
����������
�������

Citation: Hue, A.; Sharma, G.; Dricot,

J.-M. Privacy-Enhanced MQTT

Protocol for Massive IoT. Electronics

2022, 11, 70. https://doi.org/

10.3390/electronics11010070

Academic Editor: Dongkyun Kim

Received: 23 November 2021

Accepted: 20 December 2021

Published: 27 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Privacy-Enhanced MQTT Protocol for Massive IoT

Axelle Hue 1,* , Gaurav Sharma 2,* and Jean-Michel Dricot 1,*

1 Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles, 1050 Brussels, Belgium
2 Département d’Informatique, Université Libre de Bruxelles, 1050 Brussels, Belgium
* Correspondence: hue.axelle@gmail.com (A.H.); gaurav.sharma@ulb.be (G.S.);

jean-michel.dricot@ulb.be (J.-M.D.)

Abstract: The growing expectations for ubiquitous sensing have led to the integration of countless
embedded sensors, actuators, and RFIDs in our surroundings. Combined with rapid developments
in high-speed wireless networks, these resource-constrained devices are paving the road for the
Internet-of-Things paradigm, a computing model aiming to bring together millions of heterogeneous
and pervasive elements. However, it is commonly accepted that the Privacy consideration remains
one of its main challenges, a notion that does not only encompasses malicious individuals but
can also be extended to honest-but-curious third-parties. In this paper, we study the design of a
privacy-enhanced communication protocol for lightweight IoT devices. Applying the proposed
approach to MQTT, a highly popular lightweight publish/subscribe communication protocol prevents
no valuable information from being extracted from the messages flowing through the broker. In
addition, it also prevents partners re-identification. Starting from a privacy-ideal, but unpractical,
exact transposition of the Oblivious Transfer (OT) technology to MQTT, this paper follows an
iterative process where each previous model’s drawbacks are appropriately mitigated all the while
trying to preserve acceptable privacy levels. Our work provides resistance to statistical analysis
attacks and dynamically supports new client participation. Additionally the whole proposal is
based on the existence of a non-communicating 3rd party during pre-development. This particular
contribution reaches a proof-of-concept stage through implementation, and achieves its goals thanks to
OT’s indistinguishability property as well as hash-based topic obfuscations.

Keywords: IoT; MQTT; privacy; oblivious transfer

1. Introduction

The future goal of computing is to surround us. This is particularly true as the numbers
of devices connected to the internet and disseminated all around us or in our homes has
been steadily growing for the past few years. Combined with the rapid development of
high-speed wireless networks, the booming expectations for ubiquitous data processing
have paved the road for the emergence of a new computing paradigm: the Internet-of-Things
(IoT). Via a complex network of sensors, actuators, and Radio Frequency Identification Tags
(RFID) smoothly embedded in all domains of our daily lives, this model looks to achieve
extensive data collection and processing in order to create a global operating picture of
the physical reality and improve our quality of life [1] all the while minimizing human
involvement [2]. Aiming to regroup billions of heterogeneous devices together, the IoT is
expected to connect 75.4 billion elements by 2025, for an annual global economic impact
going from 2.5 to 6.2 trillions USD [2].

While this paradigm presents a fertile ground for numerous innovative and pervasive
applications, the amount and the nature of all data shared between the various platforms,
from location tags to health monitoring, have brought forth the necessity for strict data
handling requirements. In particular, a survey conducted in 2013 by IEEE highlighted
that 46% of all respondents considered privacy issues to be the main obstacles to the
widespread use of IoT devices [3]. While privacy laws such as the EU General Data Protection

Electronics 2022, 11, 70. https://doi.org/10.3390/electronics11010070 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11010070
https://doi.org/10.3390/electronics11010070
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9246-9962
https://orcid.org/0000-0003-2842-3788
https://orcid.org/0000-0002-8539-9940
https://doi.org/10.3390/electronics11010070
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11010070?type=check_update&version=1

Electronics 2022, 11, 70 2 of 16

Regulation (GDPR) maintain an essential role in ensuring service providers’ compliance and
accountability, it is arguable that their underlying principles ought to be directly represented
in the technology [1] and hence guarantee a form of “inherent” privacy protection. Such
results can be obtained thanks to the efficient implementation and combination of Privacy-
Enhancing Technologies (PET). However, it is worth noting that the definitions of privacy
threat are not only limited to the scope of malicious adversaries. Indeed, recent years
have also unraveled the financial gain a service provider can obtain from shared user
information (e.g., in advertisement profit). Assuming such honest-but-curious third-party
models, it is conceivable that extra privacy-preserving considerations should be applied to
these scenarios.

Given the highly popular application-layer Message Queue Telemetry Transport
(MQTT) protocol [4], privacy threats can then be considered at the scale of the protocol’s
broker, i.e., the intermediary server in charge of redirecting the data transmitted by one de-
vice to an arbitrary large number of interested clients. The bottleneck of all communications,
the MQTT broker is indeed by default able to read any messages relying on its forwarding
services, to identify their source and their destination. Our contribution hence resides in
an actual privacy-enhanced communication protocol where messages are encrypted to
preserve their confidentiality. Inspired from the OT-PET, this design also prevents partners
re-identification. In other words, by observing all flowing messages, the broker is unable
to re-associate both ends of the communication, meaning that our contribution ensures
that an honest-but-curious third-party cannot identify who is communicating and with
whom. Additionally, the privacy of message content and subject is also protected. Finally,
it also presents the highly practical advantage to be compatible with the pre-existing MQTT
v5.0 standard, by only requiring actions on the client ends. One objective of this work is to
design a protocol keeping lightweight IoT devices in mind while still meeting the target
privacy level.

The rest of the paper is organized as follows: Section 2 provides a detailed overview
on the MQTT protocol, its threat model vis-à-vis an honest-but-curious MQTT broker and
existing solutions. Subsequently, Section 3 presents the details about oblivious transfer and
proposed communication protocol based on OT-MQTT. Finally, Section 4 summarizes this
protocol’s implementation, and this work is concluded in Section 5.

2. MQTT and Threat Model

MQTT is an application-layer communication protocol built on the TCP/IP trans-
port protocol. MQTT is suitable for IoT lightweight devices and achieves low network
bandwidth by minimizing header size. Equipped with bidirectional communications, this
protocol guaranties high degrees of reliability. MQTT also provides optional security with
tools such as TLS and OAuth authentication. The MQTT communication approach is based
on a highly decoupled structure: the publish/subscribe model. Concretely, this amounts to a
system where both ends of the communication are autonomous (i.e., both have no notions
about the existence of the other) and rely on a third party, called the broker, to distribute the
messages to all its intended destinations [5]. In particular, this aspect plays a significant
role in the scalability potential of this protocol: the sender only needs to send its data once
without knowing how many clients will be served by the broker. Moreover, adding an
additional client to the scheme is completely transparent.

On the one hand, a device called a Publisher pushes (or “publishes”) its data towards
the broker on a certain path named a “topic” (e.g., ‘temperature’). On the other hand, any
Subscriber interested in this specific type of data notifies its interest in the aforementioned
topic by subscribing to it. In between, as an intermediary, the broker centralizes, filters,
and correctly redistributes each newly available message. In particular, this aspect plays a
significant role in the scalability potential of this protocol: the sender only needs to send
its data once without knowing how many clients will be served by the broker. Moreover,
adding an additional client to the scheme is completely transparent. As a consequence of
this approach, please note that correct topic definitions are essential to support adequate

Electronics 2022, 11, 70 3 of 16

filtering and routing. More formally, a topic corresponds to a hierarchical string that can be
extended by two wildcards, namely “+” (to replace a single topic level) and “#” (to receive
all subtopics from that level on) [5]. An example of this functionality is given in Table 1.

Table 1. Example of topic wildcard usage.

Available Topics Subscription to Sensor/+/Room1 Subscription to Sensor/House1/#

sensor/
sensor/house1 sensor/house1
sensor/house1/room1 sensor/house1/room1 sensor/house1/room1
sensor/house1/room2 sensor/house1/room2
sensor/house2
sensor/house2/room1 sensor/house2/room1
sensor/house2/room2

2.1. Threat Model

MQTT as a ligthweight, simple, and generic protocol offers no authentication or
payload encryption schemes in its default configuration. This seems like a dire oversight
as the support of wildcards creates an inherent flaw: any adversary with an access to the
broker can eavesdrop on all data flowing through it. While some issues can be mitigated
using Intrusion Detection Systems (IDS), this particular shortcoming shows that MQTT was
not designed with security as a primary requirement. Anthraper and Kotak highlighted a
series of security issues, summarized here [5]:

• Confidentiality/Privacy: in the absence of proper payload encryption, subscribing to
any random topic might give access to sensitive data (such as GPS coordinates).

• Integrity: in default configuration, any adversary intercepting the communication
can modify, on the fly, the body of a message and, for example, add some malicious
firmware updates. Such messages would then be forwarded to the subscribers.

• Availability: Without additional actions, MQTT is vulnerable to a denial-of-service
attack (DoS). In particular, if an attacker succeeds in acquiring the victim’s client ID,
they can substitute their own connection to the legitimate one and hence starve the
victim of all its incoming data.

• Authentication: This functionality is entirely optional in MQTT. An authentication
via username and password is available but, as there is no packet encryption, such
credentials can be easily intercepted.

• Authorization: MQTT dependence on the WebSocket service makes it inherently
vulnerable to malicious script injections.

2.2. Related Work

Considering the above mentioned threats, several MQTT security patches have been
developed. First, and only for unconstrained devices, most MQTT implementations
now support optional SSL/TLS communications for adequate encryption at the trans-
port level [4]. In addition, to account for lightweight devices, Singh et al. also proposed a
secure MQTT (SMQTT) version using Attribute-Base Encryption (ABE) over elliptic curves
in lieu of certificates [6]. Moreover, in 2014, Neisse et al. developed a solution based on
their Model-based Security Toolkit (SecKit) to enforce compliance with the EU security policy
rules and integrated it directly at the MQTT layer [7]. Furthermore, it was proved possi-
ble to use the Password-only Authentication and Key exchange (PAKE) algorithm to secure
all broker-client communications [8]. Finally, the MQTT standard supports the modern
authentication protocol OAuth [4].

As far as the broker is concerned, it is important to note that most of the solutions
cited here above actually rely on the idea of an honest middleman. For example, the
SecKit solution must be integrated directly in the broker. On the other hand, the SSL
implementation in Mosquitto (an open source MQTT broker) does not offer end-to-end

Electronics 2022, 11, 70 4 of 16

encryption while the PAKE implementation only concerned broker-client sessions: in both
cases, the entire packet is readable by the intermediary server [8].

Consequently, in terms of privacy-awareness, we argue that it is reasonable to assume
an extension of that model, namely an honest-but-curious broker. In other words, the
broker is expected to always behave in accordance with the protocol rules, all the while
trying to learn as much as possible on the data exchanged. Besides generic privacy leaks,
this also brings up another issue, this time related to topics. Indeed, while payloads could
easily be ciphered, topics must imperatively remain readable by the broker for efficient
filtering and distribution. Nonetheless, topic strings can also be the origin of privacy leaks:
for instance, after repetitive observations, a light switch toggle in a given house could be
used to infer the user’s sleeping habits [8].

For those reasons, this contribution aims to ensure the following points by focusing
on the honest-but-curious broker’s threats:
• no significant information should be inferred from the topics flowing through the

broker;
• the broker should not achieve partner re-identification (i.e., it cannot identify who was

communicating and with whom).

Additionally, the privacy-enhanced protocol presented here was designed with con-
strained devices in mind and each proposed solution shall be discussed accordingly.

3. Communication Architecture and Protocol

The methodology used to develop this protocol amounts to an iterative process. In
other words, this section goes from the most privacy-preserving protocol to a more practical
one that still presents an acceptable level of privacy-awareness. Our protocol is entirely
articulated around the OT primitive which is an application-layer privacy-preserving
technique, briefly discussed below.

Oblivious Transfer is an important cryptographic primitive employed in several
secure and privacy-preserving protocols in various application domains, such as contract
signing or Private Information Retrieval [9]. Similar to zero-knowledge proof (ZKP), it is a
2-party communication scheme, this time between a sender S and a receiver R. Intuitively,
an OT communication can be summarized as follows: the sender holds a secret that the
receiver wants to learn and to do so, queries S about several entries. The subtility then lies
in that R does not want S to know which data were really targeted (among all queries) or
even if the secret did reach its destination. Symmetrically, R should only be able to decipher
the data it actually requested.

Rabin first introduced the OT concept by describing a situation where S sends a secret
to R such that R has a 1/2 probability to receive it and S has no knowledge of what actually
happened [10]. Then, Even, Goldreich, and Lepel proposed the “1-out-of-2” scheme (OT1

2)
in which S sends two 1-bit secrets (m0, m1), but only one of them is retrieved by R [11]. This
simple idea has then been extended with the notion of ‘choice’, meaning that R initially
communicates an hidden index (a ‘choice’ between m0 and m1) to S and, ultimately, S shall
not be able to learn anything about that value [12]. Finally, Brassard, Crépeau, and Robert
formalized a generalization called the “k-out-of-n” scheme (OTk

n): S possesses n secrets
and R wants to retrieve k of them simultaneously (with k < n) [13]. This specific generic
protocol is detailed in Figure 1.

Finally, as far as properties are concerned, any correct OTk
n-implementation ought to

satisfy some security requirements such as receiver’s privacy, sender’s indistinguishability,
and sender’s accountability [9].

Electronics 2022, 11, 70 5 of 16

Inputs: System Parameter SP = Setup(1λ) with λ a
security parameter;
Secret set M = m1, m2, ..., mn;
Choice set G = l1, l2, ..., lk with k < n.
Protocol:
R→ S: Using SP and G, R outputs (T, sk) with sk a

secret key. T includes a token representing
the

choice set, a proof information Σ (to check if
|G| ≤ k) and a number k. R sends T to S.

S→ R: Verify if |G| ≤ k (Verification Algorithm). If
the verification holds, S encrypts the data

using
SP, T’s token and M (Encryption Algo-

rithm).
S sends the ciphertext set CT to R.

Outputs: Using SP, CT, sk, and G, R returns a deci-
phered message mi if and only i ∈ G.

Figure 1. The OTk
n scheme [9].

3.1. Applying the OT Protocol to MQTT

This model, called model_0 and based on the OTk
n primitive, constitutes the “ideal

protocol” and this discussion’s starting point. Consequently, to clarify the analogy with
the protocol described in Figure 1, let us consider a Publisher (OT’s Sender) that has the
capability to push data to n different topics (or n secrets), and several Subscribers (OT’s
Receivers), each interested in k topics (or k choices). Additionally, we assume n > 1 (each
producer has at least two potential sources of data) and k < n (consumers only subscribe
to existing topics). The main idea behind this first model is hence that a Subscriber shall
receive all possible data but can only decipher the ones they originally chose, thanks to an
OTk

n implementation.
However, implementing the OTk

n scheme requires at least two communication rounds
and a bidirectional communication channel between Publisher and Subscribers. This last
point is easily achievable without extensive modification to the MQTT protocol. Indeed, it
is possible to imagine a scheme where any new participant Publisher would automatically
be subscribed to a reserved “ClientName/choice” topic, dynamically creating it if needed (no
prior initialization needed [14]). Subsequently, Subscribers would then use that channel to
communicate their choice.

Figure 2 provides a high level overview of this first model. While this protocol is quite
straightforward, two aspects should be analyzed carefully:

• Topic formats: The first thing to ensure here is that the Subscribers do not receive
all messages pushed to the “choice” topic (including their own) as it would congest
the network unnecessarily. For that reason, the proposed topic format is “Client-
Name/choice” for the Receiver–Sender communication and “ClientName/data/#” other-
wise. On the one hand, this solution guarantees the separation between both types
of messages as the choice topic always corresponds to a higher topic level than any
other data. On the other hand, it also protects it from the “+” wildcard as it is never
matched by ClientName/+/....

• Manage data availability: MQTT is based on the idea that a given data will be pushed
as soon as available. However, to work correctly, the OTk

n scheme requires all n types
of data to be sent simultaneously as the Sender does not know what data are required
by the other parties. A first solution consists of sending a given piece of data as soon
as it is available considering that only the topic-intended Subscribers would try and
be able to correctly decrypt the packet anyway. This might cause a privacy leak: the
broker can still learn by observing what topic is active at a given moment and at which

Electronics 2022, 11, 70 6 of 16

frequency (e.g., learn when a light switch is activated). Moreover, if a given Receiver
switches off or unsubscribes right after receiving a given message, it is also possible
to infer some information on that client’s initial choices, thus violating their privacy.
Hence, the solution proposed here is to always publish to all topics by pushing real
data on active topics, and random values on the others.

Finally, based directly on the OTk
n scheme, this model fully benefits from the OT

privacy protection. As far as the honest-but-curious broker is concerned, it cannot know
what topics were actually active nor associate a selective set of topics (choices) to any
specific Subscriber.

Nevertheless, model_0 is not realistic as it presents a few major drawbacks:

• Data are sent on all topics at each push: as mentioned earlier, to guarantee the
privacy on active topics and not assuming anything on the different clients’ interests,
a Publisher must send n messages each time new data are to be pushed. Subsequently,
it also means that the broker must redistribute n messages to all Subscribers. This
might cause a major scalability issue as it would greatly increase the network load.

• Multiple subscribers with different choices: this model is once again not easily scal-
able as each Subscriber requires a different encryption to account for his own private
choice (depending of its own k-topic of interest and private key). Indeed, please note
that Figure 2 describes a one-to-one situation, meaning that the sending client must
repeat this entire protocol with every different token received on the “choice” topic.
Similar to the previous drawback, this causes massive network overload, especially
considering that, while a Publisher must serve all clients’ choices, each Subscriber also
receives the message encrypted for the others because of the # wildcard, without being
able to decipher them correctly. Finally, this phenomenon also highlights a conceptual
contradiction: while MQTT aims to decouple the client-to-client communication, this
protocol bypasses all advantages offered by a broker and actually performs worse than
simple one-to-one communications. In particular, the majority of messages received
on the other side of the communication are useless and must be discarded.

Publisher associated
with clientExam-
ple/data/#

One given Subscriber

Subscribes to clientExam-
ple/choice.

Subscribes to clientExam-
ple/data/#.
Computes its choice token
and secret key (T, sk).
Publishes its choice on to
clientExample/choice.

Receives the Subscriber’s
choices.
Encrypt available data if
active topic.
Encrypt random message,
otherwise.
Publishes each message
on its associated topic.

Figure 2. Model 0—Overview.

3.2. OT-Inspired MQTT Protocol

This next idea rests on the plausible assumption that Publisher and Subscribers must
have a pre-agreed knowledge of each other. In particular, a Subscriber (namely, an appli-
cation) commonly requires some basic information (e.g., the position) on a given sensor
plugged on to the Publisher to fully ensure its functionalities. This implies the existence of

Electronics 2022, 11, 70 7 of 16

a non-communicating 3rd party involved during pre-deployment, for instance the system
or device manager, meaning that necessary assets could be shared before even relying on
MQTT communications.

This aspect is crucial in the following model. Indeed, in this proposed solution
(model_1.0, refer Figure 3) that directly extends model_0, we assume that all “choice”
tokens and private keys in a OT1

n have been computed beforehand, mapped to the corre-
sponding topic, and downloaded to all legitimate participants. That being said, please note
that, to prevent any Subscribers from having access to data they do not require, only the set
of interest mappings (i.e., the one related to the topics they are supposed to subscribe to) is
downloaded, whereas the Publisher possesses the whole correspondence table. Moreover,
Subscribers’ mapping also stores the secret keys necessary for message decryption. In these
conditions, the Producer can rightfully use the downloaded information to encrypt all
messages (random or not) using the active topic’s token. Upon reception, Subscribers auto-
matically discard messages from topics not stored in their lookup table and try to decipher
the topics whose mapping they possess. As a matter of fact, this solution is not strictly “OT”
as the Publisher has perfect knowledge of what data has been sent. Nonetheless, based
on an correct OT protocol, it guarantees an OT-compliant communication at the broker’s
scale: without knowledge of that mapping, an honest-but-curious third-party does not
learn which are the active topics and with whom they are shared. Finally, regarding the
pre-deployed mapping, it is reasonable to assume that any change in the system could be
accounted for by a simple firmware update.

Publisher associated
with clientExam-
ple/data/#

One given Subscriber

Subscribes to clientExam-
ple/data/#.

Encrypts actual data when
they become available us-
ing the choice token asso-
ciated with that topic.
Encrypts random value
message for inactive top-
ics with the same token.
Publishes each message
on its corresponding
topic.

Tries to decrypt each mes-
sage with the sk mapping
to the topic on which the
message was received.

Figure 3. Model_1.0—Overview.

Figure 4 illustrates this model and highlights the importance of a Decryption Failure
Prevention mechanism. Enc(ki, mj) and Dec(ki, mj) represent the encryption and decryp-
tion, respectively, of message mj using secret key ki. Let us imagine a situation where a
Publisher P wishes to publish a message on an active topic, “.../topic3”. As suggested earlier,
P encrypts messages for all possible topics using the token associated with topic3 and sends
them to the broker. Let it be two Subscribers S1 and S2, both interested in distinct subsets
of data. Upon reception of the messages distributed by the broker, S1 (respectively S2)
automatically discards all data linked to topics 4 and 5 (resp. 1 and 2). However, regarding
the remaining messages, both Subscribers have no knowledge of the key used and, as a first
naive implementation, will try to decipher each topic with its expected secret key. Failed
occurrence will lead to the discarding of the data. This last point inherently brings forth
two issues. Firstly, how can the subscriber detect that a given decryption failed? Secondly,

Electronics 2022, 11, 70 8 of 16

trying to decipher each message causes unnecessary decryption overhead that should be
particularly avoided in the context of resource-constrained devices.

Figure 4. Model_1.0—.../topic3 is active.

Decryption Failure anticipating mechanism: To account for the two problems cited
here above, this model recommends the use of a Decryption Failure anticipating mechanism,
meaning that a client should be able to detect its inability to decrypt a given message before
even trying. The proposed mechanism unfolds as:

• Sender’s side: upon sending each message encrypted with the key ki, the Publisher
also appends this choice token. As this asset ki is inherently protected under the Re-
ceiver’s Privacy property of OT protocols, that value does not need to be encrypted
and could simply be concatenated to the messages or stored in a specific packet field.
Indeed, without the knowledge of the secret keys, no decryption is possible.

• Receiver’s side: let us imagine a Subscriber interested in topics i, j, and l. In order to
detect a would-be random message, it suffices to compare the sent token to the one
associated with the expected key ki, k j, and kl . If one of these comparisons hold, the
message is decrypted. Otherwise, it is discarded and there is no overhead caused by
unnecessary decryption.

To conclude, model_1.0 has the merit to answer the main problems brought up by the
previous one:

• No conceptual contradictions: model_1.0 preserves the decoupled architecture ad-
vocated by the MQTT protocol. In other words, the Publisher sends data without
requiring any prior communication rounds with the Receivers. This was made possi-
ble under the assumption that all participants share a knowledge of the topic-token
mapping.

• Decreased network load: subsequently to the previous point, the network load is de-
creased as the Publisher only needs to publish the encrypted data once, independently
of the number of recipients.

Nevertheless, for the same reasons as model_0, it also guaranties enhanced privacy
and prevents partners re-identification by the broker.

3.3. Further Improvements

To achieve further decrease on the network load and encryption overhead, here we
present a modified model_1.1, still relying on the publication of various topics to mask the
active one but that does not require all possible topics to be emitted. Simultaneously sending
a subset of topics, called the Publication set, suffices to hide this information. Symmetrically,

Electronics 2022, 11, 70 9 of 16

this model only requires from the Receivers to subscribe to a limited number of “dummy
topics” (i.e., topics of no interest) which, together with the legitimate topics, amounts to
the Subscription set. Additionally, and to preserve this model’s original purpose, these sets’
construction is also based on a pseudo-randomized approach:

• On the Publisher’s side: contrary to the previous model, a topic activity does not
require messages from all possible topics to be emitted. Only a fraction of the available
topics are randomly chosen at each round and are needed to mask the active one.
Ultimately, this reduces the Publisher’s encryption overhead.

• On the Subscribers’ side: each client is asked to subscribe to a random number
of dummy topics (and not to the # wildcard). This aims to confuse the broker as
it cannot make the difference between a chosen and unchosen message (thanks to
OTk

n sender’s indistinguishability), and hence cannot infer what the topics of interest
actually were. However, it is notable that knowing what topics were never of interest
(i.e., topics that are never sent to a given client) constitutes in itself a privacy leak.
As a first approximation, a possible mitigation could thus be to pseudo-periodically
unsubscribe from all topics and recompute a new random “dummy topics” set.

Ultimately, this model reduces the quantity of useless exchanged messages on the
network. However, while both points appear satisfying when considering a limited num-
bers of sending round, it must be noted that the broker has the possibility to observe an
arbitrarily large number of communications and might be able to infer some information
from “pivot” topics. In particular, it would be able to guess with a reasonable probability
of success whether a topic is active and at which frequency (e.g., a given topic is emitted
20 times in a row every 60 rounds), or what are the topics of interest to a given client (those
are indeed constant members of the Subscription set). As a consequence, the closer the
publication/subscription sets’ sizes tend to the number of possible topics, the higher the
privacy. Additionally, the Decryption Failure anticipating mechanism presented in the
previous model also adds upon this issue, as the active topic’s choice token is constant
across a given round of messages and constitutes a potential statistical vulnerability. The
broker could compute a correlation between that value frequency and the sent topics in
order to detect the active topic with a reasonable probability. In other words, the inherent
pseudo-randomness of this approach renders it vulnerable to statistical analysis attack.

3.3.1. Countering Statistical Analysis Attacks

The most important observation made by this improved model, called model_1.2, is
that MQTT does not require the topic names to make any sense as long as all legitimate
participants can agree on their value. As a matter of fact and as mentioned earlier, topic
names are part of an information that should remain private.

Recently, in 2019, Fischer, Kümper, and Tönjes published a topic obfuscation scheme,
inspired by the One-Time Password (OTP) method [8]. Let it be a hash function F : ∗ →
{a − z, A − Z, 0− 9}∗, shared between all participants, and a random string, p. In this
presented scheme, the Sender owns one list of hash per topic where Hi

t denotes the i-th
hash in the list associated with a topic t. The aforementioned list is of size nt and follows
a specific construction: the first element is the hash of s, another random string, whereas
Hi

t = F(Hi−1
t) ∀i > 2, meaning that all other entries are computed as the hash of their direct

predecessor. Upon obfuscation agreement, the sender creates a message M containing p,
which will serve as the topics’ prefix, as well as the mapping M : t → Hnt

t ∀t ∈ Topics,
before sending it on a predefined topic. With this information, all receivers then subscribe
to /p/#. That way, if a topic t becomes active, the sender knows that it shall be published
on the /p/Hnt−1

t path that Hnt
t must be deleted from the possible mapping and that

nt ← nt − 1. On the receiving side, computing F(Hnt−1
t) and comparing it to the mapping

gives the intended topic value. In the absence of viable mapping, the message is discarded.
Otherwise, the new mapping value for t is updated to Hnt−1

t and nt ← nt− 1. This protocol
runs smoothly as long as nt > 1. Passing that limit, a new list must be constructed and
shared between all participants.

Electronics 2022, 11, 70 10 of 16

While this first method successfully obfuscates the topics names, Fischer et al. high-
lighted the following points [8]:

• Resource limitation: in case of memory-constrained devices, it only suffices to store s,
p, and nt to recompute the hash list when needed. However, this requires additional
computation power and might not be adapted for battery-powered devices.

• Vulnerable to data analysis: the main drawback of this implementation resides in its
use of standardized hash functions. Indeed, a data analyst might be able to uncover
the pattern and re-associate the exchanged messages.

To counter this last point, Fischer et al. proposed the Advanced One-Time Password
(AOTP), extending their OTP approach, to achieve fully randomized obfuscation [8].
In particular, the use of a random polynomial P at each computation acts as a “salting
mechanism”, making it harder for a data analyst to try and identify the pattern [8].

Our proposed Model_1.2 draws inspiration from Fischer et al.’s AOTP design and is
detailed in Figure 5. In order to construct this model, let it be given a hash function F : ∗ → Z,
a random polynomial P, a set S of random strings st (the seed going forward). That seed is
associated with a counter, called the seed expiration counter. The idea behind this protocol
thus goes as follows: first, we ensure that both sides of the communication agree on different
crucial parameters, namely P and the set S of initial random values that are used to generate
the first randomized names. In other words, if we define Si

t as the string associated with a
topic t at the i-th communication round, that first value is computed as S1

t = str(F(st)). For
1 < j ≤ seed expiration counter, it is computed as Sj

t = str(F(num(Sj−1
t).P(j− 1)) ∀t ∈ Topics.

Publisher associated with clientExample/# One given Subscriber
Asks to join the scheme by publishing on

ClientExample/newParticipant.
Subscribes to ClientExample/topic.

Publishes the seed mapping and P (encrypted)
to ClientExample/topic.

Computes for each topic S1
t ← str(F(initt ∗ P(1))) Computes for each topic S1

t ← str(F(initt ∗ P(1)))
While seed expiration counter> 1

Subscribes to the all topics in the subscription set
using ClientExample/Sj

t for a given t.
Encrypt data when they become available

using the choice token associated with that topic.
Encrypt random value messages for all topics

in the Publication set using the same choice token.
Publish each message on their intended topic

in the form ClientExample/Sj
t for a given t.

Sends synchronizing tick on ClientExample/topic.
Deciphers messages related to its topic of interests

using the associated sk.
Discards messages that could not be deciphered.

Updates a given topic matching Updates a given topic matching
with Sj+1

t ← str(F(num(Sj
t) ∗ P(j))). with Sj+1

t ← str(F(num(Sj
t) ∗ P(j))).

Updates j← j + 1. Updates j← j + 1.
Updates counter ← counter− 1.

Figure 5. Model_1.2—Overview.

Additionally, please note that MQTT is by nature compatible with a dynamic envi-
ronment: players can enter and quit the game at any moment. For that reason, a last
reserved topic is defined, namely “ExampleClient/newParticipant” to which the Publisher
must subscribe. Upon entry, new participants should publish to that topic to join the
protocol, forcing the reset of all parameters and meaning that all initialization assets must

Electronics 2022, 11, 70 11 of 16

be exchanged again. On top of that, this mechanism supports an unreliable network as a
reentering client would also publish a request causing said reset. Please note that this topic
does not need to be encrypted.

To conclude this model, let us consider the following points:

• Managing publication and subscription set: This model requires the subscription
set to be constant during a loop (i.e., in the time span between two parameters resets),
whereas the publication set can (and should) be recomputed at each send. This is
due to the fact that, otherwise, Subscribers would need to compute several hashing
values in a row to reach the current obfuscated name of topics it was not previously
subscribed to. This constant behavior is a non-issue as the broker is unable to detect
that pattern thanks to the obfuscation.

• Dummy topics are no longer needed: consequently, to the previous point, one can
rightly argue that the subscription set can be reduced to the “topic of interest” set as
the aforementioned interest is hidden by the name randomness. This further reduces
the network load, as a by-product.

3.3.2. Preventing Partners Association

This point will be devoted to what this work calls “interest clusters identification”,
meaning an ability of the broker to unequivocally determine sets of Publishers sharing
a common interest, whatever that interest might be. Indeed, as is, as the same choice
token is appended to all the messages from a given sending round to enable Decryption
Failure anticipation, the broker can easily compute such set from observing which clients
are always interested in messages bearing this specific “mark”.

To prevent this re-identification in model_1.2, we thus replace the Decryption Failure
anticipating mechanism by a post-decryption attempt detection (i.e., the choice token no
longer needs to be appended to the messages), at the cost of power efficiency. Consequently,
contrary to that previously suggested, the publication set should here again include random
topics to preserve the partners’ re-identifications prevention introduced earlier.

To summarize, model_1.2 improves the previous models by obfuscating all topics,
meaning that legible names are never shared on the network, thus ensuring that the broker
cannot retrieve sensitive information from these values. It also happens to further decrease
the network load by enabling the restriction of the subscription set to the “topic of interest”
set. Finally, it dynamically supports new client participation.

Regarding the statistical analysis attacks susceptibility brought up by the previous
models, two scenarios can be considered. On the one hand, the user can decide that partners
re-identification is acceptable, in which case the network load requirement can be further
decreased by restricting the publication set to the only active topic. On the other hand, a user
demanding anonymous communication might refuse this privacy violation. Consequently,
statistical analysis attacks and partner association re-identification are countered at the cost
of power efficiency via post-decryption failure detection. Ultimately, with respect to the
threat model studied in this work, we strongly advocate for this last solution which is the
one considered in the following subsection.

3.3.3. Practical Considerations

To conclude this discussion about OT-inspired communication protocols, we consider
a few practical aspects. First, regarding backward compatibility, all the models developed
here only need to be implemented on the clients’ side, meaning that it is completely
backward compatible and can work with any currently existing MQTT broker.

Additionally, a particular attention shall be given to the actual OT implementation.
Indeed, in the theoretical protocol developed here above, all messages to be sent are
encrypted with the active choice token, and a pre-deployed secret key on the Subscribers’
side enables decryption. However, please note that this particular generic OT construction
is not practical as it requires all the secret messages to belong to Gq, the order-q group
on which the scheme is constructed (e.g., in [15]). As this fact implies the existence of an

Electronics 2022, 11, 70 12 of 16

adequate strings-to-group-elements bijection, such construction is not applicable as is in
the context of MQTT communications.

The solution to this particular problem can be found in “The simplest Protocol for OT”,
proposed by Chou and Orlandi in 2015 [16]. Inspired by the Diffie–Hellman key-exchange,
this scheme uses the OT1

n primitive to derive symmetric keys which are then used to encrypt
string messages. In essence, this protocol hence generates n keys (one per message type)
from the Receiver’s choice token. Conversely, from the aforementioned token, the Receiver
is only able to construct one symmetric key corresponding to its choice, meaning that it can
only decrypt this specific message and no other. Figure 6 illustrates the 1-out-of-n version
of this scheme.

Setup:
Let it be an additive group (G, B, p,+) of prime-order p
and with B, the base point.
Let it be H : ((G×G)×G→ {0, 1}k), a hash function.
Sender chooses y← Zp, its private key.
Sender computes S = yB and T = yS.
Sender sends S to the Receiver. If S /∈ G, abort.
Choose:
For i, the index for the chosen message:

Let it be ci a vector of indices pointing to i.
Receiver chooses xi ∈ Zp, its choice secret.
Receiver computes Ri = ciS + xiB, its choice token.
Receiver sends Ri. If Ri /∈ G, abort.

Key Derivation:
For all j, the indexes of each message type:

Sender computes ki
j = H(S,Ri)(yRi − jT).

Receiver computes ki
R = H(S,Ri)(xiS).

Figure 6. Chou& Orlandi OT1
n protocol [16].

Nonetheless, while this protocol has the advantage of supporting string encryption, it
significantly differs from the OT model described earlier. In particular, whereas the generic
OT protocol advocated by model_1.2 uses a single asset (the choice token) to encrypt all
data, this one uses this same asset but to derive n keys. Of these n keys, only the one
corresponding to the active topic is ever used, meaning that the remaining n− 1 ones can
be discarded. In short, a communication requiring n possible topics only needs n keys and
not n2.

This last statement inevitably leads to a discussion about the efficiency of this OT
scheme. Indeed, this implementation’s key derivation could arguably be based on any
other pre-deployed symmetric key scheme as long as this scheme ensures the topics’
indistinguishability. In other words, a ciphertext from the active should be entirely
indistinguishable from any random-message ciphertext. Otherwise, the broker could easily
re-identify every interest cluster, which would constitute a privacy breach in the context of
an anonymous authentication scheme.

4. Implementation

This section details various implementation choices made in order to test the protocol
developed here above.

4.1. Virtual Raspberry Pi Environment

The scope of this work concerns edge-devices in the context of massive IoT. Conse-
quently, the aforementioned design phase aimed to take at each step the least resource-
consuming approach as possible while still meeting the target privacy requirements. To
that extent, a Raspberry Pi platform has been chosen as a standard device. Raspberry

Electronics 2022, 11, 70 13 of 16

Pis are single-board desktop computers not bigger than a credit card. Created by the
Raspberry Pi Foundation, their price point has always been maintained under $100 to
promote and facilitate the access to computing education [17]. Because of its open-source
software environment and numerous additional GPIO pins, these boards are often used to
control electronic components and, as such, can be indicated for IoT-related application [17].
In particular, records of IoT protocol benchmark on these platforms can be found in the
scientific literature (e.g., [8]).

As far as software is concerned, these boards run on Raspberry PiOS (previously
known as Raspbian), a Debian-based operating system that guarantees efficient floating
point arithmetic computation and is compatible with Raspberry Pi’s ARM CPUs [18]. The
proposed protocol has been tested on a full-system emulation using Qemu and a Raspbian
Jessie image.

4.2. MQTT Implementation

The broker used in this work corresponds to the highly popular Eclipse Mosquitto
Broker implementation, an open-source broker developed and maintained by the Eclipse
Foundation [19]. On the other side of the communication, all clients interact thanks to the
Eclipse Paho MQTT Client Python library, available on the Python Package Index (PyPI) [20].

4.3. OT-Inspired Implementation

In terms of open-source implementations, Chou and Orlandi’s 1-out-of-2 scheme has
been coded in various programming languages but notably in Python3 [21] by Nth Party
Ltd, Boston, MA, USA, a company offering privacy-enhancing software. Similar to Chou
and Orlandi’s original code, this specific library relies on Elliptic Curve signatures, namely
the one supported by Nth Party’s Oblivious library, available via PyPI. In particular, Oblivious
implements the Ed25519 primitive [22].

The privacy-enhanced protocol developed in this work is based on the OT1
n-protocol

and for that reason, Nth Party’s library has been changed according to the generalized
protocol proven in [16] and detailed in Figure 6. To summarize, the encryption responsibility
of model_1.2 is split between two distinct entities. On the one hand, the Device Manager
operates at the highest level and is in charge of deriving the pertinent keys. It does so
by virtually recreating Chou & Orlandi’s OT1

n 2-party exchange and storing the useful
generated assets to be deployed to each legitimate client.

On the other hand, the aforementioned clients are in charge of the actual data encryp-
tion and decryption. On top of that, all Publishers must be able to detect Decryption Failure
error as an anticipating mechanism would compromise the partners re-identification pre-
vention (see Section 3.3.2). Both functionalities were here achieved thanks to PyNaCl’s
SecretBox object. Indeed, this symmetric key-based structure generates ciphertexts contain-
ing a 16-byte authenticator which can be used at decryption to raise an exception in the
eventuality of Decryption Failure due to an invalid key [23].

4.4. Topic Obfuscation Implementation

As far as the actual operation of computing the obfuscated names is concerned, this
work uses the hash function and random polynomial as implemented by Fischer et al. [8,24]
(see Section 3.3.1). Note that the topic obfuscation scheme only works as long as all
participants are synchronized and agree on which topic names data will be sent. Indeed, by
definition of the reduced subscription set, some subscribers might not receive any message
at a given communication round, which would impede this synchronization and destroy
the mapping between Sender and Receivers. This is mitigated by sending a tick sent on
“client/topic”, but this message might arrive before the Publisher finishes processing all
the previous rounds’ messages. Additionally, a given message might arrive on a topic
whose obfuscated name has not been yet computed by some participants. All in all, this
causes an asynchronous behavior between clients, ultimately leading to message loss.
This issue has thus been resolved by combining two functionalities. On the one hand,

Electronics 2022, 11, 70 14 of 16

all messages sent by the Publisher make use of an MQTT native retaining feature via the
retain flag, which tells the broker to store this specific message, its corresponding topic, and
its QoS [25]. Ultimately, this means that the aforementioned message is to be sent to any
client subscribing to this topic at any point in the future. On the other hand, as Subscribers
might receive a tick and compute the new names before they have received messages from
the previous round, these clients actually keep in their memories not only the current
obfuscated value but all the previous ones too. This is necessary in order for the client to
know the key they should use to try and decrypt an incoming message. This mapping is
erased as soon as the obfuscation scheme is reset, whether when a new participant joins the
communication or when the obfuscation seed expires (see Section 3.3.1). Finally, to ensure
synchronization, all obfuscation parameters or ticks are published under QoS2 as it is
imperative that they are received but without duplicates.

4.5. Results-Traffic Observation

First, let us consider the messages sent/received by clients on both side of the commu-
nication. Figures 7 and 8 respectively illustrated the Publisher P and a Subscriber S points
of view. They also highlight in pink the topics belonging to S’s topic-of-interest set; in green,
the active topic; in red, an obfuscation reset; and in blue, an obfuscation synchronizing tick.

C. OT-inspired implementation

In terms of open-source implementations, Chou and Or-
landi’s 1-out-of-2 scheme has been coded in various program-
ming languages but notably in Python3 [19] by Nth Party
Ltd, a company offering privacy-enhancing software. Similar
to Chou and Orlandi’s original code, this specific library relies
on Elliptic Curve signatures, namely the one supported by
Nth Party’s Oblivious library, available via PyPI. In particular,
Oblivious implements the Ed25519 primitive [20].

The privacy-enhanced protocol developed in this work is
based on the OT 1

n-protocol and for that reason, Nth Party’s
library has been changed accordingly to the generalized pro-
tocol proven in [16] and detailed in Figure 6. To summarize,
the encryption responsibility of model 1.2 is split between 2
distinct entities. On the one hand, the Device Manager operates
at the highest level and is in charge of deriving the pertinent
keys. It does so by virtually recreating Chou & Orlandi’s OT 1

n

2-party exchange and storing the useful generated assets to be
deployed to each legitimate client.

On the other hand, said clients are in charge of the actual
data encryption and decryption. On top of that, all Pub-
lishers must be able to detect Decryption Failure error as
an anticipating mechanism would compromise the partners
re-identification prevention (see Section III-C2). Both func-
tionalities were here achieved thanks to PyNaCl’s SecretBox
object. Indeed, this symmetric key-based structure generates
ciphertexts containing a 16-bytes authenticator which can be
used at decryption to raise an exception in the eventuality of
Decryption Failure due to an invalid key [21].

D. Topic obfuscation implementation

As far as the actual operation of computing the obfuscated
names is concerned, this work uses the hash function and
random polynomial as implemented by Fischer et al. [8] [22]
(see Section III-C1). Note that the topic obfuscation scheme
only works as long as all participants are synchronized and
agree on which topic names data will be sent. Indeed, by
definition of the reduced subscription set, some subscribers
might not receive any message at a given communication
round, which would impeded this synchronization and destroy
the mapping between Sender and Receivers. This is mitigated
by sending a tick sent on ”client/topic” but this message
might arrive before the Publisher finishes to process all the
previous rounds messages. Additionally, a given message
might arrive on a topic whose obfuscated name has not been
yet computed by some participants. All in all, this causes an
asynchronous behavior between clients, ultimately leading to
message loss. This issue has thus been resolved by combining
two functionalities. On the one hand, all messages sent by
the Publisher make use of MQTT native retaining feature via
the retain flag which tells the broker to store this specific
message, its corresponding topic, and its QoS [23]. Ultimately,
this means that said message is to be sent to any client
subscribing to this topic at any point in the future. On the
other hand, as Subscribers might receive a tick and compute
the new names before they have received messages from the

Figure 7. Publisher’s View

Figure 8. Subscriber’s View

previous round, these clients actually keep in memory not only
the current obfuscated value but all the previous ones, too. This
is necessary in order for the client to know the key they should
use to try and decrypt an incoming message. This mapping is
erased as soon as the obfuscation scheme is reset, whether
when a new participant joins the communication or when
the obfuscation seed expires (see Section III-C1). Finally, to
ensure synchronization, all obfuscation parameters or ticks are
published under QoS2 as it is imperative that they are received
but without duplicates.

E. Results - Traffic observation

First, let us consider the messages sent/received by clients
on both side of the communication. Figure 7 and Figure 8
respectively illustrated the Publisher P and a Subscriber S
points of view. They also highlight in pink the topics belonging
to S’s topic-of-interest set; in green, the active topic; in red, an
obfuscation reset; and in blue, an obfuscation synchronizing
tick.

Furthermore, two observations are worth noting on Figure 8.
On the one hand, as planned, this figure shows that the

Figure 7. Publisher’s View.

Furthermore, two observations are worth noting in Figure 8. On the one hand, as
planned, this figure shows that the Subscriber was indeed only able to decrypt the message
related to the active “client/LivingRoom/Light” topic, whereas its secretBox implementation
raised a Description Failure for the inactive “client/Garden/MovementDetector”. On the
other hand, this particular example illustrates a case where messages related to the first
obfuscation arrive after the synchronizing tick and the next name computation. As expected
and by keeping in their memory all previous name mappings, S was still able to correctly
process the messages that arrived with a delay.

Finally, Figure 9 shows what a 3rd party observer (e.g., the broker) would intercept
from that communication. In particular, please note that, on the one hand, the obfuscation
parameters’ agreement is indeed encrypted and, on the other hand, thanks to the OT
encryption, it is indeed also not possible either for the server to identify the active topic
(see green box) from all other messages.

Electronics 2022, 11, 70 15 of 16

C. OT-inspired implementation

In terms of open-source implementations, Chou and Or-
landi’s 1-out-of-2 scheme has been coded in various program-
ming languages but notably in Python3 [19] by Nth Party
Ltd, a company offering privacy-enhancing software. Similar
to Chou and Orlandi’s original code, this specific library relies
on Elliptic Curve signatures, namely the one supported by
Nth Party’s Oblivious library, available via PyPI. In particular,
Oblivious implements the Ed25519 primitive [20].

The privacy-enhanced protocol developed in this work is
based on the OT 1

n-protocol and for that reason, Nth Party’s
library has been changed accordingly to the generalized pro-
tocol proven in [16] and detailed in Figure 6. To summarize,
the encryption responsibility of model 1.2 is split between 2
distinct entities. On the one hand, the Device Manager operates
at the highest level and is in charge of deriving the pertinent
keys. It does so by virtually recreating Chou & Orlandi’s OT 1

n

2-party exchange and storing the useful generated assets to be
deployed to each legitimate client.

On the other hand, said clients are in charge of the actual
data encryption and decryption. On top of that, all Pub-
lishers must be able to detect Decryption Failure error as
an anticipating mechanism would compromise the partners
re-identification prevention (see Section III-C2). Both func-
tionalities were here achieved thanks to PyNaCl’s SecretBox
object. Indeed, this symmetric key-based structure generates
ciphertexts containing a 16-bytes authenticator which can be
used at decryption to raise an exception in the eventuality of
Decryption Failure due to an invalid key [21].

D. Topic obfuscation implementation

As far as the actual operation of computing the obfuscated
names is concerned, this work uses the hash function and
random polynomial as implemented by Fischer et al. [8] [22]
(see Section III-C1). Note that the topic obfuscation scheme
only works as long as all participants are synchronized and
agree on which topic names data will be sent. Indeed, by
definition of the reduced subscription set, some subscribers
might not receive any message at a given communication
round, which would impeded this synchronization and destroy
the mapping between Sender and Receivers. This is mitigated
by sending a tick sent on ”client/topic” but this message
might arrive before the Publisher finishes to process all the
previous rounds messages. Additionally, a given message
might arrive on a topic whose obfuscated name has not been
yet computed by some participants. All in all, this causes an
asynchronous behavior between clients, ultimately leading to
message loss. This issue has thus been resolved by combining
two functionalities. On the one hand, all messages sent by
the Publisher make use of MQTT native retaining feature via
the retain flag which tells the broker to store this specific
message, its corresponding topic, and its QoS [23]. Ultimately,
this means that said message is to be sent to any client
subscribing to this topic at any point in the future. On the
other hand, as Subscribers might receive a tick and compute
the new names before they have received messages from the

Figure 7. Publisher’s View

Figure 8. Subscriber’s View

previous round, these clients actually keep in memory not only
the current obfuscated value but all the previous ones, too. This
is necessary in order for the client to know the key they should
use to try and decrypt an incoming message. This mapping is
erased as soon as the obfuscation scheme is reset, whether
when a new participant joins the communication or when
the obfuscation seed expires (see Section III-C1). Finally, to
ensure synchronization, all obfuscation parameters or ticks are
published under QoS2 as it is imperative that they are received
but without duplicates.

E. Results - Traffic observation

First, let us consider the messages sent/received by clients
on both side of the communication. Figure 7 and Figure 8
respectively illustrated the Publisher P and a Subscriber S
points of view. They also highlight in pink the topics belonging
to S’s topic-of-interest set; in green, the active topic; in red, an
obfuscation reset; and in blue, an obfuscation synchronizing
tick.

Furthermore, two observations are worth noting on Figure 8.
On the one hand, as planned, this figure shows that the

Figure 8. Subscriber’s view.

Figure 9. Broker’s View

Subscriber was indeed only able to decrypt the message
related to the active ”client/LivingRoom/Light” topic whereas
its secretBox implementation raised a Decription Failure for
the inactive ”client/Garden/MovementDetector”. On the other
hand, this particular example illustrate a case where messages
related to the first obfuscation arrive after the synchronising
tick and the next name computation. As expected and by
keeping in memory all previous name mappings, S was still
able to correctly process the messages that arrived with a delay.

Finally, Figure 9 shows what a 3rd party observer (e.g.
the broker) would intercept from that communication. In
particular, please note that, on the one hand, the obfuscation
parameters agreement is indeed encrypted and on the other
hand, thanks to the OT encryption, it is indeed not possible
either for the server the identify the active topic (see green
box) from all other messages.

V. CONCLUSION

This paper presents a privacy-preserving MQTT protocol
in an honest-but-curious threat model. Derived from the OT
concept, the proposed model ensures confidentiality as the
messages are fully encrypted and the server cannot learn
anything from topic names due to an obfuscation mechanism
following a pattern known only by the intended end-clients.
Additionally, a declination of this model prevents partners re-
identification, meaning that an observer cannot identify any
set of clients sharing a common interest thanks to OT’s indis-
tinguishability but does so, at the cost of efficiency. Indeed,
implementing a Decryption Failure anticipating mechanism
to save computational power is not compatible with this
approach as appending the required information for this to
work constitutes a statistical pivot that can be exploited by
the broker. The reflection developed here clearly illustrates the
subtle balance to be found between resource efficiency and the
degree of privacy one wants to achieve.

REFERENCES

[1] C. Li and B. Palanisamy, “Privacy in Internet of Things: From Principles
to Technologies,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 488–
505, 2019.

[2] K. Fizza, A. Banerjee, K. Mitra, P. P. Jayaraman, R. Ranjan, P. Patel, and
D. Georgakopoulos, “QoE in IoT: a vision, survey and future directions,”
Discover Internet of Things, vol. 1, no. 1, pp. 1–14, 2021.

[3] PR Newswire, “IEEE Internet of Things Survey Provides
Clarity Around Definition, Future Uses and Challenges.”
https://www.prnewswire.com/news-releases/ieee-internet-of-things-
survey-provides-clarity-around-definition-future-uses-and-challenges-
193865271.html, last accessed on 21/05/21.

[4] MQTT.org, “MQTT: The Standard for IoT Messaging.” https://mqtt.org/,
last accessed on 21/05/21.

[5] J. J. Anthraper and J. Kotak, “Security, privacy and forensic concern
of MQTT protocol,” in Proceedings of International Conference on
Sustainable Computing in Science, Technology and Management (SUS-
COM), Amity University Rajasthan, Jaipur-India, 2019.

[6] M. Singh, M. Rajan, V. Shivraj, and P. Balamuralidhar, “Secure MQTT
for Internet of Things (IoT),” in 2015 Fifth International Conference on
Communication Systems and Network Technologies, pp. 746–751, 2015.

[7] R. Neisse, G. Steri, and G. Baldini, “Enforcement of security policy rules
for the Internet of Things,” in 2014 IEEE 10th International Conference
on Wireless and Mobile Computing, Networking and Communications
(WiMob), pp. 165–172, 2014.

[8] M. Fischer, D. Kümper, and R. Tönjes, “Towards improving the Privacy
in the MQTT Protocol,” in 2019 Global IoT Summit (GIoTS), pp. 1–6,
2019.

[9] “Efficient k-out-of-n oblivious transfer scheme with the ideal communi-
cation cost,” Theoretical Computer Science, vol. 714, pp. 15–26, 2018.

[10] M. O. Rabin, “How To Exchange Secrets with Oblivious Transfer.,”
Technical ReportTR-81, Aiken Computation Lab, Harvard University,
1981.

[11] S. Even, O. Goldreich, and A. Lempel, “A randomized protocol for
signing contracts,” Commun. ACM, vol. 28, p. 637–647, June 1985.

[12] X. Wang and Z. Li, “Research on the security Oblivious Transfer
protocol based on ECDDH,” in Journal of Physics: Conference Series,
vol. 1549, p. 032152, IOP Publishing, 2020.

[13] G. Brassard, C. Crépeau, and J.-M. Robert, “All-or-nothing disclosure of
secrets,” in Conference on the Theory and Application of Cryptographic
Techniques, pp. 234–238, Springer, 1986.

[14] HiveMQ, “MQTT Topics & Best Practices - MQTT Essentials: Part
5.” https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-
best-practices/, last accessed on 22/05/21.

[15] W.-G. Tzeng, “Efficient 1-out-of-n oblivious transfer schemes with uni-
versally usable parameters,” IEEE Transactions on Computers, vol. 53,
no. 2, pp. 232–240, 2004.

[16] T. Chou and C. Orlandi, “The simplest protocol for oblivious trans-
fer,” in Progress in Cryptology – LATINCRYPT 2015 (K. Lauter and
F. Rodrı́guez-Henrı́quez, eds.), vol. 9230, pp. 40–58, Springer Interna-
tional Publishing. Series Title: Lecture Notes in Computer Science.

[17] Eclipse Foundation, Cedalo, Moquitto, “Eclipse Moquitto - An open
source MQTT broker.” https://mosquitto.org/, last accessed on 22/05/21.

[18] Pypi.org, “paho-mqtt 1.5.1.” https://pypi.org/project/paho-mqtt/, last
accessed on 22/05/21.

[19] Nth Party Ltd, “Github - otc.” https://github.com/nthparty/otc, last
accessed on 22/05/21.

[20] Nth Party Ltd, “Github - oblivious.” https://github.com/nthparty/
oblivious, last accessed on 22/05/21.

[21] Pynacl.readthedocs.io, “Secret Key Encryption.” https://pynacl.
readthedocs.io/en/latest/secret/, last accessed on 22/05/21.

[22] Mafi-mcfly, “Github - aotp-mqtt.” https://github.com/mafi-mcfly/aotp-
mqtt, last accessed on 22/05/21.

[23] HiveMQ, “Retained Messages - MQTT Essentials: Part 8 author
portrait.” https://www.hivemq.com/blog/mqtt-essentials-part-8-retained-
messages/, last accessed on 22/05/21.

Figure 9. Broker’s view.

5. Conclusions

This paper presents a privacy-preserving MQTT protocol in an honest-but-curious
threat model. Derived from the OT concept, the proposed model ensures confidentiality
as the messages are fully encrypted, and the server cannot learn anything from topic
names due to an obfuscation mechanism following a pattern known only by the intended
end-clients. Additionally, a declination of this model prevents partners’ re-identification,
meaning that an observer cannot identify any set of clients sharing a common interest thanks
to OT’s indistinguishability but does so at the cost of efficiency. Indeed, implementing a
Decryption Failure anticipating mechanism to save computational power is not compatible
with this approach as appending the required information for this to work constitutes a
statistical pivot that can be exploited by the broker. The reflection developed here clearly
illustrates the subtle balance to be found between resource efficiency and the degree of
privacy one wants to achieve.

For the future work, this implementation’s key derivation could arguably be consid-
ered on any pre-deployed symmetric key scheme other than OT, as long as it ensures the
topics’ indistinguishability. In other words, a ciphertext from the active topic should be
entirely indistinguishable from any random-message ciphertext. Otherwise, the broker
could easily re-identify every interest clusters which would constitute a privacy breach
in the context of an anonymous communication system. We thus suggest conducting
further investigations on this aspect to potentially reduce the conceptual complexity of the
proposed protocol.

Electronics 2022, 11, 70 16 of 16

Author Contributions: Conceptualization, A.H.; Supervision, G.S. and J.-M.D.; Writing—original
draft, A.H.; Writing, review and editing, G.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, C.; Palanisamy, B. Privacy in Internet of Things: From Principles to Technologies. IEEE Internet Things J. 2019, 6, 488–505.

[CrossRef]
2. Fizza, K.; Banerjee, A.; Mitra, K.; Jayaraman, P.P.; Ranjan, R.; Patel, P.; Georgakopoulos, D. QoE in IoT: A vision, survey and

future directions. Discov. Internet Things 2021, 1, 4. [CrossRef]
3. PR Newswire. IEEE Internet of Things Survey Provides Clarity Around Definition, Future Uses and Challenges. Available

online: https://www.prnewswire.com/news-releases/ieee-internet-of-things-survey-provides-clarity-around-definition-future-
uses-and-challenges-193865271.html (accessed on 21 May 2021).

4. MQTT.org. MQTT: The Standard for IoT Messaging. Available online: https://mqtt.org/ (accessed on 21 May 2021).
5. Anthraper, J.J.; Kotak, J. Security, privacy and forensic concern of MQTT protocol. In Proceedings of the International Conference

on Sustainable Computing in Science, Technology and Management (SUSCOM), Jaipur, India, 26–28 February 2019; Amity
University Rajasthan: Jaipur, India, 2019. [CrossRef]

6. Singh, M.; Rajan, M.; Shivraj, V.; Balamuralidhar, P. Secure MQTT for Internet of Things (IoT). In Proceedings of the 2015 Fifth
International Conference on Communication Systems and Network Technologies, Gwalior, India, 4–6 April 2015; pp. 746–751.
[CrossRef]

7. Neisse, R.; Steri, G.; Baldini, G. Enforcement of security policy rules for the Internet of Things. In Proceedings of the 2014 IEEE
10th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Larnaca, Cyprus,
8–10 October 2014; pp. 165–172. [CrossRef]

8. Fischer, M.; Kümper, D.; Tönjes, R. Towards improving the Privacy in the MQTT Protocol. In Proceedings of the 2019 Global IoT
Summit (GIoTS), Aarhus, Denmark, 17–21 June 2019; pp. 1–6. [CrossRef]

9. Lai, J.; Mu, Y.; Guo, F.; Chen, R.; Ma, S. Efficient k-out-of-n oblivious transfer scheme with the ideal communication cost. Theor.
Comput. Sci. 2018, 714, 15–26. [CrossRef]

10. Rabin, M.O. How To Exchange Secrets with Oblivious Transfer. In Technical ReportTR-81; Aiken Computation Lab, Harvard
University: Cambridge, MA, USA, 1981.

11. Even, S.; Goldreich, O.; Lempel, A. A Randomized Protocol for Signing Contracts. Commun. ACM 1985, 28, 637–647. [CrossRef]
12. Wang, X.; Li, Z. Research on the security Oblivious Transfer protocol based on ECDDH. J. Phys. Conf. Ser. 2020, 1549, 032152.

[CrossRef]
13. Brassard, G.; Crépeau, C.; Robert, J.M. All-or-nothing disclosure of secrets. In Conference on the Theory and Application of

Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1986; pp. 234–238.
14. HiveMQ. MQTT Topics & Best Practices–MQTT Essentials: Part 5. Available online: https://www.hivemq.com/blog/mqtt-

essentials-part-5-mqtt-topics-best-practices/ (accessed on 22 May 2021).
15. Tzeng, W.G. Efficient 1-out-of-n oblivious transfer schemes with universally usable parameters. IEEE Trans. Comput. 2004,

53, 232–240. [CrossRef]
16. Chou, T.; Orlandi, C. The Simplest Protocol for Oblivious Transfer. In Progress in Cryptology—LATINCRYPT; Lecture Notes in

Computer Science; Lauter, K., Rodríguez-Henríquez, F., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany,
2015; Volume 9230, pp. 40–58. [CrossRef]

17. Opensource.com. What Is a Raspberry Pi? Available online: https://opensource.com/resources/raspberry-pi (accessed on 22
May 2021).

18. Raspbian.com. About Raspbian. Available online: https://www.raspbian.org/RaspbianAbout (accessed on 22 May 2021).
19. Eclipse Foundation, Cedalo, Moquitto. Eclipse Moquitto—An Open Source MQTT Broker. Available online: https://mosquitto.

org/ (accessed on 22 May 2021).
20. Pypi.org. paho-mqtt 1.5.1. Available online: https://pypi.org/project/paho-mqtt/ (accessed on 22 May 2021).
21. Nth Party Ltd. Github-otc. Available online: https://github.com/nthparty/otc (accessed on 22 May 2021).
22. Nth Party Ltd. Github-Oblivious. Available online: https://github.com/nthparty/oblivious (accessed on 22 May 2021).
23. Pynacl.readthedocs.io. Secret Key Encryption. Available online: https://pynacl.readthedocs.io/en/latest/secret/ (accessed on

22 May 2021).
24. Mafi-mcfly. Github-aotp-mqtt. Available online: https://github.com/mafi-mcfly/aotp-mqtt (accessed on 22 May 2021).
25. HiveMQ. Retained Messages—MQTT Essentials: Part 8 Author Portrait. Available online: https://www.hivemq.com/blog/

mqtt-essentials-part-8-retained-messages/ (accessed on 22 May 2021).

http://doi.org/10.1109/JIOT.2018.2864168
http://dx.doi.org/10.1007/s43926-021-00006-7
https://www.prnewswire.com/news-releases/ieee-internet-of-things-survey-provides-clarity-around-definition-future-uses-and-challenges-193865271.html
https://www.prnewswire.com/news-releases/ieee-internet-of-things-survey-provides-clarity-around-definition-future-uses-and-challenges-193865271.html
https://mqtt.org/
http://dx.doi.org/10.2139/ssrn.3355193
http://dx.doi.org/10.1109/CSNT.2015.16
http://dx.doi.org/10.1109/WiMOB.2014.6962166
http://dx.doi.org/10.1109/GIOTS.2019.8766366
http://dx.doi.org/10.1016/j.tcs.2017.12.019
http://dx.doi.org/10.1145/3812.3818
http://dx.doi.org/10.1088/1742-6596/1549/3/032152
https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/
https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/
http://dx.doi.org/10.1109/TC.2004.1261831
http://dx.doi.org/10.1007/978-3-319-22174-8_3
https://opensource.com/resources/raspberry-pi
https://www.raspbian.org/RaspbianAbout
https://mosquitto.org/
https://mosquitto.org/
https://pypi.org/project/paho-mqtt/
https://github.com/nthparty/otc
https://github.com/nthparty/oblivious
https://pynacl.readthedocs.io/en/latest/secret/
https://github.com/mafi-mcfly/aotp-mqtt
https://www.hivemq.com/blog/mqtt-essentials-part-8-retained-messages/
https://www.hivemq.com/blog/mqtt-essentials-part-8-retained-messages/

	Introduction
	MQTT and Threat Model
	Threat Model
	Related Work

	Communication Architecture and Protocol
	Applying the OT Protocol to MQTT
	OT-Inspired MQTT Protocol
	Further Improvements
	Countering Statistical Analysis Attacks
	Preventing Partners Association
	Practical Considerations

	Implementation
	Virtual Raspberry Pi Environment
	MQTT Implementation
	OT-Inspired Implementation
	Topic Obfuscation Implementation
	Results-Traffic Observation

	Conclusions
	References

