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Abstract: The accurate identification of permanent magnet synchronous motor (PMSM) parameters
is the basis for high-performance drive control. The traditional PMSM multiparameter identification
method experiences problems with the uncertainty of the identification results and low identification
accuracy due to the under-ranking of the mathematical model of motor control. A multiparameter
identification of PMSM based on a model reference adaptive system and simulated annealing particle
swarm optimization (MRAS-SAPSO) is proposed here. The algorithm first identifies the electrical
parameters of the PMSM (stator winding resistance R, cross-axis inductance L, and magnetic linkage
ψf) by means of the model reference adaptive system method. Second, the result is used as the initial
population in particle swarm optimization identification to further optimize and identify the electrical
and mechanical parameters (moment of inertia J and damping coefficient B) in the motor control
system. Additionally, in order to avoid problems such as premature convergence of the particle
swarm in the optimization search process, the results of the adaptive simulated annealing algorithm
to optimize multiparameter identification are introduced. The simulation experiment results show
that the five identification parameters obtained by the MRAS-SAPSO algorithm are highly accurate
and stable, and the errors between them and the real values are below 2%. This also verifies the
effectiveness and reliability of this identification method.

Keywords: multiparameter identification; permanent magnet synchronous motor; model reference
adaptive system; simulated annealing; particle swarm optimization

1. Introduction

In recent years, permanent magnet synchronous motors (PMSMs) have been widely
used in many area of production and life due to their many advantages, such as high
power density, simple structure, and small size. At the same time, the requirements for
its control accuracy and smoothness of operation are becoming more stringent [1,2]. In
the control of a permanent magnet synchronous motor, the design of the current loop
controller, the performance of the torque control, and the improvement in the dynamic
performance of the speed controller are based on key parameters such as the stator winding
resistance, the stator winding cross- and direct-axis inductance, and the magnetic linkage
of the permanent magnet [3–5]. However, since the PMSM drive system is a nonlinear
time-varying system, the resistance, inductance, magnetic linkage parameters, and moment
of inertia are subject to changes during actual operation due to temperature, magnetic
saturation, and load perturbations [6,7]. That is, the parameters of the permanent magnet
synchronous motor dynamically change under different operating conditions. Therefore,
to improve the overall PMSM drive system, accurate identification of the motor parameters
is key in controlling performance.
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For the parameter identification of PMSMs, many scholars at home and abroad have
conducted research and proposed various parameter identification methods such as or-
dinary least squares, the extended Kalman filter algorithm, the model reference adaptive
system method, and an artificial intelligence algorithm [8–10]. The ordinary least squares
objective function is simple, its minimum objective function value is zero, and its computa-
tional effort is moderate. However, in the process of nonstationary condition optimization,
the tracking ability of the objective function is poor and more sensitive to external dis-
turbances [11,12]. The model reference adaptive system algorithm [13] can guarantee the
asymptotic convergence of the parameters to be identified. However, in the process of
simultaneous identification of multiple parameters, designing the adaptive rate to meet the
requirements of system stability is time-consuming. Therefore, a step-by-step approach is
often used to identify the parameters, i.e., inductance first, then resistance, and magnetic
linkage. However, the accuracy of motor resistance and magnetic linkage is strongly in-
fluenced by inductance. Therefore, the accuracy of the identification results needs to be
further improved. The extended Kalman filter is a generalization of the Kalman filter for
nonlinear system applications, which can provide state estimation in the sense of minimum
variance for nonlinear systems under noisy environments. However, the parameters to be
discriminated need to be processed into state quantities. The identification process is more
complicated [11,14].

The artificial intelligence algorithm has a simple structure and strong selection ability,
and is suitable for nonlinear systems. It has been applied to the field of parameter identifi-
cation of permanent magnet synchronous motors and has broad application prospects [15].
Zhang et al. [16] proposed a variable-step adaline neural network surface-mounted PMSM
parameter identification algorithm to address the parameter identification error caused by
inverter nonlinearities, and the error of the identification results was significantly reduced
and converged faster. The neural-network-based convergence algorithm combined with
the least square mean weight convergence has higher accuracy and faster convergence;
however, the stability and speed of the recognition system depend on the selection of the
convergence factor, and the neural network function approximation is sensitive to the
training data [17,18]. Additionally, such algorithms cannot estimate the rotor magnetic
chain and winding resistance directly from the d–q equation of a conventional PMSM [19].
Based on bimodal adaptive wavelet particle swarm optimization, this algorithm uses
adaptive wavelet operators for individual particle extrema to enhance the forward and
backward learning ability of particles and make them solve collaboratively to improve
the convergence speed and search accuracy, but the complexity of its algorithm leads to
a huge computational burden, making this type of algorithm currently mostly limited to
theoretical research [20,21].

In PMSM for multiparameter identification, the traditional identification methods
generally suffer from the problem of under-ranking, that is, the number of unknown
parameters to be identified exceeds the rank of the control system equations, which leads
to large errors in the identification results [22]. To this end, Zhou et al. [23] addressed
the multiparameter discrimination under-rank problem by constructing a second-order
steady-state equation. Rong. [24] proposed an adaptive linear element neural network
(ANN) parameter online identification method based on load testing for the under-rank
problem in parameter identification of a surface-type permanent magnet synchronous
motor (SPMSM) at stationary state. Zhang et al. [25] and Feng et al. [26] both proposed
a method of injecting d-axis negative sequence current in a short time, which effectively
solves the problem of under-ranking of the mathematical model of permanent magnet
synchronous motors and can quickly achieve simultaneous multiparameter identification
in. However, the solution of the multiparameter identification under-rank problem by the
additional injection of the d-axis current method is operationally complicated and does not
work for some applications.

In this study, intelligent algorithms were combined with model-referenced adaptive
methods to solve the defects of the above parameter identification algorithms. A multipa-
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rameter identification of PMSM, based on model reference adaptive-simulated annealing
particle swarm optimization (MRAS-SAPSO), was constructed. The problems of low con-
vergence accuracy, weak anti-interference ability, and the limited number of identification
parameters of the model reference adaptive system algorithm were overcome by using
particle swarm optimization to find the best capability. At the same time, the simulated
annealing algorithm was introduced to improve the optimal search strategy of particle
swarm, which overcomes the limitation of particle swarm optimization easily falling into
the local optimum, so produces a more accurate recognition effect.

2. Permanent Magnet Synchronous Motor Mathematical Models

Under ideal conditions, the phase current and the permanent magnet magnetic linkage
in a PMSM system have only fundamental components, and the d–q axis voltage and current
are DC. However, in actual applications, PMSMs have a distorted magnetic field, and the
inverter, in the process of inverting, is affected by factors such as inverter dead time and
tube voltage drop, which have a more significant impact on the recognition accuracy. When
the motor is running at high speed, the influence is small and can be ignored [27]. Therefore,
in order to avoid the influence of nonlinear inverter factors on the parameter identification
results, we investigated the parameter identification problem of a PMSM under high-speed
operation. The mathematical equations of a PMSM in the synchronous rotation d–q axis
coordinate system are usually described as follows [28]:

[
ud
uq

]
=

[
id −ψq
iq ψd

][
R

ωe

]
+ d

dt

[
ψd
ψq

]
[

ψd
ψq

]
=

[
Ldid + ψf
Lqiq

]
Te =

3pniq
2
[
id
(

Ld − Lq
)
+ ψf

]
J dωm

dt = Te − Bωm − TL

(1)

where ωe = pnωm; ud and uq are the two-phase rotating coordinate system d–q axis voltages
(V); R is stator phase resistance (Ω); id and iq are two-phase rotating coordinate system d–q
axis currents (A); ψd and ψq are the flux linkage in the d–q rotating coordinate system (Wb);
ωe is the electrical angular velocity (rad/s); Ld and Lq are the two-phase rotating coordinate
system d–q axis inductances (H); ψf is the stator flux linkage with the field (rotor) flux (Wb);
ωe is the electrical angular velocity (rad/s); ωm is the mechanical angular velocity (rad/s);
pn is the number of pole pairs; J is the moment of inertia of the motor (kg·m2); B is the
damping coefficient of the motor shaft (N·m·s/rad); Te is the electromagnetic torque (N·m);
TL is the motor load torque (N·m).

3. Model Reference Adaptive Simulated Annealing Particle Swarm Optimization
Hybrid Algorithm
3.1. The Algorithm of the Model Reference Adaptive System

The structure of a typical model reference adaptive system algorithm (MRAS) system
consists of 3 parts: the reference model, the variable model, and the adaptive law (where
the model containing the parameters to be estimated is treated as a variable model). By
constructing two models with the same output quantity, when the comparison of the
adjustable model and the reference model produces error values, the difference is corrected
by using the adaptive parameter law. Finally, the same control output of the adjustable
model and the reference model can be obtained [29,30]. Its schematic block diagram is
shown in Figure 1.
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3.2. The Simulated Annealing Particle Swarm Algorithm

Particle swarm optimization (PSO) uses a velocity-position search approach, treats the
potential solution of each optimization problem as a particle in the search space, and defines
the optimal solution found by the particle as the individual optimal solution Pbest, and the
optimal solution found by the whole population gbest as the current global optimal solution.
The iterative process continuously adjusts the position and velocity of the particles, thus
updating the individual optimal global of the particles and the current global optimal
solution until the global optimal solution of the optimization problem is found in the search
space. The iterative formulation of PSO is [31]:{

νk+1
i = ω× νk

i + c1 × rand1 × (pbesti − xk
i ) + c2 × rand2 × (pbest− xk

i )

xk+1
i = xk

i + νk+1
i

(2)

where vi is the speed at which the ith particle flies; K is the number of iterations; ω is the
inertia weight; c1 and c2 are learning factors; xi is the position of the ith particle.

Due to the weak global search capability of PSO and the defect of easily falling into
local optimum, we introduced the simulated annealing algorithm for correction. The
simulated annealing algorithm (SA) [31,32] is a heuristic algorithm that extends the local
search algorithm into a global search algorithm, whose core idea is to accept new states
with a certain probability at each iteration. Specifically, at temperature T, a new state g is
generated from the current state i. The energies of the two are Ei(k) and Eg, respectively.
If Eg < Ei(k), the new state is accepted. Otherwise, the state g is accepted with probability
eˆ−[(Ei(k) − Eg)/Ti], i.e.,

Pi(k) =


1 Ei(k) ≥ Eg

e−
Ei(k)−Eg

Ti
Ei(k) ≤ Eg

(3)

where Ei(k) denotes the internal energy of the ith particle at the kth iteration, i.e., the fitness
value of the current particle; Eg denotes the internal energy of the current population
optimum; Ti denotes the current temperature.

SA has a certain probability of accepting a function adaptation value larger than the
current one as a new state at the higher temperature, thus jumping out of the local optimum.
Therefore, combining SA and PSO increases the stochasticity of the early search, and enables
the algorithm to better converge to the global optimum later in order to improve the global
search capability of PSO.

3.3. Model Reference Adaptive Simulated Annealing Particle Swarm Optimization Algorithm

The structure of the model reference adaptive algorithm is simple, and the design
of the adaptive regulation law that enables the state to stabilize at the equilibrium point
is the core of its control. The selection of the parameters of the adjustable model of
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the process has a large impact on the recognition effect, and the correct convergence of
the parameters depends on the selection of the initial values of the parameters, which
has a certain randomness [13,29]. The SAPSO algorithm not only has the advantages of
traditional PSO with few control parameters and good convergence, but also overcomes the
difficulty of easily falling into local optimal solutions during the search process. However,
the intelligent algorithm needs to process a large amount of data in the process of finding the
optimal solution, which is computationally intensive and has high equipment requirements.
Therefore, a simulated annealing particle swarm model reference adaptive system hybrid
algorithm is proposed. The idea of this algorithm is to first use the model reference adaptive
system to output the optimal adjustable variable, and then use the variable as the initial
population of SAPSO to derive the optimal solution after the particle search. The specific
process is as follows:

Step 1: Set the parameters related to the MRAS, construct the adjustable model and
Lyapunov adaptive mediation rate, and calculate the relevant parameters in the adjustable
model according to the parameters of the input system.

Step 2: Set the relevant PSO parameters, invoke the optimization parameters derived
from the MRAS algorithm as the initial particles of the simulated annealing particle swarm
algorithm, and calculate the individual optimal solution pbest and fitness values of the
particles.

Step 3: Update the global optimal solution gbest and the individual optimal solution
pbest of the particle and assign the current position of the particle to pbest if the fitness of
its current position is smaller than the fitness of its pbest. If the fitness of the particle with
the smallest fitness among all the current particles is smaller than the fitness of gbest, then
assign the particle to gbest.

Step 4: The probability Pi(k) of accepting a new solution is calculated according to
Equation (3) of the simulated annealing algorithm. Additionally, the metropolis criterion is
used to compare the probability Pi(k) with rand() to determine whether the global optimal
solution is replaced by the generated new solution for the annealing operation, update the
temperature, and run until the set step size.

Step 5: Check if the maximum number of iterations kmax is reached. If kmax is not
reached, return to Step 3.

Step 6: The current optimal particle is output, i.e., the result of the optimization search,
and the algorithm is terminated.

4. Multiparameter Identification of Permanent Magnet Synchronous Motor Based on
Model Reference Adaptive System Simulated Annealing Particle Swarm Optimization

PMSM parameter identification can be transformed into a system optimization prob-
lem, where ud, uq, we, and Tm are used as inputs to the PMSM identification model and
measurement signals. The MRAS-SAPSO algorithm is used to identify the appropriate
PMSM parameter values so that the sum of squared errors between the identification model
and the measurement signals, i.e., the objective function fitness value, is minimized, thus
completing the PMSM parameter identification process.

The mathematical model of the current of the permanent magnet synchronous motor
in the d–q rotating coordinate system is:

did
dt = − Rs

Ld
id + ωeiq +

ud
Ld

diq
dt = − Rs

Lq
iq −ωeid −

ψ f
Lq

ωe +
uq
Lq

dωm
dt = 1

J (
3
2 ψ f iq − TL − Bωm)

(4)

According to Equation (4), the rank of the equation is 3. If the number of identification
parameters exceeds 3, there is an identification under-rank problem. In this paper, the rank
of the equation is increased by discretization of Equation (4) and the collection of cross-
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axis current, voltage, and angular velocity at different moments, to solve the under-rank
problem of PMSM multiparameter identification.

Assuming that time k is the current time and time k − 1 is the previous time, Equation
(4) is discretized to obtain [33]:

id(k)−id(k−1)
Ts

= − Rs
Ld

id(k− 1) + ωe(k− 1)iq(k− 1) + ud(k−1)
Ld

iq(k)−iq(k−1)
Ts

= − Rs
Lq

iq(k− 1)−ωe(k− 1)id(k− 1)− ψ f
Lq

ωe(k− 1) + uq(k−1)
Lq

ωm(k)−ωm(k−1)
Ts

= 1
J

[
3
2 ψ f iq(k− 1)− TL − Bωm(k− 1)

] (5)

where: Ts is the sampling period.
Assuming that t1 is the current time, t2 = t1 − 1; t3 is the historical time, and t3 6= t1, t4

= t3 − 1. Collect the AC/DC axis current, voltage, and electrical angular velocity signals at
the corresponding time, substitute them into Equation (5), and combine them into a new
equation group to obtain:

id(t1)−id(t2)
Ts

= − Rs
Ld

id(t2) + ωe(t2)iq(t2) +
ud(t2)

Ld

iq(t1)−iq(t2)
Ts

= − Rs
Lq

iq(t2)−ωe(t2)id(t2)−
ψ f
Lq

ωe(t2) +
uq(t2)

Lq

ωm(t1)−ωm(t2)
Ts

= 1
J

[
3
2 ψ f iq(t2)− TL − Bωm(t2)

]
id(t3)−id(t4)

Ts
= − Rs

Ld
id(t4) + ωe(t4)iq(t4) +

ud(t4)
Ld

iq(t3)−iq(t4)
Ts

= − Rs
Lq

iq(t4)−ωe(t4)id(t4)−
ψ f
Lq

ωe(t4) +
uq(t4)

Lq

ωm(t3)−ωm(t4)
Ts

= 1
J

[
3
2 ψ f iq(t4)− TL − Bωm(t4)

]

(6)

Therefore, according to Equation (6), the rank of the equation is 6 and the number
of variables is 6, so multiparameter simultaneous identification can be carried out. As
can be seen from Equation (4), the first two parts of the equation have only electrical
parameters R, L (when Ld = Lq, note that Ld = Lq = L), and ψf. The last part of the equation
contains electrical parameters ψf as well as mechanical parameters J and B. Therefore, the
electrical and mechanical parameters of the PMSM can be identified separately. Separate
identification can effectively avoid the problem of poor identification accuracy caused by
the coupling between the two. In this paper, the first two parts of Equation (4) are used to
identify R, L, and ψf. Then, the ψf results obtained from the identification are substituted
into the last part of Equation (4) to finally identify the mechanical parameters J and B to
solve the problem of multiparameter under-ranking [34,35].

In this paper, firstly, the electrical parameters (R, L, and ψf) of PMSM are identified by
MRAS algorithm. Secondly, the SAPSO algorithm calls the ud, uq, id, iq, and ωe collected
in the PMSM system and uses the R, L, and ψf obtained by MRAS as the initial particles
to calculate the discriminative model-based currents (i∗

d
and i∗q ) by Equation (4). After the

algorithm obtains the discriminative model currents, it calculates the fitness function value
of each particle based on its difference with the system input (id and iq). It continuously
updates the population’s history of global optimal particles and each particle history’s
optimal particles. Finally, the optimal particle is optimized again by simulating annealing
to avoid the optimal particle as an optimal local solution, and so on, until the algorithm
meets the termination condition. The output population at the termination of the algorithm
is the multiparameter value of the PMSM.

Note that α = R/L; then, the adjustable model system equation of the MRAS algorithm
and the adaptive regulation law equation [36] designed based on Lyapunov stability
theorem are:
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[
dîd
dt

dîq
dt

]
=

[
−α̂ ωe
−ωe −α̂

][
îd
îq

]
+

1
L̂

[
ud
uq

]
− ψ̂f

L̂

[
0

ωe

]
(7)



L̂ = 1(
1

L0
+KL

∫ t
0 (ude1+uqe2)dt

)
R̂ = L̂

(
R0
L0

+ KR
∫ t

0

(
îde1 + îqe2

)
dt
)

ψ̂f = L̂
(

R0
L0
− Kψf

∫ t
0 ωee2dt

) (8)

where R0, L0, and ψf0 are the initial values of the parameters to be identified, and KL, KR,
and Kψf are the corresponding regulation gains.

The fitness function of electrical parameters in the paper is fitness_elec:

fitness_elec =
n

∑
k=1

[(id − i∗d)
2 + (iq − i∗q)

2] (9)

The fitness function of mechanical parameters is fitness_mech:

fitness_elec =
n

∑
k=1

(ωm −ω∗m)2 (10)

where n is the number of arrays sampled; here, n = 1000.
The principle and flow of multiparameter identification of a PMSM based on MRAS-

SAPSO are shown in Figures 2 and 3, respectively.
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5. Simulation Experiment and Result Analysis

In order to verify the performance of the multiparameter identification of a PMSM
based on the proposed MRAS-SAPSO algorithm and to avoid the influence of electrical
sampling accuracy and experimental environment factors on the parameter identification
results, the modeling and algorithm verification analysis was carried out by MATLAB
simulation software in this paper. Firstly, a simulation model of the PMSM control system
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was built based on the Simulink environment, and an MRAS algorithm was established to
identify the electrical parameters of PMSM. Subsequently, the required system inputs id, iq,
ud, uq, and wm, as well as the identified electrical parameters R, L, and ψf, were called from
the workspace through the m-file. The basic PMSM parameters are shown in Table 1.

Table 1. Basic parameters of a permanent magnet synchronous motor [28].

Symbol Physical Significance Value and Unit

Lq q-axis inductance 5.25 (mH)
Ld d-axis inductance 5.25 (mH)
R Stator winding resistance 0.985 (Ω)
ψf Motor rotor flux 0.183 (Wb)
J Moment of inertia 0.003 (kg·m2)
B Damping coefficient 0.008 (N·m·s)

Pn Number of motor rotor pole pairs 4

In the multiparameter identification of a PMSM based on MRAS-SAPSO, the number
of particles was 150, the maximum number of iterations was 200, the inertia weight w
decreased linearly from 0.8 to 0.2, and the acceleration factor c1 = c2 = 1.2. In the simu-
lated annealing, the maximum number of iterations in the algorithm was 50, the initial
temperature was 50, the maximum temperature was 0.001. The initial values of parameter
identification based on the MRAS method were L0 = 1 × 10−3 H, R0 = 1 Ω, ψ0 = 0.3 Wb.
In order to compare and analyze the performance of the MRAS-SAPSO algorithm, the
multiparameter identification of a PMSM based on both PSO and MRAS-PSO was studied,
and the relevant parameters were set exactly the same as MRAS-SAPSO. The PMSM ran at
1500 r/min and started at t = 0.15 s. The load T = 10 N·m was applied, and the results of
the multiparameter identification of the PMSM, performed for one cycle (0.01 s) at t = 0.3 s,
are shown in Figures 4–8.
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From the parameter identification curves in Figures 4–8, it can be seen that all three
algorithms, PSO, MRAS-PSO, and MRAS-SAPSO, quickly converged the identification
parameters to near the true values, which indicated that all three algorithms have good
global search performance. We also found that the MRAS-SAPSO algorithm best identi-
fied results closer to the true values among the three algorithms, and the five-parameter
identification converges faster than both the PSO and MRAS-PSO algorithms. The results
showed that the proposed multiparameter identification of the PMSM method based on the
MRAS-SAPSO algorithm is feasible, and the quality of the identification results is higher.
The identification results of the three algorithms with 200 iterations and the deviations
from the true values are shown in Table 2.

Table 2. Pulsation analysis results of pump-controlled motor system driven by a variable-frequency
PMSM.

Physical Significance
and Symbol

PSO MRAS-PSO MRAS-SAPSO

x δ x δ x δ

R (Ω) 1.084 10.05% 0.967 1.83% 0.986 0.10%
L (H) × 10−3 5.226 0.46% 5.226 0.46% 5.226 0.46%

ψf (Wb) 0.1815 0.66% 0.1834 0.38% 0.1831 0.22%
J (kg·m2) × 10−3 3.043 1.43% 3.037 1.23% 3.033 1.1%
B (N·m·s) × 10−3 7.311 8.61% 8.266 3.33% 8.150 1.88%

In Table 2, x is the discriminated value of the PMSM parameters, and δ is the relative
deviation between the discriminated value x and the true value xv, i.e.,

δ =
x− xv

xv
× 100% (11)

From the data in Table 2, it can be seen that the deviations between the identified
values of several parameters based on the MRAS-SAPSO algorithm and the true values were
minimal, and none of the maximum deviations exceeded 2%. Among the five identification
parameters, the identification accuracy of electrical parameters (stator winding resistance,
inductance, magnetic linkage) was higher than that of mechanical parameters (moment
of inertia and viscous damping coefficient). Analysis showed that reason for this finding
is that the MRAS algorithm parameter identification of the three electrical parameters of
stator resistance, inductance, and magnetic chain, and the results as the initial particle
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swarm of the SAPSO algorithm, to a certain extent, o reduce the scope of the particle swarm
seeking, and improve the speed and accuracy of the particle seeking. At the same time, the
SA algorithm optimizes the obtained optimal particle again to avoid the optimal particle
being a local optimal solution. As a result, the identified parameters converge faster and
with higher accuracy.

To further verify the effect of parameter identification based on the MRAS-SAPSO
algorithm for PMSM operation over a period of time, the motor operation time was selected
as 0.3–0.7 s and the identification time step was 0.01 s. The results of parameter identification
in this time range are shown in Figures 9–13.
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As can be seen from Figures 9–13, at 0.3–0.7 s, the results of the multiparameter identi-
fication of PMSM based on the MRAS-SAPSO algorithm showed the smallest fluctuations
and the closest approximation to the true value compared to the identification results
based on the PSO and MRAS-PSO algorithms. The PSO-algorithm-based PMSM param-
eter identification had the worst effect. The parameter values identified in adjacent time
periods fluctuated the most, amongst which the identification curves of the resistance and
damping coefficient fluctuated the most significantly. In order to quantitatively analyze
the performance of the three algorithms in this time period of the recognition results, we
defined the fluctuation deviation ∆x = xmax − xmin, where x is the average value of the
recognition results in this time period and δ is the deviation between the average value
of the recognition results and the true value in this time period. The results are shown in
Tables 3–5.

Table 3. Multiparameter identification of a PMSM result based on the PSO algorithm.

Physical Significance and Symbol xmax xmin ∆x −
x δ

R (Ω) 1.467 0.744 0.723 1.143 16.04%
L (H) × 10−3 5.227 5.226 0.001 5.226 0.46%

ψf (Wb) 0.1870 0.1752 0.0118 0.1805 1.20%
J (kg·m2) × 10−3 3.159 2.947 0.212 3.036 1.20%
B (N·m·s) × 10−3 9.704 5.066 4.638 7.142 10.73%

Table 4. Multiparameter identification of the PMSM result based on the MRAS-PSO algorithm.

Physical Significance and Symbol xmax xmin ∆x −
x δ

R (Ω) 1.310 0.950 0.36 0.967 1.83%
L (H) × 10−3 5.227 5.226 0.001 5.226 0.46%

ψf (Wb) 0.1837 0.1778 0.0059 0.1824 0.16%
J (kg·m2) × 10−3 3.053 2.942 0.111 3.023 0.77%
B (N·m·s) × 10−3 8.380 6.071 2.309 7.870 1.63%

Table 5. Multiparameter identification of the PMSM result based on the MRAS-SAPSO algorithm.

Physical Significance and Symbol xmax xmin ∆x −
x δ

R (Ω) 1.043 0.953 0.09 0.994 0.91%
L (H) × 10−3 5.227 5.226 0.001 5.226 0.46%

ψf (Wb) 0.1836 0.1821 0.0015 0.1829 0.11%
J (kg·m2) × 10−3 3.046 3.017 0.029 3.032 1.07%
B (N·m·s) × 10−3 8.364 7.787 0.577 8.097 1.21%

Comparing Tables 3–5, from the results of the three algorithm identifications, the
highest identification accuracy of magnetic linkage and the lowest accuracy of stator
winding resistance can be observed. The reason for this is that the fluctuation in the value
of magnetic linkage has the strongest influence on the value of the fitness function, and the
value of resistance has the lowest influence on it. The aim of PSO is to find the solution
vector with the smallest fitness value. In other words, the solution vector that has the
strongest impact on the fitness value tends to achieve the highest discrimination accuracy.
This parameter identification law is the same as the one derived in the literature [37]. The
resistance and damping coefficients identified based on the PSO algorithm fluctuated the
most, with fluctuation deviations of 0.723 Ω and 4.638 N·m·s, respectively. The errors
between the mean and true values of the identification results were 16.04% and 10.73%,
respectively. This indicated that the single PSO algorithm is more influenced by the initial
value of particles and the randomness of particles in the process of finding the optimum,
which leads to the poor stability of the final identification results and low accuracy at
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convergence. The mean errors of the parameters identified based on MRAS-PSO and
MRAS-SAPSO algorithms were less than 2%. The deviation in the parameter fluctuation
identified by the MRAS-SAPSO algorithm was significantly smaller than that of the MRAS-
PSO algorithm, which further showed that the MRAS-SAPSO algorithm has the best
performance, and the algorithm dramatically improves the accuracy and reliability of
PMSM parameter identification results.

Based on the analysis of theoretical modeling and MATLAB simulation results, it is
evident that the proposed method of using the PMSM parameters identified based on the
MRAS algorithm as the initial value of the particle population in the SAPSO algorithm is
feasible, and this can improve the speed and accuracy of particle finding. At the same time,
the SA algorithm optimizes the obtained optimal particles again to avoid that the optimal
particles being local optimal solutions. As a result, the identified parameters converge
faster and with higher accuracy (as can be seen in Figures 4–8 and Table 2). For further
verification of the effect of parameter identification based on the MRAS-SAPSO algorithm
for PMSM operation over a period of time, a long-term multiparameter identification
simulation experiment was conducted in this study. In Figures 9–13 and Tables 3–5, the
results proved that the multiparameter identification values of a PMSM based on the
MRAS-SAPSO algorithm are high quality. The proposed multiparameter identification
method and identification results in this paper can provide a reference for improving the
accuracy of PMSM control systems.

6. Conclusions

In this paper, we proposed a step-by-step strategy to identify multiple parameters of a
PMSM based on the MRAS-SAPSO algorithm, which effectively eliminates the problem
of imprecise parameter identification caused by the coupling effect between the multiple
parameters of a PMSM. At the same time, the PMSM electrical parameters identified by the
model reference adaptive system method are used as the initial population of PSO, which
solves the difficulties experienced by traditional PSO, which is sensitive to initial values,
has strong randomness and low convergence accuracy, and does not easily converge, thus
improving the efficiency and accuracy of the search. Furthermore, the adaptive simulated
annealing algorithm was introduced to optimize the results of multiparameter identification,
avoiding the problem of the PSO algorithm search process affecting the final identification
results by falling into the local optimum. The simulation experiment results showed that
the MRAS-SAPSO algorithm can simultaneously identify the stator winding resistance R,
inductance L, magnetic linkage ψf, moment of inertia J, and damping coefficient B in the
PMSM model. The accuracy of the identification results was high, the maximum deviation
from the real value was within 2%, and the identification results met the high-performance
control requirements of PMSMs.
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