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Abstract: WordNets organize words into synonymous word sets, and the connections between
words present the semantic relationships between them, which have become an indispensable source
for natural language processing (NLP) tasks. With the development and evolution of languages,
WordNets need to be constantly updated manually. To address the problem of inadequate word
semantic knowledge of “new words”, this study explores a novel method to automatically update the
WordNet knowledge base by incorporating word-embedding techniques with sememe knowledge
from HowNet. The model first characterizes the relationships among words and sememes with a
graph structure and jointly learns the embedding vectors of words and sememes; finally, it synthesizes
word similarities to predict concepts (synonym sets) of new words. To examine the performance of
the proposed model, a new dataset connected to sememe knowledge and WordNet is constructed.
Experimental results show that the proposed model outperforms the existing baseline models.

Keywords: WordNet; sememe; word embedding; NLP

1. Introduction

WordNets [1,2] are electronic lexical databases in which most types of words (including
nouns, verbs, adjectives, and adverbs) are stored as synonym sets (synsets) and are inter-
connected by various semantic relations between words. These relations include antonyms,
such as ‘wet’ and ‘dry’, subordinate relations, such as ‘animal’ and ‘cat’, meronymy rela-
tions, such as ‘toe’ is part of ‘foot’, etc. The Princeton WordNet (PWN), the first English
WordNet, now contains over 11,000 synsets in version 3.0. WordNets have become the gold
standard lexical knowledge of representing meanings and concepts of words.

Apart from working as lexical databases, WordNets have become an important knowl-
edge source of natural language processing (NLP). They were originally used as standard
databases to annotate corpora (e.g., SemCor) and gradually employed to determine the
correct meaning of words in many tasks such as word sense disambiguation [3], text cluster-
ing [4], word embedding [5], text classification [6], and human brain emotion processing [7].
The successful applications of the English WordNet in these NLP tasks have boosted the
construction and refinement of WordNets in many non-English languages. The Global
WordNet Association (GWA) was founded to provide a platform for discussing, sharing,
and connecting WordNets crossing languages. In addition, some large research projects,
such as Turkish KeNet [8], EuroWordNet [9], and MultiWordNet [10], have been built for
constructing synonym sets (synsets) with the help of aligning English words to words in
non-English languages.

Actually, building WordNet databases involves a large volume of work. Although the
manual construction process can ensure that accurate synsets cover as many concepts as
possible, it is time-consuming and labor-intensive, and it may require lexicographers to
spend years constructing synsets. For example, PWN has taken decades to build, extend,
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and refine. Nowadays, WordNet databases are not yet complete and rich enough, especially
for non-English languages. In addition, more and more new words are being produced
with the continuous evolution of social communication, science, and technology. How to
accurately automatically update WordNet is a very valuable and challenging task.

The continuous accumulation of various text and knowledge bases provides new
opportunities of automatic constructing and updating WordNet. Three types of data
sources have been focused by researchers recently: namely, online text, aligned bilingual
corpora, and pre-trained word-embedding semantics from large-scale unlabeled corpora.
For example, WEWNE [11] achieves great match accuracy on expanding WordNet with
word embedding. Due to the uneven distribution of words in these data, the semantics
and relationships of words are not yet fully captured, and there still remain limitations on
automatically updating WordNets accurately.

To address this issue, this study updates WordNets by introducing a sememe [12]
knowledge database. Sememe is the smallest semantic unit for describing real-world con-
cepts in Chinese and English and can be represented as a vector such as a word in some
studies, such as SPSE [13]. This study first organizes the sememe knowledge of words and
relationships in WordNet into a unified graph. Then, the word embedding of each word
is learned by combining word relationships in WordNet and sememe annotation. Finally,
the sysnets (concepts) are predicted based on the semantic similarities of words. The origi-
nal contributions of this study are as follows: (1) A new dataset connected to HowNet [14]
and WordNet is constructed, which can be applied to various NLP tasks. (2) A novel model
to automatically complete WordNet is derived, which improves prediction performance by
introducing sememe knowledge. (3) This study develops a word-embedding approach that
integrates WordNet and sememe knowledge. Benefiting from facilitating both the original
semantic relationship structure in WordNet and sememe relationships, the model achieved
great improvement on word-embedding vectors.

The remaining sections are organized as follows. Section 2 reviews related works.
Section 3 introduces the proposed model framework and describes how the proposed model
works. We perform comparative experiments and conduct results analysis in Section 4,
and we discuss the effects of hyperparameters, fusion methods, and time costs in Section 5.
Finally, Section 6 concludes this study.

2. Related Work

WordNets are mainly built and updated in two ways [15]: the merge-based method
and expand-based method. The merge-based method tries to exhaustively enumerate the
senses (meanings) of each word in detail and then creates a synset for each given sense by
collecting all applicable words that contain that sense. For example, Bhattacharyya [16] de-
scribes how a high-quality WordNet can be produced using a merged approach. However,
this process is very labor-intensive. The expand-based method employs the existing syn-
onyms in WordNet as a reference, collecting applicable words that represent the meaning
of synonyms. Usually, it iteratively identifies high-frequency words and supplements syn-
onyms of these words into WordNet. Compared with merge-based methods, it is expected
to build WordNet more quickly by referencing both the set of synonyms and semantic
relations in WordNet. However, in practice, it still costs the lexicographer time to construct
language-specific synonym sets, partly because some of the meanings or concepts of words
do not appear in the initial WordNet, and partly because some specific concepts that only
appeared in some languages may have been overlooked.

Recently, the increasing various new data sources provide us new opportunities for
automatically completing WordNet. Related research can be classified into three categories
according to the types of their data sources, namely bilingual dictionaries, online text, and
pre-trained word semantic vectors from a large-scale text corpus.

Bilingual dictionaries are widely used data sources to automatically expand WordNet.
Related works implement cross-language WordNet expansions with aligned words in
bilingual dictionaries in the source and target languages. The use of bilingual dictionaries
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for completing WordNet can be traced back to ten years ago, such as the construction of
WordNet for Catalan and Spanish as part of the EuroWordNet project [17]. Strategies used
to extend WordNet in those studies include identifying semantic relationships in various
target language resources [18], calculating mutual information of English translated texts in
the source and target language corpora [19], and constructing English grammar sets based
on word sense disambiguation algorithm [20]. In addition, bilingual dictionaries can be
combined with popular NLP techniques to better identify the relationships between words.
For example, recent work by Lam et al. [21] has focused on the use of machine translation
and (or in some cases instead of) bilingual dictionaries to construct WordNet for various
languages (Arabic, Assamese, Sa, Spanish, and Vietnamese).

For online text, researchers have studied to supply synonym sets of PWNs by auto-
matically extracting semantic relations from online encyclopedias (i.e., Wikipedia) [22,23].
With the help of available parallel text corpora, the set of synonyms of one language can be
obtained from the WordNet of another language. For example, Oliver [24] first tagged the
target language with simple part-of-speech (POS) tags (nouns, verbs, adjectives, and ad-
verbs) by using Freeling and the lexical disambiguation toolkit and then inferring a subset
of the English synonym sets to synonym sets of non-English languages.

Pre-trained word semantic vectors (word-embedding vectors), which are emerging re-
cently, can be employed to predict the relationships between words. Usually, word semantic
vectors are learned from large-scale text corpora, which have achieved great performance
for lots of NLP tasks. Rothe [25,26] reported that embedding models can capture various
relations related to WordNet-style word meanings, thus mapping word pairs to WordNet
synsets. Word-embedding vectors have been successfully applied in building Norwegian
and Arabic WordNet [11,27]. Similar work was conducted by Khodak [28], who used a
bilingual dictionary and word embeddings to automatically construct the entire French
and Russian WordNet.

In summary, the method of completing WordNet based on automatic expansion is
promising because it is very simple and effective. Benefiting from advances in represen-
tation (embedding) learning, word-embedding-based methods and sememe embedding
methods [13] are developing rapidly, with advantages such as semantic richness and free
from manual labor. However, WordNet is a very precise lexical database. It is not in-
sufficient to complement WordNet only relying on word-embedding vectors, especially
when some low-frequency words cannot be well represented by those widely used word-
embedding models.

3. Model

In this section, we describe the proposed model, completing WordNet with sememe
knowledge (CWS), which incorporates sememe knowledge in HowNet [29] for complet-
ing WordNet.

The proposed model consists of three components. The first component attempts
to use graph structures to characterize the relationships among words and sememes.
The second component learns the representation vectors of the word and sememes based
on the relationships presented in the graph. The third component predicts synsets of “new
words” with two types of representation vectors. The following three subsections detail the
three components.

3.1. Building WordNet–Sememe Graph

As a commonsense knowledge database, HowNet presents word semantics in a very
concise and clear way, in which each word is labeled with sememes, a minimal semantic
unit, that are highly relevant to the semantics of each word. Specifically, it defines about
2000 individual sememes in English and Chinese and explains all the words with these
sememes. The simple sememe annotations of words should be effectively linked into
WordNet to provide support for WordNet completion.
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WordNet and the sememe knowledge database (HowNet) are two different types of
knowledge databases. In order to predict the relationships of a new word in WordNet
while leveraging sememe, the semantics of the word from WordNet and the semantics
from sememe need to be presented effectively firstly. In this section, we will use a unified
graph structure, the WordNet–sememe graph, to represent the two semantics among words
and sememes.

The constructing of the WordNet–sememe graph is the process of determining nodes
and constructing edges between nodes. Algorithm 1 illustrates this process in detail. Firstly,
all the words and sememes are selected as nodes of the graph. Secondly, the edges between
words are added. Considering that subordination and synonymy relationships are usually
the most important relationships, this paper will construct the edges between words based
upon the two kinds of relationships. Specifically, if any one of these two relations exists
between a pair of words, a word–word edge is added between the pair of words. Finally,
each word will be connected with its sememes by adding word–sememe edges.

As shown in Figure 1a, the definition of the word “shirt” in HowNet is related to five
sememes: “clothing”, “put on”, “parts”, “body”, and “human”. In the semantic structure
graph, this model will append edges between the sememe nodes (“clothing”, “put on”,
“part”, “body”, and “human”) and the word node “shirt”, which means that the word
“shirt” is interpreted by these nodes, as shown in Figure 1c. The words “skirt” and “clothes”
are also interpreted by the node “clothing” in HowNet, so the sememe node “clothing” and
the word nodes “dresses” and “clothes” will also have a connected edge.

运动衫

衬衣

汗衫迷你裙超短裙草裙长裙

衣服

裙

穿戴

人

女

部件
腿

身

衬衫裙子

female

leg

衣物
clothing

dresses skirt

clothes

part

human

put on

shirt blouses

long skirt grass skirt overskirt mini skirt sweatshirts sports shirts

运动衫

衬衣

汗衫迷你裙超短裙草裙长裙

衣服

裙 衬衫裙子

dresses skirt

clothes

shirt blouses

long skirt grass skirt overskirt mini skirt sweatsshirts sports shirts

body

Sememe

Synset

Word

(a)  Sememe definitions of "shirt" and "skirt" in HowNet

“word-sememe” edge

“word-word” edge

(b)  Synsets in WordNet

(c)  WordNet-sememe graph 

裙子(skirt): 

DEF={clothing|衣物:{PutOn|穿戴:instrument={~}, 

location={part|部件:PartPosition={leg|腿}, 

whole={human|人:modifier={female|女}}}}} 

 衬衫(shirt): 

DEF={clothing|衣物:{PutOn|穿戴:instrument={~}, 

location={part|部件:PartPosition={body|身}, 

whole={human|人}}}} 

Figure 1. The construction process of WordNet–sememe graph.
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Algorithm 1 WordNet-sememe graph construction

Input: Word set of WordNet WWN ; word–sememe pairs in HowNet H = {[w, Sw]|w ∈
WHN}, WHN is the word set of HowNet, Sw is the sememe set of word w

Output: WordNet–sememe graph G = (V, E)
1: V=WWN
2: E =
3: for [w1, w2] ∈WWN ×WWN do
4: if relation_type(w1, w2) ∈ {subordination, synonymy} then
5: E.add(w1, w2)
6: end if
7: end for
8: for [w, Sw] ∈ H do
9: if w ∈WWN then

10: V.add(Sw)
11: for s ∈ SW do
12: E.add(w, s)
13: end for
14: end if
15: end for
16: return G = (V, E)

3.2. Jointly Learning the Embedding Vectors of Word and Sememe

In this study, word embedding was used to identify the connections between the
word embedding semantic space and the WordNet semantic space. High-quality word
embeddings will be beneficial to improve the performance of the model. In most previous
research, the word semantics from WordNet and word embeddings from text corpus usually
are learned independently. The differences between the two spaces raise the uncertainty
of word relationships. In addition, the uneven frequency of words in the corpus and the
complexity of the contextual environment also lead to the deviation of word embeddings
on identifying word semantic and word relationships. This paper tried to improve word
embedding vectors by fusing the WordNet structure and sememe knowledge. Specifically,
sememe co-occurrence relations in the built WordNet–sememe graph in Section 3.1 are
employed for facilitating obtaining the vector representation of words.

In this study, an extended Skip-gram model is derived to learn the embedding vectors
of words and sememes. In the Skip-gram model, the embedding vector of a word assumes
that it is correlated with the embedding vector of the words that occur in its context [30,31].
The embedding vectors of words can be learned by maximizing the prediction probability
of words in their context.

Since original WordNet and sememe knowledge are not organized as text sequences,
the classical sequence sliding windows approach does not work in this study. Instead, in
this study, the context (neighbor nodes) of a word will be obtained by traversing the built
graph in Section 3.1. Algorithm 2 describes the process of building similar word pairs
in WordNet with hierarchical traversal. Line 1 and Line 2 are used to initialize the set of
similar words and the queue of hierarchical word traversal, respectively. Lines 3–16 define
the whole procedure of hierarchical traversal, where lines 5–8 implement the hierarchical
traversal of subordinate relations; lines 9–12 implement the traversal of similar relations,
and lines 13–15 terminate the traversal when the size of the set of similar words is large
enough. Finally, line 17 selects the first N words from the set of similar words to build the
final training samples.
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Algorithm 2 Get context words from the built WordNet–sememe graph

Input: WordNet–sememe graph, word w
Output: N words that are surrounding to word w

1: List S=[]
2: Queue Q=[w]
3: while queue Q is not empty do
4: q=the head element of queue Q dequeues
5: for w′ ∈ hyperyms and hyponyms of the word q do
6: S.append(w′)
7: Q.append(w′)
8: end for
9: for w′∈ words that are connected to the word q do

10: S.append(w′)
11: Q.append(w′)
12: end for
13: if the size of the list S≥N then
14: break
15: end if
16: Q.pop()
17: end while
18: return the first N words of the list S

For word w, this paper presents the surrounding nodes (context words) obtained in
the algorithm as Sw and will jointly train the embedding vectors of words and sememes,
as shown in Figure 2. The loss function of the extended model is derived from the loss
function of Skip-gram, that is, the conditional probability of nodes around the target word
wi is calculated by Equation (1):

Lwn(Sw) =
n−M

∑
i=M

log Pwn(wi−M, · · · , wi+M|wi), (1)

where Pwn(wi−M, · · · , wi+M|wi) denotes the conditional probability of predicting surround-
ing the target word wi; M is an hyperparameter. The conditional probability Pwn can be
calculated by the Softmax function as follows,

Pwn(wi−M, · · · , wi+M|wi) = ∏
wj∈SW

Pwn(wj, wi) = ∏
wj∈SW

e(v̂j
T ·v̂i)

∑wk∈sw j e(v̂j
T ·v̂k)

, (2)

where v̂i and v̂j denote the embedding vectors of the target word, wi, and its surrounding
word nodes, wj. The initial values of vi is set with the word vector of wi from pre-training
word vectors in large corpus. They are fused with word vectors, v, and sememe vectors, ṽ.
Specifically, they can be calculated by Equation (3),

v̂ = α · v + (1− α)ṽ, (3)

where the combined sememe vectors can be calculated by Equation (4),

ṽ = ∑
bi
||b||2

, (4)

denotes the embedding vectors of the sememe sets of a word in HowNet.
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Figure 2. Joint sememe and word-embedding model.

For training, the built WordNet–sememe graph is fed into the derived Skip-gram
model. The model parameters, i.e., the vectors of words and sememes, are continuously
adjusted during the model training process. After the model has been trained over a
number of iterations, the embedding vectors of the words and the sememes are obtained.

3.3. Synthesizing Word Similarity for Synsets Prediction

For a given new word w that does not appear in WordNet, this paper determines
its position (predicts the synsets of a new word) in WordNet with the help of the words
that have the same/similar semantics. This idea mainly assumes that words with similar
semantics have adjacent or even the same position in WordNet. This model is partially
derived from collaborative filtering algorithms that are widely used in personalized rec-
ommendation tasks [32]. Here, words are analogized to users of collaborative filtering
algorithms, and candidate synonym sets are analogized to recommended items. Differing
from classical collaborative filtering models in personalized recommendation applications,
our model only takes the most similar words as the references of words for word prediction.
This is because that irrelevant words in WordNet may be far away, and there should be
noise when predicting the position of the “new word”.

This study adds two declined confidence factors to the recommendation score function,
and the derived score function is shown as follows:

score( ˆw, wj) = ∑
wj∈Sw

dH(ŵ,w′j)−1 · sim(v, vj) · crj , (5)

dH(ŵ,w′j)−1 is the declined confidence factor from subordinates; d is a hyperparameter and
d ∈ (0, 1); H(w, wj) denotes the path length between the candidate word and the word w
in the WordNet hierarchy. The latter is a semantic distance function, where r indicates the
distance between neighboring nodes and the superordinate word in the WordNet hierarchy.
That is, the candidate superordinate word can be the father node of the neighboring nodes
and the grandfather node. crj is the declined confidence factor from the neighbor word
wj, rj is the rank of word similarity sim(w, wj), c is a hyperparameter, and c ∈ (0, 1). Finally,
the candidate superordinate word with the highest score will be selected and recommended
to word w.
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4. Experiments and Results

This section introduces the built experimental dataset, experimental settings, and ex-
perimental results.

4.1. Dataset

The NTU Computational Linguistics Lab has constructed the Chinese Open WordNet
dataset [33] following Princeton WordNet and Global WordNet. It contains 42,315 synsets,
79,812 senses, and 61,536 unique words. The distribution of words and synsets in the
WordNet dataset is shown in Table 1.

Table 1. An overview of the words and synsets of nouns, verbs, and adjectives in Chinese Open WordNet.

POS Words Synsets

Noun 38,975 27,888
Verb 8412 5157
Adj 14,199 8559
Total 61,586 41,604

In the experiments, word embeddings of all words are learned with a large corpus,
the Sogou-T dataset [34]. The dataset is a widely used text corpus developed by Sogou and
its partners, which consists of a variety of original web pages from the Internet with a total
word count of approximately 2.7 billion.

In order to examine the performance of the proposed model, we collected the aligned
words between the Chinese Open WordNet and HowNet knowledge databases and con-
structed the experimental dataset, in which 10% of the words were randomly extracted
as the test set, 10% of the words were randomly extracted as the validation set, and the
remaining 80% were randomly extracted as the training set. An overview of the built
dataset is listed in Table 2.

Table 2. Overview of the built experimental dataset.

# Words # Subordinations # Synonyms # Train Set # Validation Set # Test Set

18,123 44,187 8563 14,499 1812 1812

As shown in the table, a total of 18,123 words were extracted from the Chinese Open
Word Network as the dataset, of which 14,499 words, 1812 words, and 1812 words were
randomly divided into three sets: the training set, validation set, and test set, respectively.
A total of 44,187 subordination relations and 8563 synonym relations were collected in the
training set.

The sememe dataset is constructed by extracting 18,123 words aligned with the Chinese
Open WordNet from HowNet. This extracted sememe dataset is employed to facilitate the
concept prediction of “new words” for completing Chinese Open WordNet. An overview
of the dataset is listed in Table 3.

Table 3. The overview of the extracted sememe dataset.

# Word # Sememe # Sememe of Each Word

18,123 1893 2.7

As shown in Table 3, the extracted sememe dataset removed some of the less frequently
occurring sememes. After that, the dataset contains 1893 sememes and 18,123 words. For a
word in the dataset, an average of 2.7 sememes were used to explain the word.

The distribution of sememes in the dataset is shown in Figure 3, in which the horizontal
coordinates indicate the number of sememe annotations of a word in HowNet, and the
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vertical coordinates indicate the frequency of the word. According to the figure, most of the
words were interpreted by 1–5 sememes, and very few words were interpreted by more
than 10 sememes.

Figure 3. Distribution of the number of annotated sememe per word in HowNet.

4.2. Experimental Settings

In the experiments, the initialized embedding vectors of words are by Glove [35]
learned from the Sogou-T corpus. Glove constructs a co-occurrence matrix from the corpus
and obtains the word vector presentation by a matrix factorization approach.

In this study, M is set to 2, and d is set to 0.8; sim(·) denotes the similarity between
two words. Here, this paper uses the dot product of word embeddings of two words,
sim(a, b) = a · b, to calculate the semantic similarity of two words in the vector space.
The larger the sim value of two words, the more similar the two words are in their semantic
space. The hyperparameter c is set to 0.8, where ri is the rank order of word i according to
the word similarity.

For each “new word”, this paper selects the neighboring 100 words from the vector
space as the current word, which means that the hyperparameter, N, is set to 100, and α
is set to 0.3, which means that when fusing sememe vectors, 30% of the word-embedding
vectors are transferred.

For training model, the batch update strategy is used to train model parameters.
The batch size is set to 1024, the dimensional size of both the word and the sememe vectors
is set to 200, the learn rate is set to 0.0001, and 20 negative samples are selected. The model
was trained for 500 epochs.

4.3. Evaluation Metrics

To predict concepts (synsets) of a new word, the model calculates the score of each
candidate synset with the score function in Equation (5) and finally ranks all the synsets
to select top synsets as predicted results of the “new word”. We borrow the widely
used evaluation metric, Hit@K, from the popular knowledge representation task as the
evaluation metric of this study. Hit@K denotes the proportion of the correct synsets in the
top K lists. The higher the value of Hit@K, the better the model.

In the experiments, this paper examines the impact of sememe vectors that are obtained
based on WEWNE and SPSE. WEWNE is a classical model that is used to expand WordNet
with word embedding. SPSE obtains embedding vectors of sememe based on a matrix
decomposition approach, while the proposed model uses a jointly trained method to obtain
embedding vectors of sememes and words.
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4.4. Results

Two variants of our proposed model, CWS-sememe and CWS, are experimented with
in this section. The CWS-sememe denotes a variant that removed sememe knowledge. That
is, two components of Sections 3.1 and 3.2 are ignored in the variant. Their experimental
results are listed in Table 4.

Table 4. Performance comparison of different models; the best results are shown in boldface.

Model Hit@5 Hit@10 Hit@50 Hit@100

SPSE 0.189 0.234 0.377 0.438
WEWNE 0.195 0.243 0.383 0.445
CWS-sememe 0.201 0.245 0.385 0.443
CWS 0.244 0.311 0.441 0.488

Table 4 shows that the prediction accuracy of the proposed model, CWS, is better
compared with SPSE. It indicates that the jointly learning method proposed in this paper is
effective. The performance of the sememe vectors obtained based on matrix decomposition
alone decreased on the WordNet synset prediction task when they were fused into the word
embeddings. The reason may be caused by the fact that the training of sememe vectors
in SPSE is detached from the semantic space of WordNet; thus, word vectors can not fuse
with sememe vectors very well, which diminishes the prediction ability of the model.

Furthermore, CWS-sememe has made performance improvements compared with the
baseline model, WEWNE. This can be explained by the fact that WEWNE only uses the
similarity between words more simply and directly, while CWS-sememe takes into account
the addition of similarity ranking to the model.

CWS significantly outperforms the CWS-sememe model because the CWS model
considers the text-based training word embedding along with the sememe annotation
information in HowNet. The traditional text-based word embedding can only consider the
word contribution relationship in the corpus, and the semantic space from WordNet and
from the corpus are two semantic spaces that are independent of each other, so the word em-
bedding obtained from the text alone cannot accurately capture the similarity relationship
in WordNet. HowNet is an artificially defined semantic commonsense knowledge base,
which is more in line with the semantic knowledge base compared to the classical word
embedding-based methods. The CWS model adds the sememe knowledge in HowNet
to the learning of word embeddings by finding the neighbor nodes in WordNet, so that
the word embeddings after fusing sememe embeddings can match the semantic space of
WordNet more closely; thus, it obtains better performance.

5. Discussion
5.1. Effect of Hypermeters
5.1.1. Effect of α

The training of sememe vectors in this study fuses the sememe knowledge and seman-
tic relationships of WordNet, which contribute to its better prediction performance. To fuse
the word-embedding vectors and sememe-embedding vectors, α is employed as a hyper-
parameter in Equation (3) to balance the weight of two types of vectors. Consequently,
the value of α may affect the prediction accuracy of the proposed model. To examine
the effect from α values, we perform experiments by setting α values from 0.1 to 0.9 and
calculated their prediction accuracies on the test set. Their results are listed in Table 5.

As shown in Table 5, the proposed model performs great when α is around 0.3.
Specifically, the model obtained the highest value of Hit@5 when α is set to 0.2, and
the model has the highest value of Hit@100 when α is set to 0.4. When α is set to 0.3,
the model obtained the highest predicted Hit@10 and Hit@50, and the values of Hit@5
and Hit@100 are very high values. Consequently, α is set to 0.3 in the other experiments of
this paper.
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Table 5. Prediction accuracy of CWS model with different α settings; the best results are shown
in boldface.

α Hit@5 Hit@10 Hit@50 Hit@100

0.1 0.151 0.189 0.267 0.297
0.2 0.246 0.309 0.435 0.478
0.3 0.244 0.311 0.441 0.488
0.4 0.232 0.292 0.429 0.489
0.5 0.218 0.278 0.420 0.478
0.6 0.200 0.261 0.415 0.469
0.7 0.190 0.250 0.402 0.460
0.8 0.187 0.247 0.391 0.455
0.9 0.184 0.245 0.383 0.450

When the weight of the initial word embedding is low, such as that α is set to 0.1,
the prediction accuracy of the model is significantly lower than that when α is set to 0.3,
which suggests that sememe knowledge provides a critical semantic link for predicting
synsets of “new words”. The prediction accuracy decreases when α is larger than 0.3, which
indicates that the over-reliance on the sememe annotations in HowNet prevents the model
from focusing on the basic semantic associations between words. In summary, both lower
and higher α may reduce the prediction accuracy of the model.

5.1.2. Effect of c

The hyperparameter c serves to adjust the weight of different words for the synset of
“new word”, which should affect the prediction accuracy of the proposed model. To examine
the impact of c, we experiment with different c values and list their results in Table 6.

Table 6. Prediction accuracies of the CWS model with different values of c; the best results are shown
in boldface.

c Hit@5 Hit@10 Hit@50 Hit@100

0.1 0.235 0.297 0.437 0.485
0.2 0.238 0.296 0.437 0.486
0.3 0.237 0.298 0.437 0.485
0.4 0.239 0.298 0.437 0.486
0.5 0.242 0.300 0.438 0.487
0.6 0.241 0.299 0.438 0.486
0.7 0.240 0.303 0.44 0.486
0.8 0.244 0.311 0.441 0.488
0.9 0.238 0.309 0.44 0.486

As shown in Table 6, the experimental results suggest that the values of c have a
marginal effect on model performance. As the value of c gradually increases, the prediction
accuracy of the model first gradually increases and then decreases. When c is set to 0.8,
the model achieves the best prediction accuracy.

5.1.3. Effect of N

The parameter N is used to select the number of similar words in Algorithm 1. As a
hyperparameter, the values of N may affect the prediction accuracy of the proposed model.
To examine the effect of N, we set N from 10 to 100 to evaluate the prediction accuracies of
the model on the validation set. The experimental results are listed in Table 7.

As shown in Table 7, the model can obtain excellent prediction results even if N is
set to 10. It suggests that the most similar words almost cover the semantic meanings of
a word and provide the most semantic context for predicting the synsets of “new word”.
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As the value of N increases, the prediction accuracy of the model shows light improvement,
which can be explained as that more words can provide richer semantic information.
Consequently, N is set to 100 for experiments in other sections of this paper.

Table 7. Prediction accuracies when M is set to different values; the best results are shown in boldface.

M Hit@5 Hit@10 Hit@50 Hit@100

10 0.243 0.307 0.401 0.404
20 0.243 0.308 0.436 0.453
30 0.244 0.309 0.440 0.479
40 0.243 0.309 0.440 0.484
50 0.242 0.309 0.440 0.486
60 0.242 0.309 0.440 0.486
70 0.244 0.309 0.440 0.486
80 0.244 0.309 0.439 0.485
90 0.244 0.309 0.440 0.485
100 0.244 0.311 0.441 0.488

5.2. Effect of Sememes Aggregation Methods

In Section 3.2, a normalization(norm) operation can be employed to calculate the
sememe-combining vectors. In addition to the normalization operation, sum and mean
operations can be used to fuse semantic vectors, as shown in Equation (6),

ṽ =

{
∑ bi sum o f sememe vector
∑ bi
|b| mean o f sememe vector . (6)

To examine the effect of different sememe aggregation methods, including the mean,
norm, and sum, we conducted experiments with these methods and plotted their loss
curves in their training processes into Figure 4.

As shown in the figure, all three aggregation methods can help the proposed model
converge to the optimized result within dozens of epochs. Among them, the normalization-
based (norm) aggregation approach can obtain its optimized parameters within 20 epochs
of training. Yet, the mean and sum aggregation methods need more epochs.

By comparing the three sememe fusion approaches in the CWS model, it can be
concluded that the normalized fusion approach achieves the best results, which may be
explained by it reducing the noise caused by the varying number of semantic annotations
for different words.

Figure 4. Loss curves of the three sememe aggregation methods during the training process.
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5.3. Time Cost Analysis

In the experiments, this paper also compares the time costs of several models on
predict “synset” tasks, as shown in Table 8.

Table 8. The time cost of different models.

Model Training Time Cost
(Seconds)

Predicting Time Cost
(Seconds)

Total Time Cost
(Seconds)

WEWNE —— 52 52
CWS-sememe —— 54 54
CWS 277 2141 2418

As shown in the table, the training time required by the WEWNE model and the
CWS-sememe model is very close. They can both predict synsets in tens of seconds. Yet,
CWS takes a little more time to learn model parameters, because the vector information of
sememe needs to be trained during the vector calculation of “new words” and neighboring
words, which consumes most of the time of the training process. Although CWS takes more
time, it is still within an acceptable time range. With this in mind, the better prediction
accuracy of the model is more valuable than saving a little extra time.

6. Conclusions and Future Work

To complete WordNet accurately, this paper jointly learns the embedding words in
WordNet and sememe, enhancing the ability to automatically predict synsets (concept) of
new words. The experimental results show that the proposed method of inferring word
relations by fusing the original knowledge of meaning is promising, which improves the
task of concept prediction. The research in this paper not only provides a new method
reference for the constructing and updating of WordNet but also makes a new exploration
for enhancing the semantic representations of words.

The main limitation of this study is that only two languages, English and Chinese, have
sememe-based linguistic knowledge bases. How to update WordNet in more languages
by introducing the cross-language sememe prediction methods needs to be investigated.
In addition, the classical Skip-gram model is used in this paper to jointly train the vector
representation of sememes and words. The performance of updating Wordnet is expected
to be improved if newer advanced methods are employed to replace the Skip-gram model.
Furthermore, the types of relationships between words in WordNet may contribute to
improving the performance of the model.
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