pedestrians, it serves as a
foundation from which a system, more accurate than the classification models discussed in
previous sections, can be developed through sensor fusion.

4. Results and Discussion

When summarizing the performance of classification algorithms, a simple metric to
use is classification accuracy, which is the total number of correct predictions divided by
the total predictions. While this allows for a general overview of how well a model might
be performing, it lacks details which can be used to better understand the performance
of a model and diagnose where it might be failing. A confusion matrix allows for a better
understanding of model performance, directly illustrating the ratio of correct and incorrect
predictions for each class. In this section, the use of many confusion matrices—one for each
model produced— are utilized to show the effectiveness of the approach.

4.1. Rudimentary CNN Models

The two rudimentary models that produced reasonably well results, covered in detail
at the start of Section 3, are used as a benchmark to compare the further improved transfer
learning models.

The most basic model achieved a classification accuracy of 96% on the test set, with the
majority of incorrect classifications belonging to the positive sample class (i.e., pedestrians).
Interestingly, an identical model with regularization applied via dropout layers produced
almost identical results: It can be seen that the model with regularization performed
slightly better in predicting negative samples (i.e., no pedestrian present), however it did
misidentify one more positive sample than the most basic model.

It may appear that the addition of dropout resulted in a questionable increase in
performance, referring back to the training summary for each model (Figure 4 for the
most basic model 6 for the dropout model), there is a significant difference in overfitting-
indicated by the disparity between training and validation loss over time. This may be
the result of using the same core dataset to compose the training, validation, and testing
data splits. It would likely prove beneficial to produce a second testing dataset in order to
further investigate the differences between the two models described here.

4.2. Transfer Learning Models

Three transfer learning models were developed and discussed below with results
presented on the test data.

4.2.1. Transfer Learning Feature Extractor Model

Moving on to Transfer Learning-based models, starting with the VGG-16 feature
extraction model. It is seen that this model underperforms compared to the previous two
models (Section 4.1). Referring back to the training summary for this feature extractor
model, the loss during training is significantly lower than the best performing rudimentary
model (Figure 7). This is indicative that the feature extractor model is less overfit than
the rudimentary model—the rudimentary model performs better on the test set, however
it may be the case that the feature extractor model performs better on data derived from
completely new datasets. Furthermore, the fact that convolutional blocks have been frozen
during the training of this feature extractor model should also be taken into account; it was
unable to adapt to the provided dataset.

4.2.2. Transfer Learning Models with Image Augmentation

As discussed in Section 3.3, it is imperative that suitable image augmentation is
applied prior to the training of any classification model. Here, two models which make use
of image augmentation at varying intensity are used.

A model trained using overly intense image augmentation significantly underper-
forms, compared to all other models. Approximately 90% of positive samples (i.e., those
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that contain pedestrians) are misidentified as not containing a pedestrian. The model
trained with suitable image augmentation, shows a substantial improvement in the model’s
ability to identify pedestrians in data samples, slightly outperforming the feature extrac-
tion model.

4.2.3. Transfer Learning Adaptive Model

The adaptive model is the best-performing model described in this paper. It yields
an accuracy of approximately 98% on testing data (100% for negative samples, 96.6% on
positive samples). Of course, this is due to the ‘unfreezing’ of convolutional blocks 4 and 5
during training. The ability of this model to adjust its weights during training enabled it to
better understand the dataset and adapt accordingly.

Table 2 shows the accuracy of each model developed. All models, with the exception
of that which has been trained using flawed image augmentation, perform admirably. The
caveat is that, as shown in the training summaries under Section 3.3 all models appear to
be overfitting to varying degrees. Further, Table 3 presents the confusion matrix compares
the models in terms of additional metrics of precision, recall and F1 score.

Table 2. Classification results on the models proposed.

Model Percentage Accuracy on
Positive Samples

Percentage Accuracy on
Negative Samples

Percentage Accuracy on
All Samples

Rudimentary
CNN model 92.6 99.2 96

Rudimentary CNN
model with

regularization
99.8 92.4 96.4

TF model with
feature extractor 100 68.2 84.1

TF model with flawed
image augmentation 100 8.2 54.1

TF model with suitable
image augmentation 100 66.4 83.2

Adaptive TF model 100 96.6 98.3

Table 3. Confusion matrix.

Model Precision Recall F1 Score

Positive Negative Positive Negative Positive Negative
Rudimentary
CNN model 0.99 0.93 0.93 0.99 0.96 0.96

Rudimentary CNN
model with

regularization
1 0.93 0.92 1 0.96 0.96

TF model with feature
extractor 1 0.76 0.68 1 0.81 0.86

TF model with flawed
image augmentation 1 0.52 0.08 1 0.15 0.69

TF model with suitable
image augmentation 1 0.75 0.66 1 0.80 0.86

Adaptive TF model 1 0.97 0.97 1 0.98 0.98

The adaptive transfer learning model, the best performing model proposed in this
paper, suffers from minimal overfitting. Furthermore, it appears to perform exceptionally
well on training data. Rudimentary models, while offering acceptable performance in
classification of test data, have not been trained on a dataset as large as those which make
use of transfer learning. Comparing the results in [43] where they used three different
datasets and trained models using transfer learning, the results in this paper are very
similar. The authors achieved an accuracy of 96.71% with 2000 training samples and 99.52%
with 5000 training samples using SVM classifiers on the PRID database. In this paper, an
accuracy of 98.3% on 3000 training samples is achieved.
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As transfer learning models proposed in this paper use the VGG-16 model weights,
they can be considered more reliable; while not trained directly on the ImageNet database,
the inherent knowledge acquired from the VGG-16 model’s training on ImageNet provided
a foundation from which a domain-specific (i.e., pedestrian classification) understanding
can be cultivated.

4.3. Sensor Fusion

In Sections 3.1–3.5, a description how a CNN might be trained for use in a pedestrian
classification system is explained, and in Section 3.6, a process for object clustering on
LiDAR point cloud data can be applied to segment points which represent pedestrians in
the environment surrounding a road vehicle. While CNN methods can provide acceptable
classification results for pedestrian detection, the combination of visual and spatial data
holds the potential to improve the efficiency and effectiveness of a pedestrian detection
system through sensor fusion. There are two categories of sensor fusion: early fusion and
late fusion.

Sensor fusion compiles the outputs of multiple sensors, such as LiDAR, RADAR,
cameras, etc. The goal of sensor fusion is to create a model which leverages the strengths
of each sensor type in the hopes of mitigating their weaknesses. An example of this is the
use of LiDAR point cloud data to identify pedestrians in low-light conditions, in which a
camera would likely underperform. Conversely, consider a situation where a pedestrian is
standing next to a set of traffic lights: a 3D classification system may determine that the
pedestrian and traffic lights make up the same object-a camera would be able to differentiate
between the two.

In early fusion, the raw data produced by sensors is fused together. LiDAR point cloud
data produced by LiDAR sensors can be projected onto 2D images gathered by cameras,
for example. 2D object detection on images can be combined with region of interests (ROIs)
generated through this point cloud projection through ROI matching, which validates
candidate detections proposed by the 2D detection system.

In late fusion, the results of independent detections are fused. LiDAR point clouds are
fed into 3D object detection systems, while images are fed into 2D object detection systems.
A 3D projection can be created from these 2D detections, which are then cross-referenced
with the LiDAR detections via intersection over union (IOU) matching.

5. Conclusions

In this paper, a discussion of the existing work pertaining to pedestrian classification
through machine learning and deep learning techniques for an autonomous vehicle is
presented and a review of convolutional neural networks and how they can be applied in
the scope of pedestrian classification is included.

A number of classification models have been proposed, trained on the CVC-02 dataset.
It was found that the regularization did not lead to significant improvements in accuracy,
however, it did result in a less-overfitting model which is able to better generalize unseen
data. Additionally, the image augmentation must be appropriately applied to training data
prior to the training of a classification model. Failure to do so will produce a model which
significantly underperforms and is unsuitable for use in an autonomous driving system.

The advantage of VGG-16 architecture with a transfer learning model is discussed
and shown to have better performance than the models trained using traditional methods.
Furthermore, it is concluded that allowing convolutional layers to update their weights
during training is beneficial and can lead to exceptional results when compared to models
trained with their convolutional layers frozen.

Additionally, a pre-processing system, whereby LiDAR point cloud data is prepared
for use in a 3D object classification model, making use of RANSAC regression and DBSCAN
clustering, and methods by which visual and spatial data can be combined via sensor fusion
in order to boost the results of a pedestrian classification system, are proposed.
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