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Abstract: Phonological-based features (articulatory features, AFs) describe the movements of the
vocal organ which are shared across languages. This paper investigates a domain-adversarial neural
network (DANN) to extract reliable AFs, and different multi-stream techniques are used for cross-
lingual speech recognition. First, a novel universal phonological attributes definition is proposed
for Mandarin, English, German and French. Then a DANN-based AFs detector is trained using
source languages (English, German and French). When doing the cross-lingual speech recognition,
the AFs detectors are used to transfer the phonological knowledge from source languages (English,
German and French) to the target language (Mandarin). Two multi-stream approaches are introduced
to fuse the acoustic features and cross-lingual AFs. In addition, the monolingual AFs system (i.e.,
the AFs are directly extracted from the target language) is also investigated. Experiments show
that the performance of the AFs detector can be improved by using convolutional neural networks
(CNN) with a domain-adversarial learning method. The multi-head attention (MHA) based multi-
stream can reach the best performance compared to the baseline, cross-lingual adaptation approach,
and other approaches. More specifically, the MHA-mode with cross-lingual AFs yields significant
improvements over monolingual AFs with the restriction of training data size and, which can be
easily extended to other low-resource languages.

Keywords: cross-lingual automatic speech recognition (ASR); articulatory features; domain-adversarial
neural network; multi-stream learning

1. Introduction

Automatic speech recognition (ASR) systems have been improved greatly in recent
years due to deep neural networks (DNNs). However, there are more than 7000 living
languages in the world, where only about 125 different languages have access to ASR tech-
nologies [1], so it is still a big challenge to develop a reliable ASR system for low-resourced
languages. The phonological attribute modeling, also known as “acoustic-to-articulatory(-
attribute) modeling”, is widely used to describe the movement of the organ during speech
production and can be shared among all languages. Articulatory information has been
proved useful in many related areas, such as pathological speech recognition [2], pronuncia-
tion prediction [3] and multilingual speech recognition [4]. There are mainly three methods
to derive phonological-based features: (i) using an X-ray radiometer to measure move-
ments of vocal organs [5], (ii) acoustic-articulatory mapping using filtering techniques [6]
and, (iii) statistical model based speech attribute detectors [7]. The first approach has a
high initial setup cost, thus it is an unfeasible approach, while the second only detects some
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of the attributes and not for all the phonological attributes [8]. This research explores the
third approach due to its feasibility and reliability. The main advantage of phonological
attributes based on cross-lingual ASR is that the phonological knowledge can be shared
across different languages.

In low-resource languages, the lack of linguistic knowledge causes a scarcity in tran-
scribed speech data for the training of ASR systems. Therefore, International Phonetic
Alphabet (IPA) [9] explores an approach for cross-lingual phonological attributes. The lan-
guages tackled in this paper are English, German, French, and Mandarin. In practice,
Mandarin is a well-resourced language, however, to verify our proposed framework on
cross-lingual speech recognition task, we take Mandarin as a low-resourced language by
using a limited dataset.

As shown in Figure 1, our system has two key modules: (i) a domain adversarial
based multi-task learning model to extract phonological knowledge-based features (abbre-
viated as AFs) and, (ii) a framework that fuses the AFs with conventional acoustic features
e.g., Mel Frequency Cepstral Coefficients (MFCCs). Firstly, the AFs detector is modeled into
a domain adversarial-based multitask learning system (abbreviated as DANN). The DANN
model contains a gradient reversal layer that can prevent the model from learning domain
information (languages and speakers in this paper). In the proposed method, the domain
classifier of DANN is modified as multi-task supervised learning with speaker and lan-
guage classification, the classification of the AFs is the main task. To combine the MFCCs
and AFs, different fusion approaches are considered.

Figure 1. The overview diagram in this paper.

The paper is organized as follows: Section 2 reviews the latest related work on AFs
and multi-stream framework. Section 3 gives detailed information regarding AFs detectors
and Section 4 provides further elements on multi-stream frameworks. Section 5 reviews
the configuration of the proposed experiments. Section 6 presents the results and analysis.
Finally, Section 7 gives the conclusions and directions to future research.
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2. Related Work

Phonological research demonstrated that each sound unit of a language can be split
into smaller phonological units based on articulators used to produce the respective sound.
To generate reliable AFs, it is critical to design stable AFs detectors. Several studies
found that CNNs have a better ability to capture the articulator’s information [7,10].
The combination of articulatory features and conventional acoustic features has been
shown useful in many speech tasks. In [11], researchers show that the AFs can improve
the ASR performance by combining the MFCCs and AFs at the lattice level. Similarly,
the results by [12] work indicates that the combination of MFCCs and AFs at lattice level
can improve the performance of pronunciation error detection.

It is also proved that the phonological features can be shared across languages. Chin-
Hui Lee et al., trained three attribute detectors on Mandarin speech for three “manner”
(articulatory class) features, and further used these detectors to process an English utterance
spoken by a non-native Mandarin speaker [13]. In those experiments, both stops and nasals
attributes were correctly detected, which can prove that the speech attribute can be used
in cross-lingual speech recognition in English and Mandarin. There are few studies on
multilingual speech recognition integrating AFs; Hari Krishna et al., trained a bank of AFs
detectors using source language to predict the articulatory features for the target languages,
which showed that the combination of AFs using AF-Tandem method performs better than
the lattice-rescoring approach [14].

Because English, German, French, and Mandarin are from two different language
families, it is not straightforward to implement cross-lingual speech recognition. In [15],
the researchers used the English-trained MLPs for AF extraction for Mandarin, after ap-
plying PCA (Principal Components Analysis), the AFs tandem features were directly
concatenated with MFCCs. Results indicated that the English-trained AFs detector slightly
degraded the performance. Li et al. [16] use bottleneck features from a system trained
with English and Mandarin, only achieving 1.6% relative improvement compared to a
Mandarin baseline system built using conventional acoustic Perceptual Linear Predictive
(PLP) features.

The AFs and acoustic features have different numerical ranges, therefore the multi-
stream framework can relate better both features by fusing them. The multi-stream frame-
work has been proved to improve the performance of the ASR system. In [17], researchers
proposed a multi-stream set up to combine the M-vector features (Sub-band Based En-
ergy Modulation Features) and MFCCs, which improves the ASR performance. In [18],
the authors implement a 5 sub-band multi-stream system, with a proposed fusion network
in a noise-robust ASR task. Considering the previous works, multi-stream is an effective
way to boost ASR systems, especially in challenging tasks (i.e., noisy environment and
low-resource ASR).

3. AFs Detectors
3.1. Phonological Attributes

We define the phonological attributes and their corresponding phone set, which are
listed in Table 1. For Mandarin, English, German, and French we define the symbol sil to
represent the silence.

Adapted from previous work [19,20] and IPA [21], we define a universal phonolog-
ical class definition. Unlike other previous works [22,23], they defined the phonological
attributes for only one language (only English or Mandarin). However, our delineation can
be shared by multiple languages and can be easily extended to other languages. As shown
in Table 1, these attributes of speech can be comprehended by a collection of information
from fundamental speech sounds. There are six attributes for each phone: place, manner,
backness, height, roundness and, voice. Every phone has a one-hot encoding in each attribute,
so after combining all the 6 attributes, there is a 32-dimensional AF vector. Each phone
has a unique AF definition. In the Table 1, the nil means “not specified”. For example,
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the phonological class Place does not exist in consonants, thus, in consonant phones, this
class is defined as nil.

Although the phones of these languages do not share the same phone set, we could
describe the phones by these attributes. Thus all phones can share phonological knowledge
at the phonological level (AFs).

Table 1. Phonological attributes definition.

Phone

Mandarin English German French

Place

alveolar n l d t d t s l ng n b d s z h l d n z

bilabial b p m b p m p b m

dental c iy th dh t pf ts N.A

labiodental f f v f v m f

palatal aa o u j q a oo i iz ei
uu g ee x v e vv ii y C j J

pos-alveolar zh r sh ix ch jh z sh ch zh S Z tS S Z

retroflection er r er r N/A

velar h k g w x N k g w N g R

glottal N/A hh Q N/A

nil all_vowel sil all_vowel sil all_vowel sil all_vowel sil

Manner

approximant N/A r y w l r j I j w h l

fricative f s sh r x h sh f jh s th z ch zh v dh S Z S Z f

lateral i N/A ts tS pf N/A

nasal m ng n ng n m m n N/A

stop t q j b d ch zh c g k p z d p k t g b hh p b t d k g Q g b d p t

nil sil all_vowels sil all_vowels sil all_vowels sil all_vowels

Voiced
voiced oo uu o n ng ei ix a er i vv

ee ii iz r m e u iy aa i v
d t g at eh ao uh r z l er uw ow iy

ah dh aw aa ey ih m v n w ae jh y s oy ng all_vowels 2 6 g b @ E J O N θ 9 9∼ Z a A∼ e d k j m l o u
w Λ U∼ ε∼ y v z

unvoiced s ch p zh z x sh b t g q k c h d j f sh p f k th b ch zh hh all_constants S f h p s t

nil sil sil sil nil

Height

height iz vv i iy ix v u uu ii ih uh uw iy i i: y y: u: u L l Y U 6 a

mid N/A ey aw 2 2: @ @

low aa a ae aa oy ay ao ow a∼ a∼: 6 aU aI i u y

mid-height ee e o o er eh e e: o o: o∼ o∼: E E: 9 O E 9 ε ∼ U∼
mid-low er ei ah 0 θ Λ o e

nil all_constant sil all_constant sil all_constant sil all_constant sil

Round

round u v uu vv o oo aw oy ao uh uw iw y y: u u: Y 2 2: o o
o∼o∼: 9 0 OY aU 2 6 @ θ 9 9∼o u U∼y

unround ix iy a e ee iz i ii aa er ei ae ih aa ay eh iy er ah a a: a∼a∼: 6 aI E a A∼e i ε∼o U∼
nil all_constant sil all_constant sil all_constant all_constant sil

Front

front i ei v iy vv iz ii ae ih ey ay ei iy i i: y y: u u: l Y e 2 6 E θ 9 9∼a e i y

central a aa er ix er ah E OY @

back uu e ee oo o u aw aa oy ao uh uw ow u u: U o o: o∼ o∼: O aU aI O Λ U∼u o A∼
nil all_constant sil all_constant sil all_constant sil all_constant sil

3.2. Domain-Adversarial Modeling: Integrating Phonological Knowledge

To make the model learn phonological knowledge, we propose a novel representation
extraction model, which combines a deep CNN-based model and domain adversarial
learning.

Ganin et al. [24] proposed the domain adversarial neural network (DANN). The net-
work learns two classifiers: the main classification task and the domain classifier. The latter
determines whether the input sample is from the source or target domain. Both classifiers
share the same hidden layers which learn hidden representations for each specific task.
The DANN model has a gradient reversal layer (GRL) between the domain classifier and
the hidden layers. This layer passes the data during forward propagation, while inverting
the sign of the gradient during backward propagation. The network attempts to minimize
the task classification error and find a representation that maximizes the error of the do-
main classifier. The goal of the DANN is to reduce the distribution differences between the
source and target domain. With the help of GRL, the model receives the reversed gradient
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lamdba. Thus, the network will maximize the error of the domain classifier. Meanwhile,
the network attempts to minimize the task classification as usual. By considering these two
goals. The model can learn a discriminative representation for the main classification task
while making the samples from either domain indistinguishable. As shown in Figure 2, we
apply three supervised classification tasks in the DANN model. We include articulatory
and phoneme classifiers as main tasks and speaker and language identification as domain
classifiers. The objective function of the DANN is defined as follows:

LDAAE = λphnLphn + λiLp f−i − (λlidLlid + λspkLspk). (1)

Lphn, La f ,Llid and Lspk are the loss functions of the phoneme, articulatory, language
and speaker classification, respectively. λ is a trade-off weight parameter to control each
loss term (i.e., there is one weight term for each loss). For articulatory classes, there are
6 classes so the ‘i’ means the ith articulatory class.

Figure 2. Overview of a DANN based model. GRL means Gradient Reversal Layer .

The CNN block is a U-Net [25] like CNN structure which is used to obtain features
with different time and frequency scales, as depicted in Figure 3.

Figure 3. Diagram of the CNN block in DANN based model.

When using the multi-task learning, the performance of the model can be sensitive to
the weight between different tasks and finding optimal values can be expensive. To better
train the model, we propose to use the adaptative loss function, to automatically tune
task-specific weight on the loss functions [26].

Lada(σ1, σ2, σi) =
1

σ2
1

Lphn +
1

σ2
2

Lphn−ctc+
1

σ2
i

La f +
1

σ2
3

Llid +
1

σ2
4

Lspk + logσ1σ2σiσ3σ4
(2)
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The resulting tuned task-specific equation is presented in Equation (2). In this equation,
σ means the coefficient (weight) of different tasks.

4. Multi-Stream ASR Framework

MFCCs and AFs have different numerical ranges, thus simply concatenating them
together and training the hybrid system will bring bias towards one feature stream. There-
fore, the feature combination would even harm the performance [15]. We overcome this
problem by implementing different modes of multi-stream training, where AFs and MFCCs
are integrated. For instance, parallel-mode, joint-mode, and MHA-mode:

• Parallel-mode: the parallel-mode multi-stream ASR framework is shown in Figure 4.
Following the standard Kaldi recipe, The Time Delayed Neutral Network-Hidden
Markov Model (TDNN-HMM) is considered the ASR model. First, two TDNN-
HMM networks with different features (i.e., MFCCs and AFs) are trained. Then,
the bottleneck features from the single TDNN-HMM are taken to concatenate into a
later feature vector. This feature vector is used to train the final TDNN-HMM network.
The bottleneck features (BNF1 and BNF2) are extracted from the last batch-norm
layer following the approach from [27], and the bottleneck dimension is set to a 100
dimension. All the layers in parallel mode are standard TDNN layers.

• Joint-mode: the joint-mode approach is described in Figure 5. The joint-mode involves
two separate layers for two individual feature streams, and one combination layer to
integrate the medium representation of the individual stream. The configuration of
the joint-mode is shown in Table 2.

• MHA-mode: Multihead attention (MHA) based fusion method is also used in this
paper, which is shown in Figure 6. The attention mechanism allows a neural network
to capture speech representation from different inputs. The attention score for each
Headi is calculated as:

Headi = Softmax
(

QKT
√

di

)
V (3)

In our experiments, the Q is represented using MFCCs, the K is represented using AFs
and the concatenated features are used as V. After fusing those features, a 6-layers
TDNN-HMM model is used to train the ASR.

Figure 4. Architecture of the proposed parallel-mode ASR. Outputs (bottleneck features) of both
single-stream hybrid systems are concatenated. The new concatenated set of features is set as input
for the multi-stream hybrid system i.e., TDNN-HMM 3.
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(a)

(b)

Figure 5. Architecture of the proposed joint-mode multi-stream ASR. Two feature streams are input
to the TDNN system and a combination layer is used to combine two feature streams followed by a
3-layers TDNN. (a) shows the overview of the joint-mode multi-stream framework while (b) is the
details of the combination layer.
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Figure 6. Architecture of the proposed mha-mode ASR.

Table 2. Layer-wise context configuration for joint-mode multi-stream framework.

Layer 1 2 Combination Layers 4 5 6

Context {−1,1} {−1,1} {Stream-MFCC(−1,0,1),Stream-AFs(−1,0,1)} {−3,3} {−3,3} {−3,3}

5. Experimental Setup
5.1. Train and Test Data Sets

Because Mandarin, English, German and French are well-researched languages, the ex-
periments are conducted on these languages. For English, we take 100 h subset from
Librispeech [28] dataset for training. The French and German dataset is randomly selected
from MLS multilingual dataset [29]. For Mandarin, we use THCHS30 [30], which consists
of 27 h of data for training and 5.4 h of data for testing. The language model for Mandarin is
trained using a text collection that is randomly selected from the Chinese Gigaword corpus
(https://catalog.ldc.upenn.edu/LDC2003T09 (accessed on 27 October 2021)). The detailed
statistics for these languages are shown in Table 3. The quality of both speech corpora can
be considered acoustically similar (i.e., relatively high signal-to-noise ratio, reading speech
under similar acoustic conditions, 16 kHz of sampling frequency, etc).

Table 3. Statistics of speech corpora. Target language is Mandarin and English is the source language.

Utterances Duration (hours)

Language Train Test Train Test

Mandarin 10,893 2496 27.2 6.2
English 28,539 - 100.6 -
French 32,278 - 122.5 -

German 27,148 - 104.6 -

With well-studied linguistic knowledge, English, German, French, and Mandarin are
considered in our experiments. The Mandarin here is taken to play the role of low-resourced
languages by using limited datasets. By studying our proposed method on those languages
using a limited dataset, we can apply this method to other low-resourced languages.

https://catalog.ldc.upenn.edu/LDC2003T09
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5.2. AFs Detectors

In this paper, the phonological attribute-based features (AFs) extraction model is rep-
resented by a DANN model, which is shown in Figure 3. Kernel sizes of all convolutional
layers are set to 3 and strides are specified to conserve sequence lengths. A self-attention
layer with 8 heads of multi-head attention is stacked on top of the convolutional layers.
A learning rate of 0.08 is used and the dropout rate is set to 0.2. All the weights in these
models are randomly initialized and are trained using stochastic gradient descent with
momentum. The input of the AFs detector is 40-dimensional log mel-filterbank coefficients
together with their first and second-order derivatives, derived from 25 ms frames with a
10 ms frame shift.

5.3. Comparison Approaches

To compare the proposed multi-stream systems, we study different approaches.
The details of the comparison approaches are described in the following parts. All the
TDNN-HMM models have the same architecture (otherwise, it is stated). We use the
Lattice-free MMI (LF-MMI) loss function [31] with one-third frame sub-sampling.

• Baseline: the TDNN-HMM with LF-MMI loss function using MFCCs is trained as the
baseline.

• TDNNdoublesize: The parallel-mode uses the feature stream from two TDNN-HMMs.
By training a new TDNN-HMM with double parameters (i.e., double number of
parameters in hidden layers and units), we want to verify that the improvement of
the parallel-mode is not because of the increasing of parameters. To avoid over-fitting,
dropout and L1 regularization are applied.

• TDNN-adapted: As shown in Figure 7, a transfer learning-based cross-lingual ap-
proach is developed, which is denoted as “TDNN-adapted”. Firstly, an English TDNN-
HMM is trained using the LF-MMI loss function, then the output layer is chopped out
and replaced by one corresponding to the Mandarin target units. The whole model is
retrained by Mandarin while the transferred layer has a smaller learning rate [32].

• Feature concatenated approach: The MFCCs and AFs are concatenated into one
feature vector directly. Then the concatenated features are used to train the TDNN-
HMM ASR model.

• Lattice combination approach: Two word-based lattices from two TDNN-HMM
systems (i.e., MFCCs ASR system and AFs ASR system) are combined. Then the
combined lattices are used to compute the final results.

• Bottleneck features: To better illustrate our AFs, we take the bottleneck features
for comparison. First, we train a TDNN-HMM model with LF-MMI loss function
using source languages and finally we extracted frame-level embeddings from the
well-trained TDNN-HMM model on target language.

5.4. Experiments Configuration

All experiments are conducted on Pkwrap toolkit [33]. The ASR models are trained
during 7 epochs. The batch size is 32, whereas the learning rate is reduced gradually from
0.01 to 0.001 (e.g., epoch 1: 0.01, epoch 7: 0.001).
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Figure 7. Cross-lingual adaptation from multilingual to Mandarin. The chain TDNN system is
trained with concatenated AFs and MFCCs for multilingual speech recognition. The network learns
similar acoustic representation (both languages, Mandarin and English) by transferring knowledge
on the TDNN layer’s weights. The Mandarin system (also chain TDNN) is initialized with the same
multilingual system’s weights (pointed by the red arrow). The input and output layers are different
between both languages.

6. Results and Analysis
6.1. Performance on AFs Detectors

The AF detector is the key part of our framework. The first step is to train a reliable
AFs detector. The frame-level performance is listed in Table 4. DANN AFs detector can
produce over 82.9% frame-level average accuracy on Mandarin as listed in Table 4.

Table 4. Frame-level accuracy [%] for different AF detectors evaluated on the Mandarin test set for
six articulatory classes.

AF Classes DANN-AF

Place 80.3
Manner 81.4

Voice 87.6
Round 85.5
Height 80.8
Front 82.0

Average accuracy 82.9

6.2. Effectiveness of the Cross-Lingual AFs on ASR

We experimented with different systems to get the best configuration for the joint-
mode approach. Table 5 indicates that the configuration that uses {−1s1, 0s1, 1s1,−1s2, 0s2, 1s2}
(see Table 5) has the best performance.

Table 5. Joint-mode multi-stream framework using different configuration of combination layer
evaluated on the Mandarin test set. The subscript s1 means this frame is from stream-MFCCs and the
s2 means this frame is from stream AFs corresponding to Figure 5 (i.e., −1s1 means the t− 1 frame is
from stream MFCCs, 0s1 means the current t frame is from stream MFCCs).

Combination Layer Configuration WER[%]

−1s1,0s1,1s1,0s2,−1s2,1s2 24.0

−1s1,−1s2,0s1,0s2,1s1,1s2 24.3

Fully connected layer 24.7
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Then different results on ASR are listed in Table 6. When comparing the baseline
(24.8% WER) with the parallel-mode (23.4% WER), joint-mode (24.0% WER) and MHA-
mode (22.5% WER) our model achieves 5.6%, 3.2% and 9.2% relative improvement in
WERs, respectively. Meanwhile, the results of TDNNdoublesize (24.6% WER) show that the
improvement of parallel-mode is not because of the increase in the number of parameters.
Similarly, the parallel-mode (23.4% WER), joint-mode (24.0% WER) and MHA-mode (22.5%
WER) still outperform the TDNN-adapted approach (24.2% WER). This indicates that the
improvements here are not only due to the source language, but because our proposed
approaches have a better ability to integrate cross-lingual AFs. However, the feature
concatenated approach (24.7% WER) and lattice combination approach (24.6% WER) have
slight improvement compared to the baseline (24.8% WER). Finally, it also proves that
simply combining the AFs and MFCCs cannot improve the performance considerably [15].

Table 6. Comparison of word error rates % (WER) for different approaches and different multi-stream
approaches evaluated on target-language (Mandarin) test set. The lattice-combination approach is
described in [12], Feature-combination approach is used in [14,34].

System Features Source Languages WER[%]

Baseline MFCCs - 24.8
TDNNdoublesize MFCCs - 24.6

TDNN-adapted MFCCs - 24.3
Parallel-mode MFCCs+multi-lingual AFs Multilingual 23.4

Joint-mode MFCCs+multi-lingual AFs Multilingual 24.0
mha-mode MFCCs+multi-lingual AFs Multilingual 22.5
mha-mode MFCCs + Bottleneck-features Multilingual 23.3

Feature concatenated MFCCs+cross-lingual AFs Multilingual 24.7
Lattice combination MFCCs+cross-lingual AFs Multilingual 24.6

Considering all the results above, all the three feature fusion approaches perform
better than the baseline (see Table 6). The MHA-based approach is more generalized when
exploiting cross-lingual AFs and gets the best performance (22.5% WER)

We also compare the results using AFs and bottleneck features (BNF) on mha-mode,
the results indicate that the AFs still outperform BNF. It is reasonable because from Figure 3
we can see the DANN already contains phoneme information.

6.3. Performance on Extremely Low-Resource Training Data

To further study the performance of MHA, we also consider the approach by training
the AFs detectors with Mandarin data directly (so-called mono-lingual AFs). The sizes of
training data varied from 1 h to 27 h, which are randomly selected from the THCHS30
dataset. The system trained with the 1-hour data set means the extremely low-resourced case.

The results are presented in Table 7 and Figure 8. In Table 7, the baseline is the same
as that in Table 6. From the Figure 8, it can be found that both monolingual AFs and
cross-lingual AFs can improve the performance in all cases. Again, it indicates that the AFs
from the DANN-AFs detector can boost the ASR performance.

As expected, the more training data employed during training, the better performance
the system yielded. In the case of low-resources (i.e., very limited data, less than 5 h) the
cross-lingual AFs outperform the system trained with monolingual AFs. More specifically,
in the condition of extremely low-resourced training data (i.e., 1 h train subset), the cross-
lingual AFs (45.0% WER) have a significant improvement compared to MFCCs baseline
(55.4% WER) and monolingual AFs (47.8% WER). Therefore, the less training data, the better
improvement can be reached using cross-lingual AFs.
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Table 7. WERs(%) on different sizes of Mandarin training data using different versions of AFs, which
are evaluated on THCHS30 test set. All the results are based on MHA-mode framework. The Baseline
system is trained with Mandarin MFCCs.

Train Set Size

System 1 h 3 h 5 h 10 h 27 h

Baseline 55.4 37.6 32.3 26.3 24.8
Monolingual AFs 47.8 35.1 30.3 23.5 22.2
Cross-lingual AFs 45.0 34.5 30.2 24.4 22.5

Figure 8. WER(%) on parallel-mode approach for different size of training Mandarin data. Cross-
lingual AFs means this parallel-mode is trained with cross-lingual AFs and the mono-lingual AFs
means the parallel-mode is trained with mono-lingual AFs.

To better illustrate our proposed method, the Cantonese is also introduced because
of the language similarity with Mandarin. The Cantonese dataset is taken from OLR 2021
challenge [35], which only has 13 h for training and 0.4 h for testing. Thus, Cantonese
is performed as a low-resourced language as well. We conduct the experiments using
mha-mode and the same DANN AFs model is used. The results are shown in Table 8.
The same conclusion can be found that the cross-lingual AFs from DANN can boost the
Cantonese ASR through MHA-mode multi-stream framework.

Table 8. WERs(%) on Cantonese test set. All the results are based on MHA-mode framework.
The Baseline system is trained with Cantonese MFCCs.

System WER(%)

Baseline 32.4
Cross-lingual AFs 29.5

7. Conclusions

This research demonstrates that the AFs detectors can perform phone decomposer
tasks, which inject phones into AFs space. However, different languages do not have
the same phone set, still, they share the phonological knowledge at AFs level by using
AFs detectors.
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The languages chosen in our experiments are English, German, French, and Mandarin
where Mandarin is presented as a low-resourced language by using limited training data.
Because those languages come from different language families, the knowledge transferring
method is more challenging; thus this approach can be easily extended to other language
pairs. We first propose a universal phone-to-articulatory mapping, where the different
language phones can share the same articulatory space. Meanwhile, this mapping also can
be extended to other languages easily. Experimental results indicate that the DANN-based
AFs can improve the ASR results by using different feature fusion approaches and the
multi-head attention method can reach the best performance. On extremely low-resourced
conditions, our proposed approach has significant improvements when compared with
standard ASR systems. Our future work will extend our proposed approach to some other
languages and different downstream tasks.
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