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Abstract: One-time password algorithms are widely used in digital services to improve security.
However, many such solutions use a constant secret key to encrypt (process) one-time plaintexts.
A paradigm shift from constant to one-time keys could introduce tangible benefits to the application
security field. This paper analyzes a one-time password concept for the Rivest–Shamir–Adleman
algorithm, in which each key element is hidden, and the value of the modulus is changed after each
encryption attempt. The difference between successive moduli is exchanged between communication
sides via an unsecure channel. Analysis shows that such an approach is not secure. Moreover, deter-
mining the one-time password element (Rivest–Shamir–Adleman modulus) can be straightforward.
A countermeasure for the analyzed algorithm is proposed.

Keywords: RSA; OTP; one-time password; RSA-OTP; small prime divisors attack; cryptography;
encryption

1. Introduction

Cryptography is the basis of modern secure communication. Cryptographic algo-
rithms are very important for the security of data or information [1]. Commonly used
algorithms such as the Advanced Encryption Standard (AES) and the Secure Hash Algo-
rithm 2 (SHA-2) are often assumed to be unbreakable. However, the predecessors of these
algorithms typically experienced decreased levels of security throughout their lifetimes.
Hence, despite modern algorithms appearing secure, increasingly safe solutions must be
sought [2–4].

Commonly used algorithms are often combined with an authentication process such
as one-time password (OTP) to enhance communication security. The most popular OTP
implementations, known as HOTP algorithms [5], are derived from hash-based message
authentication code (HMAC) [6] algorithms. Given that HMAC algorithms use hash
functions as symmetric keys, they represent ideal solutions for challenge-response authen-
tication. However, the algorithms are effectively one-way and so cannot be used directly
to encrypt data. This problem is not shared by AES-based OTP authentication algorithms
(AES-OTP) [7]. These two examples, despite differing in approach and algorithm utiliza-
tion, both use an OTP mechanism based on non-repeating challenges with a constant
cryptographic key.

Jabłoński and Wójtowicz [8] propose a novel use of the Rivest–Shamir–Adleman
(RSA) [9] algorithm in the context of OTP (RSA-OTP): following each sign or encryption
operation, the RSA modulus ni is replaced by a newly generated value ni+1. This approach
ensures the secrecy of the initial key elements and their secure exchange between two
communicating parties. Although this OTP-based approach no longer uses a public key, an
important RSA attribute, it allows using shorter keys.

The primary advantage of RSA-OTP over AES-OTP or HOPT is a kind of one-time
pad structure: each message is encrypted with a new random key which can be used for
native cloning detection. A further advantage is the asymmetric nature of RSA and its
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mathematical simplicity. Research throughout the past four decades has shown that the
primary threat to RSA is large integer factorization, a result of public knowledge of used
moduli. Some research [10,11] additionally shows that the implementation method of RSA
can produce unintended weaknesses. However, in the case of secret exponents and moduli,
many public key RSA threats are no longer relevant.

The novel contributions of this paper are a small prime divisors attack against the
RSA-OTP algorithm [8] and a countermeasure using XOR operation.

2. The RSA Algorithm

Many applications require the secure communication or storage of data. The RSA
algorithm is a commonly used solution in various types of security applications. Despite
the difficulty in breaking RSA keys, RSA algorithms still suffer varied attacks [12,13].

As an asymmetric encryption algorithm, RSA is widely deployed in public key cryp-
tosystems (public key cryptography). A plaintext is encrypted by a public key and the
resultant ciphertext is transmitted to the receiver where it can be decrypted by a private
key. Encryption security is contingent on the difficulty of factoring the product of two large
prime numbers [14].

To generate a private and public key pair, two large prime numbers p and q are
randomly chosen. They are used to generate a semiprime n, where:

n = p · q, (1)

and Euler’s totient function ϕ(n), where:

ϕ(n) = (p− 1) · (q− 1). (2)

The public key (n, e) is a pair, where e is an integer. Additionally, e is not a factor
of mod n, and 1 < e < ϕ(n). The private key (n, d) is a pair, where d is the modular
multiplicative inverse of e modulo ϕ(n):

d ≡ e−1 mod ϕ(n). (3)

The public key encrypts a plaintext x into a ciphertext y:

y ≡ xe mod n. (4)

To recover the original message, the corresponding private key decrypts the ciphertext:

x ≡ yd mod n. (5)

Example 1. Let us choose two prime numbers p = 11, q = 17 and compute n = 187 by means
of (1). The Euler’s totient (2) is ϕ(n) = 160. Let us choose e such that 1 < e < ϕ(n) and e and
ϕ(n) are coprime: e = 7. Let us compute a value for d (3): 23. The public key is (e, n) => (7, 187),
while the private key is (d, n) => (23, 187). Let us encrypt letter A <ASCII 65>. The encryption
(4) of x = 65 is y = 142 and the decryption (5) x of y is 65.

3. The RSA-OTP Concept

The RSA-OTP algorithm also uses asymmetric keys e and di. Following each encrypted
transaction, a new modulus generation process is initiated by one of the communicating
parties. The party is hence the owner of key di. A differential value ∆ni is created from the
previous modulus ni−1 and the new modulus ni:

∆ni = ni − ni−1. (6)

This value is then transmitted to the second party: the owner of key e. As claimed by
Jabłoński and Wójtowicz [8], ∆ni can be exchanged across a public, unsecure channel.
According to the authors, such a communication method guarantees an “unconditional
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security level”. Moreover, the modulus length at even 128 bits should be sufficiently secure
for certain applications. RSA-OTP scheme is presented in Figure 1.

Figure 1. RSA-OTP scheme.

Assuming the privacy of each modulus ni, 128-bit RSA-OTP can be secure under
several conditions. However, given that the ∆ni values are closely related to the ni values,
the unsecure exchange of ∆ni values raises serious concerns regarding unintended ni
leakage. These concerns precipitate a deeper analysis of the RSA-OTP approach.

Consider the dependency between modulus n and ciphertext y within RSA, as de-
scribed in Equation (4). Given that y is always smaller than n, y represents the lower bound
of the range which can contain a modulus. The upper bound is the product of the two
largest primes for which the bit length is equal to the maximum modulus size (e.g., 128-bit).
From this, an attacker observing RSA-OTP communication can attempt to estimate the
boundaries of the current moduli via Algorithm 1.

Algorithm 1 k-bit RSA-OTP modulus bounding

1: mmin = 2k−1

2: mmax = 2k − 1
3: ml = mmin
4: for each (yi, ∆ni+1)⇐ RSA-OTPTRX() do
5: if yi > ml then
6: ml ← yi
7: end if
8: if ml + ∆ni+1 < mmin then
9: ml ← mmin

10: else
11: ml ← ml + ∆ni+1
12: end if
13: if ml > mmax then
14: ml ← mmax
15: end if
16: end for

During empirical tests with 128-bit moduli, observations show that after 5 · 106 trans-
actions in which ciphertext yi and differential value ∆ni are exchanged, at least twenty of
the most significant bits of ml and ni match. Following this, to further reduce the security
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of modulus ni, the condition in which many of the most significant bits of ml are set must
be detected. When this occurs, the number of possible modulus combinations decreases
substantially, as shown in Table 1.

Table 1. Summary of RSA-OTP moduli security as a function of the number of known most significant
bits (MSBs) of 128-bit moduli.

Number of
Modulus MSBs Set

Security Level in
Bits

Approximate Number of Observed RSA-OTP
Transactions After Which, with Probability
p = 1

2 , Some Modulus Will Have a Distinct
Number of MSBs Set

1 115 1
2 113 2
3 111 8
...

...
...

18 81 233

19 79 235

20 77 237

...
...

...

The results presented in the first two columns of Table 1 are prime number approxi-
mations generated by

π(x) ≈ x
log(x)− 1

. (7)

Consider the smallest 128-bit number t that has its s most significant bits set (e.g.,
for s = 3 : t = (111000...000)2). The division of t by the largest 64-bit prime number
pmax produces a lower bound pmin of possible prime values that can generate t or greater.
Determining these prime values allows the estimation of prime numbers in a given range
as follows:

primeNo ≈ π(pmax)− π(pmin). (8)

The number of unique combinations (primeNo
2 ) represents the estimated number of

possible modulus values, as displayed in the third column of Table 1. Among these
combinations exist many values that do not produce sufficient “large” moduli. Such values
can be justifiably included given that their existence can only be verified following the
multiplication of two primes larger than pmin. To summarize, RSA-OTP modulus leakage
occurs via the following process:

• Observation of approximately consecutive random 5 · 106 RSA-OTP transactions,
using Algorithm 1, determines at least 20 most significant bits of each modulus.

• Following this, the condition being reached that many of the most significant bits
of ml are set brings a substantial decrease in the number of possible primes that can
generate modulus ni.

Empirical tests over 32 · 106 RSA-OTP 128-bit transactions bounded the number of
possible prime combinations that could generate the sought moduli to 91–84 bits. While
this represents substantial progress toward discovering the RSA-OTP moduli, their final
designation remains a computationally demanding task. Moreover, a trivial countermea-
sure can be applied to prevent such reduction in possible combinations of RSA-OTP moduli.
This entails the verification of generated moduli and the rejection of those for which many
most significant bits are set. The maximum modulus value can be limited to (BFF...FFF)16.
Additionally, the extension of moduli to 256-bit should make this type of attack infeasible.
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4. Small Prime Divisors Attack

The RSA-OTP attack method presented in the previous section degrades security but
is somewhat impractical. This section presents an alternative attack method. Three lemmas
lay the framework.

Lemma 1. If a value m0 is a sought RSA-OTP modulus n0, then m0 possesses only two di-
visors with bit length approximately half that of m0. Similarly, each of the successive moduli
m1, m2, ..., mk−2, mk−1, computed by the addition of RSA-OTP ∆ni values, possess only two divi-
sors with bit length approximately half that of the corresponding modulus.

Lemma 2. For a prime number p and a k-element set of random numbers R = {r0, r1, ..., rk−2, rk−1},
such that ∀ri ∈ R : ri � p, the probability that p is not a divisor of any ri is

( p−1
p

)k.

Lemma 3. Consider a set of “candidates” for RSA-OTP moduli M = {m0, m1, ..., mk−2, mk−1}
which are determined using mi −mi−1 = ∆ni. The RSA-OTP moduli ni are generated in a random
manner such that the ∆ni = ni+1 − ni are also random. Hence, a k-element set of candidates M
can be also considered random, and when it does not contain real moduli (mi 6= ni), then with
probability 1−

( p−1
p

)k at least one of them will be divisible by the selected, smaller prime number p.

This attack is derived from the fact that prime numbers, or large composite numbers
such as RSA moduli, do not have small divisors (Lemma 1). Hence, such numbers can be
“reconstructed” using equations for values that are not divisible by a set of small primes.
The divisibility of integers by prime numbers is cyclic. Primes p0 = 2 and p1 = 3 have a
cycle of 6 = lcm(2, 3). Primes p0, p1, and p2 have a cycle of 30 = lcm(2, 3, 5). In this manner,
any value s which is non-divisible by the set of the first k primes can be described as:

s = t + p0 · p1 · ...pk−2 · pk−1 · i, (9)

where the offset t is an odd natural number and i is the largest natural number such that
p0 · p1 · ...pk−2 · pk−1 · i < s. Hence, there exists only one possible t which is always smaller
than p0 · p1 · ...pk−2 · pk−1. Via this process, discovery of RSA moduli is undertaken by
considering only odd values. As such, it holds that for every RSA-OTP modulus.

n = 1 + 2 · i0. (10)

None of the practically used RSA-OTP moduli are divisible by 3, which, in conjunction
with Equation (10), results in three possible offsets to describe such moduli:

n = 1 + 2 · 3 · i1, (11)

n = 3 + 2 · 3 · i1, (12)

n = 5 + 2 · 3 · i1. (13)

Example 2. Let us assume that n = 13 · 17 = 221. It can be observed that Equation (13) holds.
For the next prime, 5, noting that each offset differs by 6 = 2 · 3 = p0 · p1 · ... · pk−3 · pk−2, the
following equations must be verified:

n = 5 + 2 · 3 · 5 · i2, (14)

n = 11 + 2 · 3 · 5 · i2, (15)

n = 17 + 2 · 3 · 5 · i2, (16)

n = 23 + 2 · 3 · 5 · i2, (17)

n = 29 + 2 · 3 · 5 · i2. (18)
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Of these, Equation (15) holds. Hence, for the following prime, 7, the modulus n is described by an
offset 11:

n = 11 + 2 · 3 · 5 · 7 · i3. (19)

As lcm(2, 3, 5, 7, 11) > n (where: lcm is least common multiple), Equation (19) must determine the
correct value of n, with i3 = 1.

Table 2 summarizes the attack. It presents the number of primes required to precisely
determine moduli of set binary sizes. The attack is surprisingly effective for even 4096-bit
moduli with a computational complexity on the order of 32 bits. The requirement to
observe a large set of consecutive ∆ni values presents the only drawback. This follows from
Lemma 2: to achieve a high probability of success, the examined set must be sufficiently
large so as not to verify an offset as a false positive (i.e., non-divisible by the selected
prime number).

Table 2. hlSummary of the RSA-OTP small prime division attack.

k-th Prime
Number

pk−1 Prime
Number

Bit Length of
RSA-OTP
Modulus

Number of
Observed ∆ni

Values for Attack
Error Probability

e = 10−15

Estimated
Attack

Complexity
(Bits)

26 101 128 3472 20

44 193 256 6649 22

76 383 512 13,212 23

132 743 1024 25,646 26

234 1481 2048 51,135 29

419 2897 4096 100,042 32

For each subsequent small prime, the number of equations increases. As such, the
discovery of the correct offset for primes larger than two appears difficult. However, the
task is made considerably easier in the case of RSA-OTP by the observation of a sufficiently
large set of consecutive public ∆ni values. The complete process is presented in Algorithm 2,
which demonstrates the determination of the correct offset using Lemma 3. Upon validation
of the correct offset, none of the checked values are divisible by the selected prime (line 18
in Algorithm 2). In another case, with probability

( p−1
p

)k (Lemma 2) some value will be
divisible by the selected prime.

The designation of the RSA-OTP secret moduli makes treating them as a one-time
element meaningless but does not lead to a complete breakdown of the RSA-OTP scheme:
all time exponents e and di remain unknown. However, in specific scenarios, especially for
short (128/256 bit) version of RSA-OTP, it may seriously affect the secrecy of encrypted data.
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Algorithm 2 Small prime divisors attack
1:

Require:
2: bitLen, k, {k depends on bitLen, see Table 2}
3: {∆n1, ∆n2, ..., ∆nk−2, ∆nk−1}
4:

Ensure: {n0, n1, ..., nk−2, nk−1}
5: lcmCycle← {1, 1}
6: prime← 2
7: m0 ← 1
8: for i = 1 to k− 1 do
9: mi ← mi−1 + ∆ni

10: end for
11: while bitLength(lcmCycle0) < bitLen do
12: lcmCycle0 ← lcmCycle1
13: lcmCycle1 ← lcmCycle1 · prime
14: for i = 0 to prime− 1 do
15: o f f setFit← True
16: ∆o f f set← i · lcmCycle0 mod lcmCycle1
17: for j = 0 to k− 1 do
18: if mj + ∆o f f set mod prime ≡ 0 then
19: o f f setFit← False
20: break
21: end if
22: end for
23: if o f f setFit = True then
24: prime← nextPrime(prime)
25: for j = 0 to k− 1 do
26: mj ← mj + ∆o f f set
27: end for
28: break
29: end if
30: end for
31: end while
32:
33: return m

5. Countermeasures

The primary conclusion to be drawn from the presented attack is the need for secure,
encrypted exchange of RSA-OTP ∆ni values. Multiple possible solutions exist, the most
straightforward of which is an AES encryption algorithm. However, this approach would
significantly increase the complexity of the solution. On the other hand, the ∆ni values
look pseudo-random to an external observer, as shown in Figure 2. This bitmap, containing
256 randomly generated consecutive ∆ni values exchanged between communication parties,
looks like (except for the few most significant bits) white noise.
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Figure 2. Example bitmap of 256 ∆ni values from following 256-bit RSA-OTP random transac-
tions (one value per row). (1) 0x27CBB0EADA66F8C1A8FA444A1D738E4E124F38F0A0C5CD10
110066E9724DAAF5*. (2) 0x5B8D5B5B9DE5E771319CEF62D99CF5169B994F7DD34CDBC2F45462B79
7D7E9D8* . . . (256) 0x5D38FBAFB2A93048AA4850CE4B70E3A26E8C0BD4C130FF5F4F6135
4F4A7371B6*. * The least significant bit of each value is a sign bit (1: negative, 0: positive).

Given the random nature of the ∆ni values, a more effective approach could be
implemented. Consider a basic XOR operation between consecutive differential values:

∆encni = ∆ni ⊕ ∆ni−1. (20)

Assuming ∆n0 is a secret, random value securely exchanged between both commu-
nication sides, this approach nullifies the presented attack because an attacker cannot
determine ∆ni from ∆encni. As shown in Figure 3 ∆encni values except for those most
significant bits are approximately white noise. The figure presents a series of 256 ∆encni
transactions corresponded to ones in Figure 2 and ∆n0:
0xFB945A7D42485E3A0A5D2F346BAA9455E3E70682C2094CAC629F6FBED82C07CD.

Figure 3. Example bitmap of 256 ∆encni values from following 256-bit RSA-OTP random transactions (one
value per row). (1) 0xDC5FEA97982EA6FBA2A76B7E76D91A1BF1A83E7262CC81BC739F0957AA61AD38.
(2) 0x7C46EBB147831FB09966AB28C4EF7B5889D6778D738916D2E554045EE59A432C . . . (256) 0x177
A17001C0DAC110B7F4EDF42428ABC497E54C5684E0A737C7EC7BE2FD6DC08.

The improved RSA-OTP scheme is presented in Figure 4.
The principle of operation (20) is similar to that of the Vernam cipher, because each

∆ni is derived from two randomly generated values (6) and then ∆encni is a XOR result
of two such consecutive values; hence, an attacker observing such communication cannot
revert original value from it. As in the case of the Vernam cipher, achieving secrecy of
exchanged data does not guarantee its integrity and authenticity; however, the simplicity of
the mechanism increases the security of the OTP algorithm. Depending on the application,
algorithms such as HMAC or Poly1305 can assure the integrity and authenticity of the
∆encni approach.
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Figure 4. Improved RSA-OTP scheme.

6. Conclusions

The paradigm shift from constant to one-time keys is an interesting direction in
the development of secure applications and services. Such an approach can potentially
solve many problems regarding recovery following a system being compromised and
resistance against side channel attacks. However, the case of RSA-OTP shows that exact
RSA-OTP moduli delta values exchanged via insecure channels can be totally compromised,
invalidating their classification as an OTP element. This is caused by the particular nature
of those values: they are products of relatively large prime numbers which have no small
divisors. Fortunately, despite the success of the small prime divisors attack, basic encryption
via XORing consecutive differential values should prove to be a sufficient countermeasure.

Author Contributions: Conceptualization, S.S.; methodology, S.S.; software, S.S.; validation, S.S.;
formal analysis, S.S.; investigation, S.S. and R.C.; resources, S.S. and R.C.; data curation, S.S.; writing—
original draft preparation, S.S. and R.C.; supervision, S.S. funding acquisition, R.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Polish Ministry of Science and Higher Education funding
for statutory activities.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2022, 11, 95 10 of 10

Abbreviations
The following abbreviations are used in this manuscript:

RSA Rivest–Shamir–Adleman
OTP One-Time Password
AES Advanced Encryption Standard
HMAC Hash-based Message Authentication Code
HOTP HMAC OTP
XOR Exclusive or
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8. Jabłoński, J.; Wójtowicz, M. Unconditionally Secure Cryptographic System (Bezwarunkowo bezpieczny system kryptograficzny).

Logistyka 2014, 12, 611–616. (In Polish)
9. Rivest, R.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 1978,

21, 120–126. [CrossRef]
10. Kocher, P. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In Proceedings of the Advances

in Cryptology—CRYPTO’96, Santa Barbara, CA, USA, 18–22 August 1996; pp. 104–113.
11. Karbownik, P.; Russek, P.; Wiatr, K. Weak RSA Keys Discovery on GPGPU. Int. J. Electron. Telecommun. 2019, 65, 25–31. [CrossRef]
12. Overmars, A.; Venkatraman, S. Mathematical Attack of RSA by Extending the Sum of Squares of Primes to Factorize a Semi-Prime.

Math. Comput. Appl. 2020, 25, 63. [CrossRef]
13. Ariffin, M.R.K.; Abubakar, S.I.; Yunos, F.; Asbullah, M.A. New Cryptanalytic Attack on RSA Modulus N=pq Using Small Prime

Difference Method. Cryptography 2019, 3, 2. [CrossRef]
14. Yan, S.Y. Factoring Based Cryptography. In Cyber Cryptography: Applicable Cryptography for Cyberspace Security; Springer:

Berlin/Heidelberg, Germany, 2018; pp. 217–286.

http://doi.org/10.24018/ejers.2020.5.4.1843
http://dx.doi.org/10.24425/bpasts.2020.134470
https://developers.yubico.com/OTP/OTPs_Explained.html
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.24425/123561
http://dx.doi.org/10.3390/mca25040063
http://dx.doi.org/10.3390/cryptography3010002

	Introduction
	The RSA Algorithm
	The RSA-OTP Concept
	Small Prime Divisors Attack
	Countermeasures
	Conclusions
	References

