
����������
�������

Citation: Kim, S. An Approach to the

Construction of a Recursive

Argument of Polynomial Evaluation

in the Discrete Log Setting. Electronics

2022, 11, 131. https://doi.org/

10.3390/electronics11010131

Academic Editor: Martin Reisslein

Received: 19 November 2021

Accepted: 29 December 2021

Published: 1 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Approach to the Construction of a Recursive Argument of
Polynomial Evaluation in the Discrete Log Setting

Sungwook Kim

Department of Information Security, College of Interdisciplinary Studies for Emerging Industries, Seoul Women’s
University, Seoul 01797, Korea; kim.sungwook@swu.ac.kr; Tel.: +82-2-970-5767

Abstract: Succinct Non-interactive Arguments of Knowledge (SNARks) are receiving a lot of attention
as a core privacy-enhancing technology for blockchain applications. Polynomial commitment schemes
are important building blocks for the construction of SNARks. Polynomial commitment schemes
enable the prover to commit to a secret polynomial of the prover and convince the verifier that
the evaluation of the committed polynomial is correct at a public point later. Bünz et al. recently
presented a novel polynomial commitment scheme with no trusted setup in Eurocrypt’20. To provide
a transparent setup, their scheme is built over an ideal class group of imaginary quadratic fields (or
briefly, class group). However, cryptographic assumptions on a class group are relatively new and
have, thus far, not been well-analyzed. In this paper, we study an approach to transpose Bünz et al.’s
techniques in the discrete log setting because the discrete log setting brings a significant improvement
in efficiency and security compared to class groups. We show that the transposition to the discrete
log setting can be obtained by employing a proof system for the equality of discrete logarithms over
multiple bases. Theoretical analysis shows that the transposition preserves security requirements for
a polynomial commitment scheme.

Keywords: blockchain privacy; zero-knowledge proof; proof of knowledge; polynomial commitment;
recursive argument; discrete log

1. Introduction

Zero-Knowledge Succinct Non-interactive Arguments of Knowledge (zk-SNARKs) are
non-interactive proof systems between the prover and the verifier. They provide a way for
the prover to convince the verifier that the statement claimed by the prover is true without
disclosing any other information except the validity of the statement while maintaining
a short proof size and an efficient verification by the verifier. Since their adoption to
cryptocurrency systems, such as Zcash [1] and Ethereum [2], zk-SNARKs are regarded as
an essential technique for solving data privacy issues in blockchain-based applications.
There have been numerous SNARK proposals in the literature. Some constructions present
very efficient proof systems with the help of a trusted setup [3–5]. Because the transparent
property is desirable for applications, such as cryptocurrency, recent constructions [6–8]
have focused on a proof system with a transparent setting, i.e., they have no trusted setup.

The construction of SNARKs with no trusted setup heavily relies on a transparent and
efficient polynomial commitment scheme. At a high level, transparent zk-SNARKs can
be constructed using the framework from polynomial interactive oracle proofs (IOP) [3,6]
as follows: (1) The prover expresses the required computation for proving a statement
as a set of low-degree polynomials over a finite field F, which is a representation of its
witness. (2) The prover sends commitments to low degree polynomials to the verifier, and
the verifier then checks the proof by querying evaluations of polynomials for points chosen
uniformly at random from F, where we crucially require a polynomial commitment scheme.
(3) Finally, one can obtain the non-interactive version of the previous proof systems by
applying the Fiat–Shamir heuristic [9].
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In this paper, we focus on polynomial commitment schemes. Let f (X) be the prover’s
secret polynomial over a field F with the degree at most d, i.e., deg( f ) ≤ d. In polynomial
commitment schemes, the prover sends the commitment to f to the verifier. Later, upon in-
put of a public point (x, y) ∈ F× F, the prover convinces the verifier that the committed
polynomial f holds y = f (X) with a proof. We call a polynomial commitment scheme
transparent if it requires no trusted setup to generate public parameters for the scheme.
Since the first construction was developed by Kate et al. [10], a variety of polynomial
commitment schemes have been proposed in the literature.

For polynomial commitment schemes, the main factors of efficiency consist of the
computation complexities of the prover (prover complexity) and verifier (verifier com-
plexity), and the communication complexity between them. Usually, constructions with
a trusted setup provide higher efficiency than those with a transparent setting. Recently,
Bünz et al. [6] proposed an efficient polynomial commitment scheme with a transparent
setting. Asymptotically, it achieves a logarithmic verifier complexity and proof size for
evaluation (communication complexity). In brief, it improves efficiency by applying an
evaluation protocol in a recursive manner. It reduces the degree of a polynomial f by half
at each iteration; hence, log deg( f ) iterations overall. Transparency in the scheme relies on
the use of a group of unknown order whose concrete candidate is an ideal class group of
imaginary quadratic fields.

The security of a group of unknown order stems from the infeasibility of computing
the order of the group. Previous cryptographic constructions over a class group considered
concrete group parameters, such as a 1665-bit negative fundamental discriminant for 128-bit
security [11,12], which was used in Bünz et al.’s scheme [6]. However, recent works report
that the above parameters for class groups provide less security than expected. Notably,
Dobson and Galbraith estimate that class groups with a 1665-bit discriminant only offer
55-bit security [13]. They, therefore, claim that orders of a random class group should be
at least 23328 for a 128-bit security level. Those parameters correspond to approximately a
6656-bit discriminant. This leads to a decreased efficiency for the cryptographic primitives
based on class groups.

In this paper, we put forward a study to overcome the efficiency degradation of
Bünz et al.’s construction caused by the use of class groups. To do this, we focus on
transposing their techniques in the discrete log setting, preserving a no-trust setup. This
approach brings about two advantages. First, the (elliptic curve) discrete log problem is
one of the standard cryptographic assumptions as opposed to the order assumption of class
groups. To date, its security has been well-understood. Second, the group operation in the
discrete log setting (e.g., elliptic curve groups) is much more efficient than that in the class
groups, which significantly reduces the actual computation cost for both the prover and the
verifier. In addition, a group element in the discrete log setting is shorter than that in class
groups. This advantage cuts the cost of bandwidth spent by the prover and the verifier
when applying the evaluation protocol of a polynomial commitment scheme.

Our approach is built on an information-theoretic abstraction given in [6] to construct
a polynomial commitment scheme. The abstraction requires two properties, a linear homo-
morphism and a monomial homomorphism, which the underlying commitment scheme
should provide. These two properties enable the verifier to apply the computations among
polynomials over their committed forms, such as a linear combination (a linear homomor-
phism) and a degree-shift operation (a monomial homomorphism) of polynomials. The
two properties are necessary for an evaluation protocol using a recursive call, which is
critical in achieving a logarithmic verifier and communication complexities. To realize
these properties in a discrete log setting, we utilize a polynomial encoding method devised
by Bootle et al. [14]. This method uses a variant of the Pedersen commitment scheme [15],
which naturally provides a linear homomorphism. Unfortunately, however, the Pedersen
commitment scheme is not a monomial homomorphism, which is easily obtained in a
class group-based scheme [6]. Thus, we focus our attention on the study of a discrete
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log-based proof system to prove that a monomial homomorphism is verifiably computed
in the discrete log setting. The contribution of this work is as follows.

• We clarify a proof system that proves the correct computation of a monomorphism
in the discrete log setting. Specifically, we show it suffices to have a proof system to
check the equality of a discrete logarithm over multiple bases, say PoEmDL. Given
two subsets {g1, · · · , gd} and {h1, · · · , hd} of a group G, PoEmDL allows the prover
to convince the verifier that ∏d

i=1 gai
i and ∏d

i=1 hbi
i have equal exponents, i.e., ai = bi

for i = 1, . . . , d, without disclosing raw exponents. A number of studies on PoEmDL
have been carried out independently of the construction of polynomial commitment
schemes. This work bridges two rather independent proof systems and provides a
blueprint to combine these proof systems for the construction of an efficient, transpar-
ent polynomial commitment scheme in the discrete log setting.

• We propose a recursive argument to show the correct polynomial evaluation by em-
ploying PoEmDL. Our approach is to transpose a recursive argument from a class
group in [6] to that from the discrete log setting. We present a security analysis to
demonstrate the completeness and soundness of the proposed protocol. In addition,
We present a zero-knowledge version of the obtained polynomial commitment scheme.
A zero-knowledge version ensures that no information of the prover’s secret polyno-
mial f (X) is leaked while the prover convinces the verifier that y = f (x) holds for a
point (x, y).

The remainder of this paper is organized as follows. In Section 2, we review related
works. In Section 3, we provide the background on the hardness assumption and building
blocks for polynomial commitment schemes. In Section 4, we present our approach to
transpose Bünz et al.’s techniques in the discrete log setting and investigate a sub-routine
protocol as a sufficient condition for our approach. In Section 5, we discuss the performance
and security of our approach. In Section 6, we extend the polynomial commitment scheme
in the previous section to the version with a zero-knowledge evaluation protocol. Finally,
we provide some concluding remarks in Section 7.

2. Related Work

A lot of recent research on polynomial commitment schemes have been carried out in
the context of Succinct Non-interactive ARguments of Knowledge (SNARKs). In particular,
a polynomial commitment scheme provides a key tool to generate a zk-SNARK from a
polynomial interactive oracle proof (IOP) [3,6].

Kate et al. first constructed efficient and succinct polynomial commitment schemes
for univariate polynomials [10]. The construction is based on bilinear pairings over elliptic
curves and requires a trusted setup. Its extension to multivariate polynomials has been
proposed by Papamanthou et al. [16] and Zhang et al. [17]. Zhang et al. [18] also presented
the zero-knowledge version of their work [17]. These schemes all use bilinear pairings and
require a trusted setup.

Associated with transparent SNARKs, polynomial commitment schemes with a trans-
parent setting have received significant attention and, along with the previously mentioned
constructions, many schemes can be found in the literature. Bootle et al. [14] constructed a
transparent polynomial commitment scheme in the discrete log setting. They represent a
polynomial of degree d as a matrix with

√
d rows and columns and then write a polynomial

evaluation as matrix multiplications. This leads to a O(
√

d) commitment size, verifier com-
plexity, and communication complexity. Wahby et al. presented a transparent polynomial
commitment scheme [7] for multilinear polynomials under the discrete log assumption.
The scheme is built on the ideas of a matrix commitment of Bootle et al. [14] and the inner-
product argument of Bünz et al. [19]. For a polynomial of degree d, the O(

√
d) commitment

size, verifier complexity, and communication complexity are required. Ben-Sasson et al. [20]
introduced the Fast Reed Solomon IOP of Proximity (FRI), which implicitly yields a trans-
parent polynomial commitment scheme. Kattis et al. [8] and Zhang et al. [21] indepen-
dently presented a method for obtaining polynomial commitment schemes from FRI.
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Their construction has O(λ) size commitments for the security parameter λ and O(log2 d)
communication complexity and supports quantum resistance. In addition, Lee [22] pro-
posed a multivariate polynomial commitment scheme with a transparent setting using
pairing-based commitments. The scheme builds on inner product arguments given in
Bootle et al. [14] and Bünz et al. [6]. Recently, Boneh et al. [23] studied additive polynomial
commitment schemes, where commitments form an additive group [6,10,14,19,22]. They
showed that the additive property yields a batch evaluation of polynomial commitments,
which can be used for the efficient construction of SNARKs.

Groups of unknown order provide a mathematical structure for interesting crypto-
graphic applications, such as delay functions [24], accumulators [25], and polynomial
commitment schemes [6]. Most cryptographic applications consider two candidate groups
of unknown order, i.e., RSA groups [26] and ideal class groups of imaginary quadratic
fields [27]. RSA groups assume a trusted setup in generating the RSA modulus and hence
do not meet our current interest. By contrast, class groups do not require a trusted setup
and thus have been used in recent constructions with a transparent setting [6,24,25]. Dob-
son and Galbraith [13] analyzed the security of the candidate parameters for class groups
proposed in [11,12]. They argued that the parameters in [11,12] do not meet the desired
security level and present much larger parameters, which lead to an extremely large size-up
for commitments in previous constructions. In this line of research, Belabas et al. [28]
recently reported that the order assumption in class groups of imaginary quadratic fields
does not hold in certain special classes of prime numbers. Some studies have explored
alternative source groups of unknown order with a transparent setting. As an exam-
ple, Dobson and Galbraith [13] suggested the Jacobian of hyperelliptic curves of genus 3,
whereas Lee [29] pointed out that the order of the Jacobian of a hyperelliptic curve can be
efficiently computed.

3. Preliminaries

Throughout the paper, λ denotes the security parameter written in unary. The function
negl : N → [0, 1] denotes a negligible function, i.e., negl(λ) = 1− λω(1). For a set S, we

use e $← S to denote that an element e is sampled uniformly at random from S. For a
probabilistic algorithm A, we write y← A(x) to denote that y is returned as the result of A
on input x together with a randomness r picked internally.

3.1. The Discrete Logarithm Assumptions

Let Ggen be an algorithm that takes on input λ and returns a λ-bit prime number p,
cyclic group G of order p, and a generator g of G.

Definition 1 (Discrete Logarithm Assumption). The discrete logarithm assumption holds
relative to Ggen if for any polynomial-time adversary A,

Pr

ga = h :
(G, p, g)← Ggen(1λ),

h $← G,
a← A(G, p, g, h)

 ≤ negl(λ).

Definition 2 (Discrete Logarithm Relation Assumption). The discrete logarithm relation
assumption holds relative to Ggen if for any polynomial-time adversary A,

Pr

∃ai 6= 0∧
n

∏
i=0

gai
i = 1 :

(G, p, g0)← Ggen(1λ),

g1, . . . , gn
$← G,

a0, . . . , an ← A(G, p, g0, . . . gn)

 ≤ negl(λ).

In the above definition, ∏n
i=0 gai

i = 1 for some ai 6= 0 is called a non-trivial discrete
logarithm relation. It is well-known that the discrete logarithm relation assumption is
equivalent to the discrete logarithm assumption [14].
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3.2. Zero-Knowledge Arguments of Knowledge

Let R ⊂ S ×W be a polynomial-time-decidable binary relation. s ∈ S and w ∈ W
are called a statement and a witness, respectively. We define LR as the set {s ∈ {0, 1}∗ :
∃w ∈ {0, 1}∗ such that (s, w) ∈ R}, which is called the language of R. We consider
an argument system for a relation R consisting of three probabilistic polynomial-time
algorithms (Pgen,P ,V). A non-interactive algorithm Pgen takes the security parameter λ
as an input and returns a common reference string (crs) pp. P and V are called a prover and
a verifier, respectively, and both are interactive algorithms. In addition, P takes as input a
triple of pp, a statement s ∈ S , and a witness w ∈ W . Moreover, V takes as input a pair of
pp and a statement s ∈ S and outputs 0 or 1. We denote the transcript produced by P and
V for an interaction by tr ← 〈P(pp, s, w),V(pp, s)〉 and write 〈P(pp, s, w),V(pp, s)〉 = b,
where b = 1 if V accepts and b = 0 if V rejects.

Definition 3 (Argument of Knowledge). We call the triple (Pgen,P ,V) an argument of knowl-
edge for relationR if it has completeness and witness-extended emulation, as defined below.

Definition 4 (Perfect Completeness). (Pgen,P ,V) has perfect completeness if for all non-
uniform polynomial-time adversaries A,

Pr
[
(s, w) 6∈ R ∨ 〈P(pp, s, w),V(pp, s)〉 = 1 :

pp← Pgen(1λ),
(s, w)← A(pp)

]
= 1.

Definition 5 (Witness-Extended Emulation [30,31]). (Pgen,P ,V) has witness-extended emu-
lation if for every deterministic polynomial-time prover P∗ there exists an expected polynomial-time
emulator E such that for all non-uniform polynomial-time adversaries A, the difference between the
following two probabilities is less than or equal to negl(λ):

Pr

A(tr) = 1 :
pp← Pgen(1λ),
(s, st) ∈ A(pp),

tr← 〈P∗(pp, s, st),V(pp, s)〉

 and

Pr

A(tr) = 1 ∧ if tr is accepting, then (s, w) ∈ R :
pp← Pgen(1λ),
(s, st) ∈ A(pp),

tr← 〈P∗(pp, s, st),V(pp, s)〉

,

where the oracle called by E 〈P∗(pp,s,st),V(pp,s)〉 permits rewinding to any round and running again
on fresh verifier randomness, and st is the initial state of P∗.

Definition 6 (Public Coin). An argument system (Pgen,P ,V) is called public coin if the verifier
chooses its messages uniformly at random, and independently of the messages sent by the prover,
i.e., the challenges correspond to the verifier’s randomness.

We recall special honest verifier zero-knowledge, which states that the view of the
verifier can be simulated if the verifier follows the protocol honestly and if challenges made
by the verifier are known in advance.

Definition 7 (Perfect SHVZK). A public coin argument system (Pgen,P ,V) is called a perfect
special honest verifier zero-knowledge (SHVZK) argument for relation R if there exists a proba-
bilistic polynomial-time simulator Sim such that for all interactive non-uniform polynomial-time
adversaries A,

Pr

A(tr) = 1 ∧ (s, w) ∈ R :
pp← Pgen(1λ),

(s, w, ρ)← A(pp),
tr← 〈P(pp, s, w),V(pp, s)〉
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= Pr

A(tr) = 1 ∧ (s, w) ∈ R :
pp← Pgen(1λ),

(s, w, ρ)← A(pp),
tr← Sim(s, ρ)

,

where ρ is the public coin randomness used by the verifier.

The general forking lemma [6,14] is useful for proving that an argument system has
witness-extended emulation. Consider a public coin interactive argument system with r
rounds. We view ∏r

i=1 ni distinct accepting transcripts as having a tree format with depth r
and ∏r

i=1 ni leaves, which we call an (n1, . . . , nr)-tree. For 1 ≤ i ≤ r, let ci be the i-th round
challenge chosen among exactly ni ≥ 1 values. The root node is labeled with a statement s
and has exactly n1 children labeled with a distinct value for c1, where each edge from the
root to a child is labeled with a message from the prover to the verifier on c1. Similarly,
each node in depth 1 ≤ i ≤ r− 1 is labeled with a distinct value for ci and has ni+1 children
labeled with a distinct value for ci+1, where each edge from ci to ci+1 is labeled with a
message from the prover to the verifier on ci. Note that each path from the root to a leaf
then corresponds to an accepting transcript.

Lemma 1 (General Forking Lemma [6,14]). Let (Pgen,P ,V) be a public coin argument system
for relation R with r rounds. Let χ be a witness extraction algorithm that succeeds with over-
whelming probability in extracting a witness from an (n1, . . . , nr)-tree of accepting transcripts in
probabilistic polynomial time. If ∏r

i=1 ni is bounded above by a polynomial in the security parameter
λ, (Pgen,P ,V) has witness-extended emulation.

3.3. Commitment Schemes

We review the definitions and security properties regarding the polynomial commit-
ment schemes. In the following, we use a tuple (a0, . . . , an; b0, . . . , bn′) for arguments or a
returned tuple of the prover P and the verifier V . In a tuple, (a0, . . . , an) before the semi-
colon and (b0, . . . , bn′) after it denotes public variables known to both P and V , and secret
variables known to only P , respectively.

Definition 8 (Commitment Scheme). A commitment scheme is a triple (Cgen,Commit,Open)
of probabilistic polynomial-time algorithms defined as follows:

• pp← Cgen(1λ) takes the security parameter λ on input, and outputs the public parameter
pp, which specifies a message space, a randomness space, and a commitment space;

• (c; r) ← Commit(pp; m, r) takes a secret message m and an optional random r chosen uni-
formly at random on input and returns a commitment c and (optionally) a secret opening
hint r;

• b ∈ {0, 1} ← Open(pp, c, m, r) verifies the commitment c to the message m provided with
the opening hint r. It outputs b = 1 if the commitment is valid and b = 0 otherwise.

A commitment scheme is binding if for all non-uniform polynomial-time adversaries A,

Pr

b0 = b1 6= 0 ∧ m0 6= m1 :

pp← Cgen(1λ),
(c, m0, m1, r0, r1, ρ)← A(pp),

b0 ← Open(pp, c, x0, r0),
b1 ← Open(pp, c, x1, r1)

 ≤ negl(λ).

A commitment scheme is hiding if for all non-uniform polynomial-time adversariesA = (A0,A1),∣∣∣∣∣∣∣∣∣∣∣
1
2
− Pr

b′ = b :

pp← Cgen(1λ),
(m0, m1, st)← A0(pp),

b $← {0, 1},
(c; r)← Commit(pp; mb, r),

b′ ← A1(st, c)



∣∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).
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In a polynomial commitment scheme, V additionally checks whether the evaluation at
any point is correct with respect to the committed polynomial f (X) given by P . The below
definition of polynomial commitment schemes is given by Bünz et al. [6], which extends
that of Kate et al. [10].

Definition 9 (Polynomial Commitment Scheme [6,10]). Let (Cgen,Commit,Open) be a com-
mitment scheme for a message space R[X] over a ring R. A polynomial commitment scheme
additionally consists of a protocol Eval as follows:

• b ∈ {0, 1} ← Eval(pp, c, x, y, d; f (X), r) is an interactive public coin protocol between P and
V . Both P and V have as input a commitment c, points x, y ∈ R, and a degree d. In addition,
P knows the opening of c to a secret polynomial f (X) ∈ R[X] with deg( f (X)) ≤ d and a
secret opening hint r. P convinces V that f (x) = y by applying the protocol.

3.4. Privacy-Preserving Blockchain with SNARKs

Recently, SNARKs have been receiving a lot of attention from the blockchain industry
as a solution for balancing privacy and publicly-verifiable integrity. For instance, Zcash
employs SNARKs to provide Bitcoin with user anonymity and privacy of transaction data
with anonymous coins [1]. SNARKs are also used to verify Ethereum smart contracts over
private input [2].

Figure 1 presents a high-level architecture of privacy-preserving blockchains with
SNARKs. A typical way that SNARKs are used in blockchains is as follows. The real data is
stored in off-chain storage. The data posted to the on-chain blockchain (blockchain ledger)
consist of the commitment to the transaction and its proof that the target transaction is
valid. Cryptographic commitment schemes ensure that it is very difficult to obtain the
original input value from the committed value, and the proof generated using SNARKs
can be verifiable by any node in the blockchain network. Therefore, the privacy problem
is solved because the data is hidden in the public on-chain blockchain. In addition, since
zero-knowledge techniques provide fast verification, they are being used in various ways
to improve the performance and minimize the size of the blockchain. It is worth noting
that a polynomial commitment scheme is a key building block to compile a polynomial
IOP system, which is a formal representation of a proving statement, into a SNARK [3,6].

Figure 1. Overview of blockchain with SNARKs.

4. Our Approach

In this section, we present our approach to transpose Bünz et al.’s techniques in the
discrete log setting. We investigate and identify a sufficient condition for a transposition.
Specifically, we show how to employ a proof system for the equality of discrete logarithms.
For the rest of this paper, we encode a polynomial f (X) = ∑d−1

i=0 fiXi over a field F into a
vector f = ( f0, . . . , fd−1) ∈ Fd. For a group G let g be a vector (g0, . . . , g`−1) ∈ G` for some
positive integer `. For d ≤ ` we denote the multi-exponentiation ∏d−1

i=0 g fi
i by g f . When

it is clear from the context, we write the commitment to a polynomial f (X) as Commit( f )
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instead of Commit(pp; f (X), r) for the sake of convenience. We also take a finite field F as
Zp for a prime p. Table 1 presents frequently-used notations in the paper.

Table 1. Notations.

Notation Definition

P , V the prover and verifier of a proof system
F finite field (usually Zp with a prime p)
G a group of a prime order p
|G| the size of an element of G
[G] the computation cost for group operation in G
f (X), deg( f (X)) a polynomial f (X) ∈ F[X] and its degree, respectively
fL(X), fR(X) the left and right half parts of a polynomial f (X), respectively
f the vector representation ( f0, . . . , fd−1) of a polynomial f (X) = ∑d−1

i=0 fiXi ∈ F[X]

g (g0, . . . , g`) ∈ G` for some positive integer `
g f ∏d−1

i=0 g fi
i for g = (g0, . . . , g`) ∈ G` and f = ( f0, . . . , fd−1) where d ≤ `

Commit( f ) the commitment to a polynomial f (X) ∈ F[X]

CommitH( f ) the hiding commitment to a polynomial f (X) ∈ F[X]

PoEmDL a proof system for equality of discrete logarithms over multiple bases
|PoEmDL| the communication complexity of PoEmDL

[PoEmDL]P , [PoEmDL]V the computation costs of P and V for PoEmDL, respectively

4.1. Bünz et al.’s Abstraction

Bünz et al. [6] presented a polynomial commitment scheme for their construction
of SNARKs. The proposed scheme operates in a recursive way by reducing the degree
of polynomial f by half during each iteration, and hence, there are log deg( f ) iterations
overall. More precisely, given an odd degree d polynomial f (X) = ∑d

i=0 fiXi, the prover
splits it into two polynomials

fL(X) =

d+1
2 −1

∑
i=0

fiXi and fR(X) =

d+1
2 −1

∑
i=0

f d+1
2 +iX

i,

which both polynomials have a degree of roughly d/2 satisfying

f (X) = fL(X) + Xd/2 fR(X). (1)

The prover then sends the verifier the commitments Commit( fL) and Commit( fR) to
fL(X) and fR(X), respectively. At the end of each iteration, the prover takes the next input
polynomial as

f (X)← fL(X) + α fR(X) (2)

for a random α received from the verifier.
Because the verifier needs to check if f (x) = y from committed polynomials, the ver-

ifier should be able to homomorphically compute a committed form of the current f (X)
and the next f (X) from Commit( fL) and Commit( fR) to see whether (1) holds. The verifier
also needs to compute a commitment to a polynomial in (2) for the next iteration from
Commit( fL) and Commit( fR).

To support the computation of the committed form, Bünz et al. [6] define the following
two abstract properties.

• linear homomorphism
Commit( f )a · Commit(g)b = Commit(a · f + b · g) for polynomials f and g, and scalars
a and b (a linear homomorphism);
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• monomial homomorphism

Commit( f )Xd
= Commit(Xd · f ) for some bounded positive integer d.

Figure 2 illustrates Bünz et al.’s abstraction for a polynomial commitment scheme with
a recursive argument from the above two properties.

Figure 2. Bünz et al.’s approach for the recursive argument. The prover recursively reduces the
degree of f at each iteration over a plain f . The verifier recursively reduces the degree of f at each
iteration over a committed form of f using monomial and linear homomorphic properties.

4.2. Base Commitment Scheme to Polynomial

We construct a polynomial commitment scheme based on a generalization of the
Pedersen commitment scheme [32]. In the generalized Pedersen commitment, pp consists

of a group G of a prime order p, and group elements g, g0, ..., gn−1
$← G. For a secret

message vector m = (m0, . . . , mn−1) ∈ Zn
p the prover chooses r $← Zp and computes(

gr
n−1

∏
i=0

gmi
i ; r

)
← Commit(pp; m, r).

It is well-known that the generalized Pedersen commitment is perfectly hiding and
computationally binding under the discrete logarithm relation assumption [32]. It is also
important to note that the generalized Pedersen commitment scheme is homomorphic, i.e.,

Commit(pp; m, r) · Commit(pp; m′, r′) = Commit(pp; m + m′, r + r′).

We consider a commitment scheme, which does not use the randomness in the gener-
alized Pedersen commitment scheme, as follows:

• Cgen(1λ): On input of the security parameter λ, it first samples G ← Ggen(1λ) of a

prime order p of length λ. It then chooses g0, . . . , gd
$← G and returns pp = (G, p, g)

where g = (g0, . . . , gd).
• Commit(pp; f (X)): For a secret polynomial f (X) = ∑d

i=0 fiXi ∈ Zp[X] with

deg( f (X)) ≤ d, it computes and outputs c← g f = ∏d
i=0 g fi

i .

• Open(pp, c, f (X)): On input c and f (X), the verifier computes c′ ← ∏d
i=0 g fi

i and
checks if c = c′ in G.

Because the generalized Pedersen commitment scheme is computationally binding
under the discrete logarithm relation assumption, so is the commitment scheme above.

4.3. Evaluation Protocol

As presented in Section 4.1, Bünz et al.’s approach considers two properties (a linear
homomorphism and a monomial homomorphism) for the underlying commitment schemes,
which is crucial for the verifier to compute (1) from the commitments to the polynomials fL
and fR on the right-hand side. However, our base commitment scheme does not provide
monomial homomorphism, while it immediately holds the linear homomorphic property.
A monomial homomorphic commitment scheme is not known thus far in the discrete log
setting with no trusted setup. This is because a monomial homomorphic property may
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require some special structures for base elements in the group, which is impossible to
generate without a trusted setup.

Thus, our approach focuses on providing a way to check the integrity of fL and fR, i.e.,
f = fL + Xd/2 · fR using the linear homomorphic property only. The idea behind our ap-
proach is presented in Figure 3. To avoid monomial homomorphism, our approach simply
lets the prover send one additional commitment to Xd/2 · fR besides two commitments to fL
and fR so that f = fL + Xd/2 · fR can be verified using the linear homomorphic property.

Figure 3. Our approach for recursive argument. Aside from two commitments, Commit( fL) and
Commit( fR), the verifier additionally receives Commit(Xd′ · fR) to confirm they properly come from
the input polynomial f using linear homomorphic property only.

We present the evaluation protocol Eval in Algorithm 1, which is a transposition of
Bünz et al.’s construction [6] in the discrete log setting. In Line 13 of the Eval protocol,
the prover sends one additional commitment cRR ← Commit(Xd/2 · fR). The verifier is
then able to compute Commit( f ) = Commit( fL) · Commit(Xd/2 · fR) using a linear homo-
morphic property of the underlying commitment scheme (Line 13). However, because the
polynomial fR(X) is committed to cR and cRR independently, it is required for the prover
to prove that cR and cRR are generated from the same polynomial fR(X). More precisely,

given public parameter pp(= {g0, . . . , gd}) and two target instances cR

(
= ∏d′

i=0 g
fd′+1+i
i

)
and cRR

(
= ∏d′

i=0 g
fd′+1+i
d′+1+i

)
, the prover needs to convince the verifier that cR and cRR have

the same exponents. Thus, we require a proof for equality of discrete logarithms, which
is invoked as a sub-protocol PoEmDL in the Eval protocol (Line 12). PoEmDL takes pp, cR,
cRR, and deg ( fR(X)) = d′ on input and returns 1 if cR and cRR have the same exponents
and 0 otherwise. If the returned value is 0, V aborts the Eval protocol because P is a
cheating prover. We remark that several cryptographic protocols on PoEmDL have been
proposed [33,34]. The works for PoEmDL have been developed independently from the
construction of polynomial commitment schemes.
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Algorithm 1 Eval(pp, c ∈ G, x ∈ Zp, y ∈ Zp, d ∈ N; f (X) ∈ Zp[X])

Common input: public parameter pp, commitment c = ∏d
i=0 g fi

i to f (X), point (x, y = f (x)), degree bound d

Prover’s witness: secret polynomial f (X) = ∑d
i=0 fiXi

1: if d = 0 then
2: P sends f (X) = f0 ∈ Zp to V // f (X) is a constant f0

3: V checks that f0 = y in Zp

4: V checks that g f0
0 = c in G

5: V returns 1 if all checks pass, 0 otherwise
6: else
7: P and V compute d′ ← b d

2 c
8: P sets fL(X)← ∑d′

i=0 fiXi and fR(X)← ∑d′
i=0 fd′+1+iXi // If d is even, then f2d′+1 = 0

9: P computes cL ← ∏d′
i=0 g fi

i , cR ← ∏d′
i=0 g

fd′+1+i
i , and cRR ← ∏d′

i=0 g
fd′+1+i
d′+1+i in G

10: P computes yL ← fL(x) and yR ← fR(x) in Zp

11: P sends {cL, cR, cRR, yL, yR} to V
12: P and V run PoEmDL(pp, cR, cRR, d′) // Checking that mDL(cR) = mDL(cRR)

13: V checks that c = cL · cRR in G and returns 0 if the equation does not hold

14: V checks that y = yL + yR · xd′+1 in Zp and returns 0 if the equation does not hold

15: V chooses α
$← Zp and sends it to P

16: P and V compute c′ ← (cL)
α · cR in G and y′ ← α · yL + yR in Zp

17: P computes f ′(X)← α · fL(X) + fR(X) in Zp[X] // deg( f ′(X)) = d′

18: P and V run Eval(pp, c′, x, y′, d′; f ′(X))

5. Discussion: Performance & Security Analysis

Let Π = (Cgen,Commit,Open,Eval) be the polynomial commitment scheme described
in Section 4. In this section, we analyze the performance and security of the Eval protocol.

5.1. Performance

We analyze the efficiency of our approach in comparison with the recently proposed
schemes with a transparent setting found in the literature. For a concrete performance
analysis, we borrow the examples of groups and parameters at the 128-bit security level
given by Lee [22], which is presented in Table 2. In Table 2, G denotes a cyclic group of
known order, which is implemented by curve25519-dalek [35]. An imaginary class group
GU [36] is taken as an example group of unknown order. The discriminant of GU is fixed
as ∆ = −(26656 − 26, 745), which is estimated to offer the 128-bit security level [13]. This
is implemented by ANTIC [37]. For a pairing-based construction, G1, G2, and GT denote
the two source groups and the target group of a pairing P. The groups of pairing are
implemented by RELIC [38] over the curve BLS12-381 [39].

We analyze the efficiency of our approach. Let |G| and |PoEmDL| be the size of
an element in G and the communication complexity of PoEmDL, respectively. Let [G],
[PoEmDL]P , and [PoEmDL]V be the computation cost in G, the prover’s computation cost
for PoEmDL, and the verifier’s computation cost for PoEmDL, respectively. Below we focus
on the dominated terms for each complexity comprising the transmission and operations
of the group elements, i.e., we neglect operations over a field Zp. The Eval protocol makes
recursive calls roughly log d times. The messages between the prover and the verifier consist
of log d times of three elements in G, and |PoEmDL|, respectively. Thus, the communication
complexity is equal to 3 log d · |G| · |PoEmDL|. The prover applies log d times of three
multi-exponentiations [40] of roughly d/2 size and one operation over G, and PoEmDL
on the prover’s side. This leads to O(d) · [G] · [PoEmDL]P computation complexity for the
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prover. The verifier applies log d times of one exponentiation and two operations over G,
and PoEmDL on the verifier’s side, which leads to O(log d) · [G] · [PoEmDL]V computation
complexity overall. The size of public parameter pp is d · |G| · |PoEmDL|.

We now provide a comparison for polynomial commitment schemes [6,22] with a
transparent setting, which achieves a logarithmic verifier complexity in Table 3. The table
focuses on the dominated terms for each complexity comprising the transmission and
operations of the group elements. As mentioned above, We apply multi-exponentiation
techniques [40] to both our approach and Bünz et al.’s construction to reduce the prover
complexity by a factor of log d. In the case of Bünz et al.’s construction, it is possible to
reduce the size of public parameter pp to a single element of GU when multi-exponentiation
techniques are not applied. Table 3 summarizes the efficiency analysis on communication
and computation complexities, and the size of the public parameter for recent polynomial
commitment schemes with transparent setting and our approach.

Table 3 shows that the efficiency of our approach depends on that of PoEmDL. If PoEmDL
has a constant communication/computation complexity, we observe that each complexity
is almost the same across the schemes, and the efficiency of a scheme depends highly on
the underlying group. The benchmark result on base groups in Table 2 shows that the
sizes of the element in GU and GT are approximately 25× and 6× larger than that of G,
respectively. For the operation time, GU and GT are approximately 844× and 18× slower
than that of G, respectively.

Table 2. Efficiency comparison between groups. The time is measured for operations to multiply a
random point (element) of a group by a 256-bit scalar.

Group, Operation Size (bytes) Time (µs)

Elliptic curve (EC) group G 32 45

Class group GU 832 38,000

G1 48 220

EC group with pairing G2 96 490

GT 192 820

EC pairing operation P - 1600

Table 3. Comparison between polynomial commitment schemes with a transparent setting. | · | and
[·] denote the size of an element and the computation cost of a group operation in the corresponding
group, respectively. We express communication complexity in the number of group elements and
computation complexity in a number of group operations.

Scheme Bünz et al. [6] Lee [22] Our Approach

Communication 3 · |GU | · log d 6 · |GT | · log d 3 · |G| · |PoEmDL| · log d

Prover Computation [GU ] ·O(d) [G1] ·O(d) [G] · [PoEmDL]P ·O(d)
Verifier Computation [GU ] ·O(log d) [GT ] ·O(log d) [G] · [PoEmDL]V ·O(log d)

Size of pp |GU | · d (|G1|+ |G2|) · d |G| · |PoEmDL| · d

The above discussion shows that our scheme based on an elliptic curve group in
the discrete log setting is very promising in the case that we have an efficient PoEmDL.
Unfortunately, currently known PoEmDL protocols have O(d) communication complexity
for the number of bases, i.e., degree of a polynomial in our setting, which is not desirable
for our purpose of logarithmic complexity. However, we emphasize that it is meaningful to
observe that two independent cryptographic primitives are closely connected and suggest
a stepping stone for the construction of an efficient, transparent polynomial commitment
scheme with a recursive argument in the discrete log setting.
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5.2. Security

We analyze perfect completeness (Definition 4) and witness-extended emulation
(Definition 5) of the proposed polynomial commitment scheme.

Theorem 1. The Eval protocol of the polynomial commitment scheme Π has perfect completeness.

Proof of Theorem 1. First, we show that the case of d = 0 satisfies the perfect complete-
ness. When d = 0, the valid input consists of the constant polynomial f (X) = f0,
c = g f0

0 ← Commit(pp; f (X)), and y = f0. Thus, the verification equations checked
by V immediately hold.

Next, we consider the case of d > 0. For the polynomial f (X) = ∑d
i=0 fiXi ∈ Zp[X],

let tin ← (c, x, y, d; f (X)) and tout ← (c′, x, y′, d′; f ′(X)) be the input and output tuples for
every recursive step in the Eval protocol. For the perfect completeness, it suffices to show
that tout satisfies the relations c′ = g f ′ , y′ = f ′(x), and deg( f ′(X)) ≤ d′ when the relations
c = g f , y = f (x), and deg( f (X)) ≤ d hold for tin.

When d+ 1 is odd, we can see that (c′, y′, f ′(X)) from tout is exactly equal to (c, y, f (X))
from tin and deg( f ′(X)) = deg( f (X)) ≤ d ≤ d′ = d + 1. Thus, the relation holds for tout.
When d + 1 is even, we have fL(X) and fR(X), such that f (X) = fL(X) + X

d+1
2 fR(X) and

f ′(X) = α · fL(X) + fR(X). Thus, we can see that the following equations hold:

c′ = (cL)
α · cR = gα fL · g fR = gα fL+ fR = g f ′ ,

y′ = α · yL + yR = α · fL(x) + fR(x) = f ′(x),

c = g f =
d

∏
i=0

g fi
i =

d+1
2 −1

∏
i=0

g fi
i ·

d

∏
i= d+1

2

g fi
i =

d+1
2 −1

∏
i=0

g fi
i ·

d+1
2 −1

∏
i=0

g
f d+1

2 +i
d+1

2 +i
= cL · cRR,

y = yL + yR · xd′ = fL(x) + x
d+1

2 fR(x) = f (x).

Finally, we have,

deg f ′(X) ≤ max{deg fL(X), deg fR(X)} ≤ d′ =
d + 1

2
− 1.

This completes the proof of the perfect completeness.

We now prove that the Eval protocol is sound, i.e., it has witness-extended emulation.
In brief, we need to show that we can extract a witness polynomial f (X) from a tree of
accepting transcripts, where the number of transcripts is bounded in a polynomial in λ.
This can be done by extracting an intermediate secret polynomial at each iteration of Eval,
i.e., from Level i + 1 to Level i in the tree. In Lemma 2, we first show that given two
accepting transcripts, we can extract an intermediate witness polynomial at each iteration
of the Eval protocol. We then prove the witness-extended emulation for the whole Eval
protocol by using the lemma from leaf nodes to the root node sequentially in Theorem 2.

Lemma 2. Let pp = (G, p, g0, . . . , gd) be the public parameter generated by Ggen. Suppose
we have two accepting transcripts (x, cL, cR, cRR, yL, yR, α, f (X), y) and (x, cL, cR, cRR, yL, yR, α′,
f ′(X), y′) for two distinct numbers α, α′ ∈ Zp, such that g f = cα

LcR and g f ′ = cα′
L cR. Fur-

thermore, suppose f (X) and f ′(X) are polynomials in Zp[X] with a degree of at most d and
y = f (x), y′ = f ′(x) ∈ Zp. Then on the input of the above transcripts, there exists a probabilistic
polynomial-time algorithm E that extracts either fL(X), fR(X) ∈ Zp[X] with a degree of at most d
such that yL = fL(x) ∈ Zp, yR = fR(x) ∈ Zp, or a breach of the binding property of the Pedersen
commitment scheme relative to Ggen.
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Proof of Lemma 2. Because the two transcripts are valid, it holds that

g f = (cL)
α · cR, g f ′ = (cL)

α′ · cR ∈ G.

We then have
g f− f ′ = (cL)

α−α′ = g(α−α′) fL ,
gα f ′−α′ f = (cR)

α−α′ = g(α−α′) fR .

Thus, E is able to compute

fL(X)← f (X)− f ′(X)

α− α′
, fR(X)← α f ′(X)− α′ f (X)

α− α′

from the binding property of the Pedersen commitment scheme. In addition, because it
holds that

f (x) = y = α · yL + yR and y′ = f ′(x) = α′ · yL + yR,

we let yL ← y−y′
α−α′ and yR ← αy′−α′y

α−α′ . Then, yL and yR are identical to the evaluations of the
above fL(X) and fR(X) at X = x, respectively.

Theorem 2. The Eval protocol has witness-extended emulation for a relation

REval = {((c, x, y, d), f (X)) : deg( f (X)) ≤ d ∧ f (x) = y ∧Open(pp, c, f (X)) = 1}

if the discrete logarithm relation assumption holds for Ggen.

Proof of Theorem 2. For witness-extended emulation, we call the general forking lemma
(Lemma 1). Thus, we need to construct an expected polynomial-time extractor E that
extracts a witness from a tree whose number of leaves is bounded above by a polynomial
in λ.

For the statement (c, x, y, d) ∈ LREval
, we consider the following tree of the accepting

transcripts. The root node is labeled with the first input statement (c, x, y, d) to Eval.
Including the root node, let N be a node labeled with the statement (c, x, y, d). We denote
the corresponding witness polynomial to (c, x, y, d) by f (d)(X) ∈ Zp[X]. N has two child
nodes as follows. By rewinding the oracle 〈P∗,V〉 two times with two different challenges
α1 and α2 on the same input statement (c, x, y, d), each child node for the given challenge
is labeled with the update statement (c′, x, y′, d′). Finally, nodes with d = 0 are leaf nodes
of the tree. Because the number of levels with a branching factor of 2 is bounded by
dlog(d + 1)e, there are at most 21+dlog2(d+1)e ≤ 4(d + 1) transcripts in total, which is a
polynomial in λ.

We now prove that there exists an extractor E that extracts a witness f (X) from the
above tree, which we construct in a recursive way. That is, we construct an extractor E (d) to
extract f (d)(X) for a statement (c, x, y, d) at each node starting from the leaf nodes in the
tree. We note that E (d) for the degree bound d in the root node is a desired extractor E .

We fist consider E (0) to extract a witness from the leaves of the tree, i.e., d = 0. In
this case, E (0) directly obtains a witness f (X) = f0 ∈ Zp from the transcript given by

the prover, such that f0 = y and c = g f0
0 . We now move to the case of d > 0. From the

construction of the tree, the node has two child nodes, where each node is labeled with
the update statement

(
c′, x, y′, d′ = b d

2 c
)

on the same input statement (c, x, y, d) with two

distinct challenges α1 and α2. We assume that we have the extractor E (d′) that returns the
valid witness f (d

′) for each child node. We then construct the extractor E (d). E (d) extracts
f (d)L (X) and f (d)R (X) with a degree of at most d′ by applying Lemma 2. It then returns

f (d)(X) = f (d)L (X) + f (d)R (X)Xd′+1 ∈ Zp[X],



Electronics 2022, 11, 131 15 of 18

whose degree is bounded by 2d′ = 2b d
2 c ≤ d. Because the tree consists of the accepting

transcripts, we have c = g f (d)
and f (d)(x) = f (d)L (x) + f (d)R (x)xd′+1 = y. Then, by the

general forking lemma, we conclude that Π has witness extended emulation.

6. Extension to Zero-Knowledge Polynomial Evaluation

In this section, we extend the polynomial commitment scheme from Section 4 to a
zero-knowledge version. The zero-knowledge protocol enables the prover to convince the
verifier that the prover has a polynomial f (X) with deg( f ) ≤ d such that f (x) = y for a pub-
lic point (x, y) but does not leak any other information about f that is formally defined in the
notion of perfect SHVZK (Definition 7). For this, we require a hiding commitment scheme
to polynomials, such as the generalization of the Pedersen commitment scheme, which
uses randomness when generating a commitment [32]. Below, we give a formal description
of the generalization of the Pedersen commitment scheme (CgenH,CommitH,OpenH) over
the polynomials in Zp[X].

• CgenH(1λ): On input of the security parameter λ, it first samples G ← Ggen(1λ) of

a prime order p of length λ. It then chooses g, g0, . . . , gd
$← G and returns ppH =

(G, p, g, g0, . . . , gd)← Cgen(1λ).
• CommitH(ppH; f (X), d, r): For a secret polynomial f (X) = ∑d

i=0 fiXi ∈ Zp[X] it selects

r $← Zp and outputs c← gr ∏d
i=0 g fi

i with secret opening information f (X), d, r.

• OpenH(ppH, c, f (X), r): On input c and f (X), a verifier V computes c′ ← gr ∏d
i=0 g fi

i
and checks if c = c′ in G.

We present our zero-knowledge evaluation protocol EvalZK in Algorithm 2. The
EvalZK protocol is also obtained by transposing the corresponding zero-knowledge eval-
uation protocol given by Bünz et al. under the discrete log setting [6]. The basic idea
is to mask the prover’s secret polynomial with a random polynomial using the blinding
technique introduced in [14,19,41] and then run the Eval protocol on it.

Algorithm 2 EvalZK(ppH, c f ∈ G, x ∈ Zp, y f ∈ Zp, d ∈ N; f (X) ∈ Zp[X], r f ∈ Zp)

Common input: public parameter ppH, commitment c f = gr f ∏d
i=0 g fi

i to f (X), point (x, y f = f (x)), degree bound d

Prover’s witness: secret polynomial f (X) = ∑d
i=0 fiXi, opening hint r f to c f

1: P samples a random polynomial h(X) = ∑d
i=0 hiXi $← Zp[X] of degree d

2: P computes ch ← grh ∏d
i=0 ghi

i in G for rh
$← Zp and yh = h(x) in Zp // ch ← CommitH(ppH; h(X), rh)

3: P sends {ch, yh} to V

4: V samples α f
$← Zp and sends it to P

5: P computes f̃ (X)← h(X) + α f · f (X) in Zp[X] and r f̃ ← rh + α f · r f in Zp

6: P sends r f̃ to V

7: P and V compute c← ch · c
α f
f · g

−r f̃ in G and y← yh + α f · y f in Zp // c = ∏d
i=0 g f̃i

i ← Commit(pp; f̃ (X)) and y = f̃ (x)

8: P and V run Eval(pp, c, x, y, d; f̃ (X))

The EvalZK protocol receives a hiding commitment to the prover’s secret polynomial
f (x) on input, i.e., c f ← CommitH(ppH; f (X), d, r f ), which is perfectly indistinguishable
to a random element in G. To hand it over to the Eval protocol, it is necessary to remove
the randomization part gr f from c f = gr f ∏d

i=0 g fi
i , which is equal to Commit(pp, f (X)).

However, because this reveals information on f (x), the protocol lets the prover and the
verifier collaboratively blind f (x) by f̃ (X) = h(X) + α f (X) (Line 5). Here, h(X) ∈ Zp[X]
is a random polynomial selected by the prover (Line 1) and α ∈ Zp is a random number
selected by the verifier (Line 4). Consequently, both the prover and the verifier succeed
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in generating a non-hiding commitment to f̃ (X) under Π and the point (x, y = f̃ (x)),
and then start the Eval protocol (Lines 7–8).

Theorem 3. The EvalZK protocol has perfect completeness, witness-extended emulation, and perfect
SHVZK for a relation

REvalZK =

{
((c, x, y, d), ( f (X), r)) :

deg( f (X)) ≤ d ∧ f (x) = y
∧ OpenH(pp, c, f (X), r) = 1

}
if the discrete logarithm relation assumption holds for Ggen.

Proof of Theorem 3. (perfect completeness) We show that ΠH has perfect completeness.
Because the Eval protocol has perfect completeness (Theorem 1), it suffices to show that c
and y are a valid input to Eval. That is, c is the correct commitment to f̃ (X) = h(X) + α f (X)
under Π and y is the evaluation of f̃ (X) at X = x in Zp. Given f (X) = ∑d

i=0 fiXi of a
degree of at most d and h(X) = ∑d

i=0 hiXi of degree d, we have

c = ch · c
α f
f · g

−r f̃

=

(
grh

d

∏
i=0

ghi
i

)
·
(

gα f r f
d

∏
i=0

g
α f fi
i

)
· g−r f̃

= grh+α f r f · g−r f̃ ·
d

∏
i=0

g
hi+α f fi
i

=
d

∏
i=0

g
hi+α f fi
i =

d

∏
i=0

g f̃i
i = Commit(pp, f̃ (X))) and

y = yh + α f y f = y(x) + α f f (x) = f̃ (x) mod p.

(witness-extended emulation) We show that ΠH has witness-extended emulation. From
Theorem 2, we have an expected polynomial-time extractor E that extracts f̃ (X) for the
Eval protocol. Using E , we construct an extractor EH to extract a witness f (X) from EvalZK.
The extractor EH runs the prover to obtain {ch, yh}. At this point, EH then rewinds the
oracle 〈P∗,V〉 twice with distinct challenges α f and α′f and obtains the corresponding

commitments (c, y) and (c′, y′) to the witnesses f̃ (X) and f̃ ′(X), respectively. Then, EH
runs E on inputs (pp, c, x, y, d) and (pp, c′, x, y′, d) and receives the corresponding witnesses
f̃ (X) and f̃ ′(X), respectively. Finally, EH is able to extract the witness f (X) from f̃ (X) and
f̃ ′(X), similarly to Lemma 2. This completes the proof of the witness-extended emulation.
(perfect SHVZK) We construct the simulator Sim. Given only the public input, the simulator
Sim outputs a simulated transcript that is identical to the valid transcript produced by the
prover and the verifier in the real interaction. The simulator Sim first samples a random

polynomial f̃ (X) of degree d and r f̃
$← Zp. In addition, Sim samples a random challenge

α f
$← G and computes ch = c · c−α f

f · gr f̃ and yh = y − α f · y f . The simulator Sim then

simply applies the Eval protocol honestly using f̃ (X) as the witness. Because in a real
execution, the values α f and r f̃ are distributed uniformly at random over Zp, the simulated

α f and r f̃ are identically distributed to real values. In addition, the real c f and f̃ (X))
are distributed uniformly at random over G and Zp[X] of degree d, respectively, and the
same distributions hold for the simulated c f and f̃ (X), respectively. The simulated ch
is also distributed uniformly at random over G, and thus the real ch is, because of the
perfect hiding property of the underlying commitment scheme. Clearly, the simulated
(ch, yh, α f , r f̃ ) holds the relations

c = ch · c
α f
f · g

−r f̃ ∈ G, y = yh + α f · y f ∈ Zp.
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Finally, the Eval protocol does not leak more than f̃ (X) itself, which contains no information
about f (X). Therefore, the views of the simulated and real transcripts are identically
distributed. This completes the proof of the perfect SHVZK.

7. Conclusions

In this paper, we presented how to transpose a recursive argument of polynomial
evaluation over a class group proposed by Bünz et al. to the discrete log setting as a
way to improve the efficiency. The transposition follows from their information-theoretic
abstraction. We found that the challenge for a transposition is to provide a monomial
homomorphism for an underlying commitment scheme. We observed that when we use a
polynomial encoding method that presents coefficients of the polynomial to the power of
random group elements, an essential sufficient condition is a proof system for the equality
of discrete logarithms (PoEmDL) over multiple bases. We believe that our approach suggests
a stepping stone for the construction of an efficient, transparent polynomial commitment
scheme with a recursive argument in the discrete log setting. Currently, the efficiency
of known proof systems for PoEmDL is not sufficient to hava logarithmic communication
and verifier complexities. Therefore, in future work, we will continue to research how to
improve the efficiency of PoEmDL, which leads to high-efficiency gains for the proposed
construction in the discrete log setting.
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