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Abstract: Stencil computation optimizations have been investigated quite a lot, and various ap-
proaches have been proposed. Loop transformation is a vital kind of optimization in modern
production compilers and has proved successful employment within compilers. In this paper, we
combine the two aspects to study the potential benefits some common transformation recipes may
have for stencils. The recipes consist of loop unrolling, loop fusion, address precalculation, re-
dundancy elimination, instruction reordering, load balance, and a forward and backward update
algorithm named semi-stencil. Experimental evaluations of diverse stencil kernels, including 1D, 2D,
and 3D computation patterns, on two typical ARM and Intel platforms, demonstrate the respective
effects of the transformation recipes. An average speedup of 1.65× is obtained, and the best is 1.88×
for the single transformation recipes we analyze. The compound recipes demonstrate a maximum
speedup of 1.92×.

Keywords: stencil computation; loop transformation; loop fusion; loop unroll; performance
optimization; HPC

1. Introduction

Stencil computation has been a research topics for decades, and various optimization
approaches have been discussed. The main contributions for stencil optimization can be
divided into two aspects: blocking and parallelism optimizations. Blocking optimizations
aim at improving the data locality of both space and time dimensions. They are highly
related to the tiling strategies widely employed in the modern multi-level cache hierarchy
architectures. Parallelism optimizations refer to the techniques that explore parallelism at
diverse levels, including data-level parallelism, such as SIMD, thread-level parallelism,
such as block decomposition, and instruction-level parallelism. They tend to make full use
of the potential advantages of modern processors’ many- or multi-core architectures.

However, these optimizations can be categorized according to their complexity of
implementation (programmer efforts), benefit improvement (performance) and imple-
mentation tightness regarding hardware (dependence) [1]. An interesting optimization
algorithm would be classified as being less effort, having more performance improvement,
and being hardware independent, whereas an inefficient one would be the opposite.

1.1. Stencil Computation

Partial differential equations (PDEs) are the kernel of many scientific computation
fields, such as geophysics, computational fluids, and biomedicine. Finite diffidence (FD)
is a commonly used method for solving partial differentials, and many scientific and
engineering applications have the characteristics of finite difference [2]. In the finite-
difference computation process, stencil computation (Stencil) is often iteratively used to
solve the differential operator. In these scientific and engineering applications, Stencil is
often the most vital and time-consuming computing kernel. For example, finite difference
Stencil accounts for more than 90% of the running time when dealing with reverse time
migration in seismic research [3].
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1.2. Loop Transformation

Loop transformation is a significant kind of optimization developed in commod-
ity compilers. A remarkable body of work [4–8] has accumulated in the past decades.
Most optimizations for uniprocessors reduce the number of instructions executed by the
program, using transformations based on the analysis of scalar quantities and data-flow
techniques [4]. As optimizing compilers become more effective, programmers can become
less concerned about the details of the underlying machine architectures and can employ
higher-level, more succinct, and more intuitive programming constructs and program
organizations. Simultaneously, hardware designers can employ designs that yield greatly
improved performance because they need only concern themselves with the suitability of
the designs a compiler target, not with its suitability as a direct programmer interface [4].

In this paper, we combine the two aspects aforementioned and utilize the transforma-
tion optimization recipes to improve the stencil performance. We employ the general loop
transformation recipes into the stencil computation era to investigate their effects on the
specific kernel or computation pattern. The initial target architecture is an ARM processor.
To have an overall observation, we also conduct experiments on Intel Xeon E5. In addition,
we focus on the single-core performance to demonstrate the benefits of the algorithms
without considering the multi-thread scalability.

Our main contributions can be summarized as follows:

• Depicting the optimization recipes for loop transformation in detail and introduc-
ing their separate advantages and disadvantages as well as their specific scope
of application.

• Implementing the mentioned recipes as well as a combination of the recipes on various
stencil computation kernels to explore their potential benefits.

• Validating the transformation recipes on various stencil computation instances to
illustrate their effectiveness experimentally on two common architectures.

The remainder of the paper is organized as follows: Section 2 is the background of
our work, i.e., the stencil problems. The transformation recipes are illustrated in Section 3.
Section 4 is the corresponding experimental results and analyses. In Section 5, we intro-
duce some correlated work, and Section 6 concludes the whole paper with some future
work hints.

2. Background
2.1. The Stencil Problem

As is described in Algorithm 1, the general computation pattern of stencil compu-
tation is that the central point accumulates the contributions of neighbor points in every
axis of the Cartesian coordinate system; Figure 1 shows an example of 3D point stencil
computation. The number of neighbor points in each axis or grid step of the stencil compu-
tation corresponds to the accuracy of the stencil. The more neighbor elements involved in
the computation, the higher accuracy the computation obtains. The computation is then
repeated for every point of the grid domain as an iterative operator of the PDEs.

It can be identified from the structure of the stencil computation that two inherent
problems exist:

• First, it is the non-continuous memory access pattern. There exist distances among
elements needed for the computation except those in the innermost or the unit-
stride dimension. Many more cycles in latencies are required to access these points.
Furthermore, much more costs are paid with a bigger stencil radius.

• Second, it is the low arithmetic intensity and poor data reuse. Just one point is
updated with all the elements loaded. The data reuse between two updates is also
limited within the unit-stride dimension, while the other dimensions’ elements that
are expensive to access have no data reuse at all.
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Figure 1. Examples of 3D point stencil.

Algorithm 1 The classical stencil algorithm pseudo-code for a 3D problem [1]

Require: At, At−1, r, zs, ze, ys, ye, xs, xe;
1: Procedure STENCIL();
2: for k = zs → ze do
3: for j = ys → ye do
4: for i = xs → xe do
5: At

i,j,k = C0 × At−1
i,j,k

+Cx1 × At−1
i±1,j,k + · · ·+ Cxr × At−1

i±r,j,k

+Cy1 × At−1
i,j±1,k + · · ·+ Cyr × At−1

i,j±r,k

+Cz1 × At−1
i,j,k±1 + · · ·+ Czr × At−1

i,j,k±r;
6: end for
7: end for
8: end for
9: End Procedure;

3. Transformation Optimizations Recipes

Loop transformation has long been a successful recipe in modern commodity com-
pilers for a while. In this section, we investigate several transformation recipes and apply
them to the optimizations of stencil computation.

3.1. Loop Unrolling

Loop unrolling [5,9,10] is most commonly used to reduce the loop overheads and
provide instruction-level parallelism for processors with multiple functional units. It also fa-
cilitates the scheduling of the instruction pipeline. Since expansion can eliminate branches
and some code that manages induction variables, some branching overhead can be amor-
tized. These features effectively support expansion in any dimension, even in multiple
dimensions. If used properly, it can increase reusability. However, excessive use of this
technique can cause excessive register pressures and may reduce performance. Algorithm 2
shows an example of Stencil code for loop unrolling in the innermost loop with an unroll
factor of uf.
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Algorithm 2 Loop unrolling algorithm

Require: At, At−1, r, zs, ze, ys, ye, xs, xe, u f ;
1: Procedure UNROLL();
2: for k = zs → ze do
3: for j = ys → ye do
4: for i = xs → xe, u f do
5: update At

i,j,k;
6: · · · ;
7: update At

i+u f−1,j,k;
8: end for
9: end for

10: end for
11: BoundaryProcessing();
12: End Procedure;

3.2. Loop Fusion

Loop fusion [11,12] is another algorithm structure adjustment technique. The basic
starting point is to change the data dependencies of the original stencil computation
through the adjustment of the algorithm structure, improve the memory access footprint
behavior, and then improve the performance. As is shown in Figure 2, between two
different time steps, the original stencil computation memory footprint has periodic data
dependencies: at a certain time step T, an element’s update requires the value of its neighbor
elements at time T-1; conversely, the neighbor elements also need its neighbor elements
at time T-2 to be updated. Generally, this dependency is avoided by writing the updated
value of the element at the next time-step into a new array, and after the computation of
the entire grid is completed, it is exchanged with the original array (or through pointer
exchange, and data copy) to achieve continuous iteration. In this way, in addition to the
original input array, an additional array with the same size as the original array has to
be used.

i-1 i i+1k-1 j-1 j+1 k+1

i

Anext[Index3D (nx, ny, i, j, k)] = A0[Index3D (nx, ny, i, j, k)] * fac0 + 

  (A0[Index3D (nx, ny, i - 1, j, k)] +

   A0[Index3D (nx, ny, i + 1, j, k)] +

   A0[Index3D (nx, ny, i, j - 1, k)] +

   A0[Index3D (nx, ny, i, j + 1, k)] +

   A0[Index3D (nx, ny, i, j, k - 1)] +

  A0[Index3D (nx, ny, i, j, k + 1)]) * fac1;

ReadArray[]

WriteArray[]

x
x * y

Figure 2. Footprints of a 3D Stencil under linear expression of memory space.

To break this inherent dependency and develop parallelism without multiple copies
of data, one needs to study the existing data dependency carefully. Back to Figure 2, in a
single iteration of the 3D 7pt stencil computation, it can be seen that under the row-first
storage pattern and the linear memory access mode, the elements required for the current
computation are its continuous right neighbor elements. For the 7pt computation mode,
since its radius is 1, the last one that requires element A0[k][j][i] is element A0[k+1][j][i]. One
solution to eliminate the dependencies above is to create a temporary array to temporarily



Electronics 2022, 11, 38 5 of 18

store the elements needed for the next iteration until the last element that needs them is
updated. In this way, it is possible to update the element A0[k][j][i] in the original array
A0 without the need for the Anext array. Algorithm 3 shows the pseudo-code of the above
optimization scheme.

Algorithm 3 Loop fusion algorithm

Require: At, At−1, r, zs, ze, ys, ye, xs, xe, H, tempt, tempt−1;
1: Procedure FUSION();
2: for k = zs → ze do
3: for j = ys → ye do
4: for i = xs → xe do
5: if i ≥ H + 1 then
6: At

i−H,j,k = tempt
(i−1)%H,j,k;

7: end if
8: tempt

(i−1)%H,j,k = At
i,j,k;

9: end for
10: end for
11: end for
12: End Procedure;

In the above algorithm, temp is the temporary array, and A is the original input array.
H is the number of element planes that need to be temporarily stored, which is determined
according to the radius of the stencil. Lines 5–7 of the pseudo-code indicate that after the
dependency is eliminated, the data elements temporarily stored in temp can be rewritten
back to array A. Line 8 indicates that the updated elements are temporarily stored in the
array temp. It is worth noting that although the temp array is still of the same dimensions
as the original input array, its scale is much smaller than the original input array. It only
needs to contain several data planes at the outermost loop (depending on factors, such
as the radius of the stencil computation mode). In this way, compared to the original
implementation, data accesses are reduced by k/H times. While reducing the data access
footprints, it also improves data locality.

3.3. Address Precalculation

Another fairly standard optimization technique is to precalculate the memory ad-
dress in a nested loop [13]. Although the virtual address space is organized as one-
dimensional (or linear), the data structure usually represents higher-dimensional fields.
Multi-dimensional accesses must be linearized (as is shown in Algorithm 4). All accesses
are eventually linearized, which reveals redundant computations and justifies the optimiza-
tion. For example, linearizing the access of src[k][j][i] in the array (extending 512 elements
in each dimension) produces an access to src[262144 * k + 512 * j + i]. If i is an iterator of
the innermost loop, and y and z are not modified in the body of the innermost loop, there
is no need to calculate the sub-expression 262,144 * k + 512 * j over and over again. It is
sufficient to evaluate it once before the i cycle. Multiple accesses of adjacent elements of
the same field share the same sub-expression and can be combined for optimization. In
theory, commercial compilers can also eliminate some of these redundancies. However,
combined with other transformations (such as vectorization), the generated code may
become too complex, and there are still redundancies. Therefore, we directly implement
such optimization to ensure that it is always applied.

3.3.1. Code Analysis

The main task of this strategy is to identify the sub-expressions that are not related to
loops in the array index computation. It searches for a suitable loop and collects all array
accesses and variables modified or declared in the loop body or header. The latter must
stay inside the loop, and only sub-expressions that do not contain any of these variables
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can be moved outside. After fully traversing a loop and collecting all array accesses, its
index computation is analyzed. Its summation items are divided into those precalculated
ones and must stay in the loop. Even if a constant summation number can be added to the
previous group, we should not do this. The following example illustrates why. A simple
stencil calculates the center element and its immediate neighbors as shown in Algorithm 4.
Applying the described partitions, the sum of all accesses that should be precalculated is
the same, that is k: 262,144, j: 512, which generates a new base pointer for all accesses, as
shown in Algorithm 5 (Line 4).

Algorithm 4 Original stencil code with linear array access

Require: At, At−1, zs, ze, ys, ye, xs, xe, nx, ny, nz;
1: Procedure LINEARACCESS();
2: for k = zs → ze do
3: for j = ys → ye do
4: for i = xs → xe do
5: At

nx∗ny∗k+nx∗j+i = C0 × At−1
nx∗ny∗k+nx∗j+i

+Cx1 × At−1
nx∗ny∗k+nx∗j+i±1

+Cy1 × At−1
nx∗ny∗k+nx∗(j±1)+i

+Cz1 × At−1
nx∗ny∗(k±1)+nx∗j+i;

6: end for
7: end for
8: end for
9: End Procedure;

3.3.2. Integrate the Changes

A separate transformation is required to incorporate these changes because all the
variables written in the loop body must be collected before the redundant sub-expression
is determined. However, the previous collector is ready for new declarations and array
accesses. In Algorithm 5, the only part remaining is to put these declarations before the
corresponding loop (Line 4) and replace the array access (Line 6).

Algorithm 5 Stencil code with optimized index access

Require: At, At−1, P, zs, ze, ys, ye, xs, xe, nx, ny, nz;
1: Procedure OPTIMIZEDACCESS();
2: for k = zs → ze do
3: for j = ys → ye do
4: P← At

nx∗ny∗k+nx∗j;
5: for i = xs → xe do
6: Pt

i = C0 × Pt−1
i

+Cx1 × Pt−1
i±1

+Cy1 × Pt−1
i±nx

+Cz1 × Pt−1
i±nx∗ny;

7: end for
8: end for
9: end for

10: End Procedure;

3.4. Redundancy Elimination

Eliminating redundant computations [13] is an obvious way to improve performance.
In several situations, redundant computations may occur. One method is explained in
the previous section, namely, the precalculation of memory address computation. The
general redundancy elimination described in this section is mainly aiming at the actual
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computation of the generated kernel and solves the redundancy within a single loop
iteration and between loop iterations. The latter is particularly useful in the case of finite
volume discretization.

Common subexpression elimination (CSE) [8] is often implemented in commercial
compilers [14] (Figure 3 gives an example). The basic idea is to remove repeated computations
from the expression by reusing the result of the previous computation. This optimization can
only be applied if no associated variables or storage areas are modified between repeated
evaluations of sub-expressions. The disadvantage is that CSE may increase register pressures
because other values must be retained, which may cause register overflows. However, in
this case, the assumption is that for larger expressions, newly introduced memory access
operations are faster than expression recomputation. Algorithm 6 is the case of applying it to
stencil computation.

x = 2*i / j + 2*i;
x = x* 2*i; 

cs = 2*i;
x = cs / j + cs;
x= x * cs;

(a) original code (b) code with sub-expression 
   elimination

Figure 3. Code example sub-expression elimination principle.

Algorithm 6 Stencil computation with the principle of sub-expression elimination

Require: At, At−1, zs, ze, ys, ye, xs, xe, temp1, temp2;
1: Procedure CSE();
2: for k = zs → ze do
3: for j = ys → ye do
4: for i = xs → xe, 2 do
5: temp1 = C0 × At−1

i,j,k ;

6: temp2 = C0 × At−1
i+1,j,k;

7: At
i,j,k = temp1 + Cx1/C0 × temp2

+Cx1 × At−1
i−1,j,k

+Cy1 × At−1
i,j±1,k

+Cz1 × At−1
i,j,k±1;

8: At
i+1,j,k = temp2 + Cx1/C0 × temp1

+Cx1 × At−1
i+2,j,k

+Cy1 × At−1
i+1,j±1,k

+Cz1 × At−1
i+1,j,k±1;

9: end for
10: end for
11: end for
12: End Procedure;

3.5. Instruction Reordering

Register allocation is generally considered a practically solved problem [15]. For most
applications, the register allocation strategy in the production compiler is very effective in
controlling the number of loads/stores and register overflows. However, the existing regis-
ter allocation strategy is ineffective and causes numerous registers to overflow, resulting
in computation modes with high many-to-many data reuses, such as high-level stencils
and tensor contractions [15]. This strategy takes advantage of the flexibility of reordering
associated operations to reduce register pressure. This strategy can appropriately control
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the instruction-level parallelism while reducing the pressure on registers. All in all, this
reorder method can firstly reduce the register pressure in a single loop, such as a reorder of
the codes with an unroll factor of 2; second, it can improve data locality.

In the reordering computation, the evaluation of different output points is interleaved
so that all the uses of an input value are closer, thus shortening its effective range. This
method can be migrated to the cache level, not only for registers. Through the appropriate
combination and allocation of multiplication, addition, and division, it can also improve
the data reuse and locality of the cache levels.

The process of computation reordering is given below in conjunction with the 3D 7pt
stencil algorithm. As is shown in Algorithm 7, we first expand the original
Formulas (2) and (3) into Formulas (6)–(11):

Algorithm 7 Expand the 2 original iteration formulas

Require: At, At−1, zs, ze, ys, ye, xs, xe;
1: Procedure ORIGIN();
2: At

i,j,k = C0 × At−1
i,j,k

+Cx1 × (At−1
i−1,j,k + At−1

i+1,j,k)

+Cy1 × (At−1
i,j−1,k + At−1

i,j+1,k)

+Cz1 × (At−1
i,j,k−1 + At−1

i,j,k+1);

3: At
i+1,j,k = C0 × At−1

i+1,j,k

+Cx1 × (At−1
i,j,k + At−1

i+2,j,k)

+Cy1 × (At−1
i+1,j−1,k + At−1

i+1,j+1,k)

+Cz1 × (At−1
i+1,j,k−1 + At−1

i+1,j,k+1);
4: End Procedure;
5: Procedure EXPAND1();
6: At

i,j,k = C0 × At−1
i,j,k

+Cx1 × (At−1
i−1,j,k +×At−1

i+1,j,k);

7: At
i+1,j,k = C0 × At−1

i+1,j,k

+Cx1 × (At−1
i,j,k + At−1

i+2,j,k);

8: At
i,j,k+ = Cy1 × (At−1

i,j−1,k +×At−1
i,j+1,k);

9: At
i+1,j,k+ = Cy1 × (At−1

i+1,j−1,k + At−1
i+1,j+1,k);

10: At
i,j,k+ = Cz1 × (At−1

i,j,k−1 +×At−1
i,j,k+1);

11: At
i+1,j,k+ = Cz1 × (At−1

i+1,j,k−1 + At−1
i+1,j,k+1);

12: End Procedure;

The first two lines (lines 6–7) reuse At−1
i,j,k and At−1

i+1,j,k, and use the i-dimension lo-

cality to access At−1
i−1,j,k and At−1

i+2,j,k. The next line (line 8) accesses At−1
i,j−1,k and At−1

i,j+1,k

first, and then uses the i-dimensional locality to visit At−1
i+1,j−1,k and At−1

i+1,j+1,k respectively.
Lines 10–11 behave in a similar pattern in the z-dimension. One can also continue to
expand, and expand more finely (not more than 2 operands at a time), that is, expand the
original Formulas (2) and (3) in Algorithm 7 into Formulas (2)–(15) in Algorithm 8. The
final computation process is shown in Algorithm 8:
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Algorithm 8 Continue to expand the formula in Algorithm 7

Require: At, At−1, zs, ze, ys, ye, xs, xe;
1: Procedure EXPAND2();
2: At

i,j,k = Cx1 × At−1
i−1,j,k;

3: At
i,j,k+ = C0 × At−1

i,j,k ;

4: At
i+1,j,k+ = Cx1 × At−1

i,j,k ;

5: At
i,j,k+ = Cx1 × At−1

i+1,j,k;

6: At
i+1,j,k+ = C0 × At−1

i+1,j,k;

7: At
i+1,j,k+ = Cx1 × At−1

i+2,j,k;

8: At
i,j,k+ = Cy1 × At−1

i,j−1,k;

9: At
i+1,j,k+ = Cy1 × At−1

i+1,j−1,k;

10: At
i,j,k+ = Cy1 × At−1

i,j+1,k;

11: At
i+1,j,k+ = Cy1 × At−1

i+1,j+1,k;

12: At
i,j,k+ = Cz1 × At−1

i,j,k−1;

13: At
i+1,j,k+ = Cz1 × At−1

i+1,j,k−1;

14: At
i,j,k+ = Cz1 × At−1

i,j,k+1;

15: At
i+1,j,k+ = Cz1 × At−1

i+1,j,k+1;
16: End Procedure;

3.6. Forward and Backward Update Algorithm

As is mentioned above, the stencil computation tends to be memory bound and has
a low computation to memory access ratio. It is used to solve the problem that [1,16] put
forward the semi-stencil algorithm. We introduce the algorithm’s main idea in brief and
provide an analysis of its effect on the arithmetic intensity.

3.6.1. Forward and Backward Updates

The semi-stencil algorithm employs a new memory access pattern for the original
stencil computation by altering its structure. The new algorithm structure consists of two
phases: forward update and backward update, which are described in Figure 4 for a 1D
stencil instance.

F

FB

A[t-1,
i+1]

A[t-1,
i+2]

A[t-1,
i+r-1]

A[t-1,
i+1]

A[t-1,
i+2]

A[t-1,
i+r-1]

A[t-1,
i]

A[t,
i+r]

A[t,
i]

A[t-1,
i+r]

(a) Forward update

(b) Backward update

t: time step
i: space step

r: stencil radius

step i

Figure 4. Detail of the two phases for the semi-stencil algorithm at step i.

The forward update is the first contributions that point A[i+r] at time step t receives (as
depicted in Figure 4a). In this phase, the point At

i+r is updated with its r rear neighbors
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at time step t − 1, i.e., points At−1
i,...,i+r−1. The forward update can be summarized, in

mathematical terms, as

A
′t
i+r = C1 × At−1

i+r−1 + C2 × At−1
i+r−2

+ · · ·
+Cr−1 × At−1

i+1 + Cr × At−1
i

(1)

where the prime character (′) denotes that the point is only partially updated, and some
contributions are still missing [1]. Note that we load r elements, i.e., points At−1

i,...,i+r−1, in

Formula (1), and only one element, A
′t
i+r, is stored.

As for the second phase, named backward update, the pre-updated point At
i in the

forward phase is completed by adding the rest of the contributions in the original stencil
computation, i.e., points At−1

i,...,i+r. To be specific,

At
i = A

′t
i + C0 × At−1

i + C1 × At−1
i+1 + C2 × At−1

i+2

+ · · ·
+Cr−1 × At−1

i+r−1 + Cr × At−1
i+r

(2)

What is noted is that only two more loads are required in the backward phase, i.e., point
At−1

i+r and the pre-updated value A
′t
i . The rest of the points required are loaded during the

forward phase at time step t-1 for the update of At
i+r computation. One additional store to

write back the final updated value, At
i , is also needed.

To carry out the two-phase update algorithm, the original factored add and mul opera-
tions (Ci × (A−i + Ai)) must be decomposed into multiply–add instructions
(Ci×A−i +Ci×Ai) to split up the original computation into a forward and a backward phase.

3.6.2. Arithmetic Intensity Analysis

We compare the arithmetic intensities of the original stencil computation and the
altered stencil computation with the semi-stencil algorithm. As is depicted in Section 2.1,
the arithmetic intensity or floating-point operations to data access ratio of the original
classical stencil computation is

AIclassical =
FloatingPointOperations

DataAccesses

=
#ADD + #MUL
#Loads + #Stores

=
2× 2× dim× r + 1

2× (dim− 1)× r + 1 + 1

=
4× dim× r + 1

2× r× (dim− 1) + 2

(3)

As for the altered stencil computation with the semi-stencil algorithm, the AI f b is

AI f b =
FloatingPointOperations

DataAccesses

=
#ADD + #MUL
#Loads + #Stores

=
2× 2× dim× r + 1

(dim− 1)× r + 1 + dim− 1 + dim

=
4× dim× r + 1

dim× r− r + 2× dim

(4)
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It can be observed that they have the same FloatingPointOperations, while the altered
stencil computation with the semi-stencil algorithm has a lower number of loads and stores
due to the reuse of elements between the forward and backward phases. It can be induced
that AI f b ≥ AIclassical when r ≥ 2, which means the semi-stencil algorithm has a better
cache reuse behavior.

3.7. Load Balance

It is the balanced combination of floating-point operations [17]. Optimal performance
requires that a large part of the instruction mix is floating-point operations. Peak floating-
point performance usually also requires equal numbers of simultaneous floating point
additions and multiplications because many computers have multiply–add instructions or
equal numbers of adders and multipliers. Specifically, for a stencil computation, it is good
choice to expand the multiplication factor according to the associative law of addition, as is
shown in Algorithm 9.

Algorithm 9 Stencil computation with load balance

Require: At, At−1, zs, ze, ys, ye, xs, xe;
1: Procedure BALANCE();
2: for k = zs → ze do
3: for j = ys → ye do
4: for i = xs → xe do
5: At

i,j,k = C0 × At−1
i,j,k

+Cx1 × At−1
i−1,j,k + Cx1 × At−1

i+1,j,k

+Cy1 × At−1
i,j−1,k + Cy1 × At−1

i,j+1,k

+Cz1 × At−1
i,j,k−1 + Cz1 × At−1

i,j,k+1;
6: end for
7: end for
8: end for
9: End Procedure;

3.8. Put It All Together

It is worth noting that the above optimization options are not isolated from each other.
They can be appropriately combined, and then performance testing and analysis of the
combined optimization options can be performed.

4. Experimental Evaluations

In this section, the evaluation results of the various recipes are presented. The bench-
marks utilized are introduced firstly in brief. Second, we describe the experimental plat-
forms to conduct related tests. The performance improvements of the separate transforma-
tion recipes are then analyzed finally.

4.1. Stencil Benchmarks

To evaluate the performance of our proposed recipes for stencil computation, the
following stencil instances listed in Table 1 are employed to test the floating-point per-
formance. For the dimension of stencils, 1D, 2D, and 3D stencils are all developed. The
problem sizes also range from 16 M to 64 M for 1D stencils, 8K × 8K to 32K × 32K for 2D
stencils, and 128 × 128 × 128 to 1024 × 1024 × 1024 for 3D ones. As for the time steps of
the iteration, we both utilize one single step and one hundred steps. The diverse stencil
radii of r = 1, 2, 4, 5, 7, 14 are coded for the forward and backward update algorithm. It
is worth noting that not all the parameters listed are set for all the stencil instances. One
reason is that the stencil features may vary according to the instances. The other is that
the parameter space tends to be quite large to explore with all the configurations taking
into consideration.
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Table 1. List of parameters employed for the extended version of the classical stencil.

Parameters Range of Values

Problem sizes 16 M, 32 M, 64 M (1D), 8K2, 16K2, 32K2 (2D) 1283, 2563, 5123,
10243 (3D)

Stencil sizes(r) 1, 2, 4, 5, 7, 14

Stencil 1D 3pt, 1D 11pt, 2D 5pt, 2D 121pt, 3D 7pt, 3D 13pt, 3D 25pt, 3D 27pt,
3D 43pt, 3D 85pt, 3D 125pt Jacobi

Time-steps 1, 100

Algorithms
naive, loop unroll, loop fusion, address precalculation redundancy
elimination, instruction reordering semi-stencil, load balance,
compound recipes

4.2. Testbed Architectures

The following two leading platforms described in Table 2 are used to carry out the
experiments.

• Intel Xeon E5: Intel Xeon CPU E5-2640 v4 @ 2.40 GHz, with 20 physical cores divided
into 2 NUMA nodes, and AVX supported.

• ARM: ARMv8 ISA64 compatible processors, with 64 physical cores in total and evenly
divided into 8 NUMA nodes, and SIMD Extension NEON supported [18].

Table 2. Architectural summary of experimental platforms.

Core Architecture

Type superscalar out-of-order superscalar out-of-order

SIMD NEON AVX

Threads/Core 1 1

Clock (GHz) 2.2-2.4 2.4

DP (GFlops) 8.8 19.2

L1 Cache (D + I) 32 KB + 32 KB 32 KB + 32 KB

Socket Architecture

Cores/Socket 4 10

L2 Data Cache 2 MB/4 Cores 256 KB

Shared L3 Data Cache - 25 MB

primary memory parallelism
paradigm HW prefetch HW prefetch

System Architecture

Sockets/SMP 2 1

DP (GFlops) 563.2 @ 2.2 GHz 384

DRAM BW (GB/s) 204.8 68.3

DP Flop: Byte Ratio 2.75 5.62

DRAM Capacity (GB) 256 64

DRAM Type DDR4-2666 DDR4-2133

System Power (W) 100 90

Compiler gcc 8.3 gcc 4.8

4.3. Results and Analysis

As is presented in Table 3–6, both the single transformation recipe and compound
recipes results are provided. These tables show the floating-point performance for the
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stencils and the relative improvements compared to the naive implementations. The
address precalculation and redundancy elimination recipes do not apply to the 1D stencils.

Loop unrolling. The best performance improvement of 1.65× is obtained for the
2D 5pt stencil with an unrolling factor of 2. The average speedup of all the benchmarks
analyzed is 1.18×. Notably, there is a parameter space for this unrolling recipe: multi-
dimensions exist, and the unrolling factor can vary according to the number of registers on
a specific architecture and the points involved in a stencil computation.

When it comes to Intel, however, a diverse phenomenon occurs. Hardly any per-
formance improvement is obtained. It is true for both the single recipe and compound
recipes results from Figures 5–8. We attribute this to the compiler optimization strategies’
differences and optimization options’ variances of diverse versions [19,20].

Loop fusion. On Intel, the best benefit is 1.88× at 3D 7pt with a single time-step. It can
be seen that under a single time step, for the ×86 platform, 2D and 3D stencil computations
show good acceleration effects. For 1D stencil computation, the advantages of this method
are not reflected. Under multiple time steps, this data dependency is not well eliminated,
and performance is not dramatically improved.

As is demonstrated in Table 3, when it comes to ARM, we did not obtain the expected
acceleration effects. Further analysis shows that the ARM platform uses the so-called write-
streaming mechanism. When writing back an array, it does not write it to the memory
through the cache but uses a write-through strategy. It directly writes the relevant data,
which need to be written back to the memory in the form of streaming data access. In other
words, in the writing-stream mode, the loading behavior is normal and may still cause line
splits. Writes still lookup in the cache, but if they miss, then they write out to L2 or L3 or
L4 rather than starting a linefill. The above optimizations made for the write-back array do
not work as expected.

Address precalculation. When it comes to the address precalculation recipe, not
much improvement is observed among all the benchmarks investigated. One of the reasons
may be that the GCC compiler integrates such a technique or the overhead of address
computations is too small. However, we acquire the best speedup of 1.57× at 2D 5pt stencil.

Redundancy elimination. As to the redundancy elimination recipe, an average of
1.20× and the best improvement of 1.45× are acquired.

Instruction reordering. Poor performance improvements occur for all the benchmarks
employed when investigating the instruction reordering recipe. One main cause of this
phenomenon may be that the stencils we consider are of simple structures without many
related benefits to be explored.

FB algorithm. In the forward and backward algorithm, five stencil radii of
r = 1, 2, 4, 7, 14 are coded, as is shown in Tables 5 and 6. As is analyzed above, the
stencil radius has a significant effect on the data reuse and arithmetic intensity of the
stencil computation pattern. The bigger stencil radius implies a better improvement of this
specific algorithm. On ARM, a speedup of 1.70× is obtained at r = 14 (a 3D-85pt stencil)
for an input grid domain of 256 × 256 × 256. Similar results are observed on Intel, with
the best improvement of 1.47× at r = 14 (a 3D 85pt stencil) for an input grid domain of
512 × 512 × 512.

Compound recipes. In Figure 7, p stands for address precalculation strategy, e stands
for redundancy elimination strategy, u stands for loop unrolling strategy, and b stands for
the load balance recipe. A combination of the above-mentioned transformation recipes
presents excellent improvement behavior. To be specific, a combination of address precal-
culation and redundancy elimination (p.e.) presents a 1.27× performance improvement.
A speedup of 1.92× is obtained by combining three recipes (p.e.u). The p.e.b. combination
demonstrates a 1.62× speedup over the naive version. By the p.e.u.b. recipe, we implement
a 1.79× speedup.
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Figure 5. Experimental results of the proposed transformation recipes: (a) single recipe (ARM).
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Figure 6. Experimental results of the proposed transformation recipes: (b) single recipe (Intel).
 

 
  

Figure 7. Experimental results of the proposed transformation recipes (c) compound recipes (ARM).
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Figure 8. Experimental results of the proposed transformation recipes: (d) compound recipes (Intel).

Table 3. Experimental results of the proposed transformation recipes: (e) loop fusion (ARM).

3D 7pt N Naive Fusion Speedup

T = 1 128 1.15 1.15 1.00
T = 100 1.46 1.18 0.81

T = 1 256 1.23 0.91 0.74
T = 100 1.56 0.92 0.58

T = 1 512 0.94 0.79 0.84
T = 100 1.13 0.80 0.70

2D 5pt N naive fusion Speedup

T = 1 8K 0.63 0.74 1.17
T = 100 0.76 0.75 0.99

T = 1 16K 0.60 0.62 1.02
T = 100 0.73 0.62 0.85

T = 1 32K 0.53 0.47 0.87
T = 100 0.64 0.46 0.73

1D 3pt N naive fusion Speedup

T = 1 16M 0.89 0.57 0.64
T = 100 1.67 0.57 0.34

T = 1 32M 0.90 0.55 0.61
T=100 1.66 0.55 0.33

T = 1 64M 0.90 0.53 0.59
T = 100 1.66 0.53 0.32

Table 4. Experimental results of the proposed transformation recipes: (f) loop fusion (Intel).

3D-7pt N Naive Fusion Speedup

T = 1 128 2.03 3.83 1.88×
T = 100 4.20 4.34 1.03×

T = 1 256 2.57 3.74 1.45×
T = 100 4.05 3.75 0.92×

T = 1 512 2.48 3.67 1.48×
T = 100 3.89 3.67 0.94×
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Table 4. Cont.

2D-5pt N naive fusion Speedup

T = 1 8K 1.68 2.46 1.45×
T = 100 2.57 2.45 0.95×

T = 1 16K 1.61 2.39 1.48×
T = 100 2.40 2.39 0.99×

T = 1 32K 1.35 2.39 1.76×
T = 100 2.08 2.13 1.02×

1D-3pt N naive fusion Speedup

T = 1 16M 1.03 0.79 0.76×
T = 100 1.67 0.79 0.47×

T = 1 32M 1.04 0.79 0.75×
T = 100 1.66 0.80 0.48×

T = 1 64M 1.02 0.81 0.79×
T = 100 1.69 0.81 0.48×

Table 5. Experimental results of the proposed transformation recipes: (g) forward and backward
algorithm (ARM).

N Version
r = 1 r = 2 r = 4 r = 7 r = 14

GFs. Spe. GFs. Spe. GFs. Spe. GFs. Spe. GFs. Spe.

128
naive 1.85 1.00× 2.52 1.00× 1.55 1.00× 1.16 1.00× 1.17 1.00×

fb 1.45 0.78× 2.16 0.86× 1.62 1.05× 1.38 1.19× 1.79 1.53×

256
naive 1.96 1.00× 1.62 1.00× 1.44 1.00× 0.95 1.00× 0.83 1.00×

fb 1.47 0.75× 1.48 0.91× 1.45 1.01× 1.09 1.15× 1.41 1.70×

512
naive 1.41 1.00× 1.99 1.00× 1.32 1.00× 1.00 1.00× 0.75 1.00×

fb 0.55 0.39× 1.71 0.86× 1.45 1.10× 1.07 1.07× 1.20 1.60×

1024
naive 0.84 1.00× 1.61 1.00× 1.40 1.00× 0.93 1.00× 0.69 1.00×

fb 0.82 0.98× 1.11 0.69× 1.43 1.02× 0.92 0.99× 1.06 1.52×

Table 6. Experimental results of the proposed transformation recipes: (h) forward and backward
algorithm (Intel).

N Version
r = 1 r = 2 r = 4 r = 7 r = 14

GFs. Spe. GFs. Spe. GFs. Spe. GFs. Spe. GFs. Spe.

128
naive 4.73 1.00× 5.84 1.00× 2.37 1.00× 2.18 1.00× 2.52 1.00×

fb 3.19 0.68× 4.12 0.71× 2.91 1.23× 2.13 0.98× 2.77 1.10×

256
naive 5.06 1.00× 5.66 1.00× 2.27 1.00× 1.73 1.00× 1.76 1.00×

fb 3.17 0.63× 4.05 0.72× 2.68 1.18× 1.82 1.05× 1.95 1.10×

512
naive 2.44 1.00× 3.96 1.00× 2.04 1.00× 1.74 1.00× 1.15 1.00×

fb 1.48 0.61× 3.76 0.95× 2.36 1.16× 1.69 0.97× 1.70 1.47×

1024
naive 2.56 1.00× 3.60 1.00× 1.88 1.00× 1.59 1.00× 1.06 1.00×

fb 1.99 0.78× 2.81 0.78× 1.94 1.03× 1.59 1.00× 1.54 1.45×

5. Related Work

It is no doubt that compiler optimization techniques incorporated in production
compilers are of vital significance. Meanwhile, interests in the optimizations of stencil
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computations are not new. Many remarkable techniques [9,10,13,21–24] were put for-
ward in the previous decades. Refs. [25,26] described a high-level description of code
transformations that serve as an interface to describe the composition of complex code
transformations. How the interface is designed for both compiler developers and appli-
cation/library developers is discussed. Better performance than manually-tuned codes
is obtained. Refs. [27,28] proposed a model-guided empirical optimization framework in
which techniques including splitting, fusion and distribution, permutation, unroll-and-
jam, tiling, and data copy are studied on matrix vector and matrix multiply. Ref. [4]
performed similar work. Ref. [29] presented an embedded scripting language, POET,
which can be embedded within an arbitrary programming language, and support efficient
parameterization of general code transformations produced either by compilers or by
professional programmers. It significantly reduced the empirical tuning time of otherwise
using a sophisticated source-code optimizer. Ref. [30] conducted similar work. Other
works, such as [6,7,31], described general frameworks to represent loop transformations
or put forward new approaches to transformations for general loop nests and stencils.
ExaStencils [32] is such a project of which the central goal is to develop a radically new
software technology for applications with exascale performance. The domain chosen by
the project is stencil codes, especially the compute-intensive ones. The software technology
developed in ExaStencils tries to facilitate the highly automatic generation of a large variety
of efficient implementations via the judicious use of domain-specific knowledge in each
sequence of optimization steps such that, in the end, exascale performance results are
obtained.

Our work is a new trail and a combination of stencils and loop transformations.
We made an effort to test the traditional transformation recipes on stencil computations
and illustrate the possible benefits that may exist. The goal of our LOOPI project is to
accomplish an automatic optimization framework for arbitrary stencils. In other words,
the user of the framework does not consider the specific architectural details after defining
the stencil patterns they concern, which is of great relief for programmers in the tedious
tuning and optimizing process.

6. Conclusions and Future Work

In this paper, we investigated the optimization recipes for loop transformations. For
the past decades, loop transformations have been integrated successfully into compilers
as standard configurations. Some traditional recipes, such as loop unrolling, were set as
default optimizations by many commodity compilers. However, the effects they have upon
stencil computations are unknown, although they may behave well on many loop kernels.
Our work is an effort to explore the potential benefits these recipes may bring to the stencil
computations. Unsurprisingly, not all the recipes we considered in this work benefit the
stencil computations.
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