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Abstract: The accurate estimation of the state of charge (SOC) and state of health (SOH) is of great
significance to energy management and safety in electric vehicles. To achieve a good trade-off
between real-time capability and estimation accuracy, a collaborative estimation algorithm for SOC
and SOH is presented based on the Thevenin equivalent circuit model, which combines the recursive
least squares method with a forgetting factor and the extended Kalman filter. First, the parameter
identification accuracy is studied under a dynamic stress test (DST) and the federal urban driving
schedule (FUDS) test at different ambient temperatures (0 ◦C, 25 ◦C, and 45 ◦C). Secondly, the FUDS
test is used to verify the SOC estimation accuracy. Thirdly, two batteries with different aging degrees
are used to validate the proposed SOH estimation algorithm. Subsequently, the accuracy of the SOC
estimation algorithm is studied, considering the influence of updating the SOH. The proposed SOC
estimation algorithm can achieve good performance at different ambient temperatures (0 ◦C, 25 ◦C,
and 45 ◦C), with a maximum error of less than 2.3%. The maximum error for the SOH is less than
4.3% for two aged batteries at 25 ◦C, and it can be reduced to 1.4% after optimization. Furthermore,
calibrating the capacity as the SOH changes can effectively improve the SOC estimation accuracy
over the whole battery life.

Keywords: electric vehicles; energy saving; lithium-ion battery; state estimation; online identification;
extended Kalman filter; battery management system

1. Introduction

Rising energy costs and tightening regulations on exhaust emissions of ground vehicles
emphasize the need for electric vehicles (EVs) [1]. With the expansion of EVs, the application
of lithium-ion batteries in automobiles has seen explosive growth. The battery system is a
key component of electric vehicles as it affects their power, economy, and safety [2–4]. The
performance of lithium-ion batteries depends not only on the battery performance itself but
also on accurate state estimation, and the state of charge (SOC) and state of health (SOH)
are the most important aspects of this. For a plug-in hybrid electric vehicle (PHEV), the
state estimation of the battery is critical for the vehicle’s energy management strategy [5].

The SOC is defined as the ratio of the current remaining capacity of a battery to
its available capacity. Several methods of estimating the SOC have been proposed thus
far, such as the Coulomb counting method (CCM), open-circuit voltage (OCV) method,
artificial neural network method, and model-based method. The Coulomb counting method
calculates the remaining capacity of the battery by integrating the current and time, but
the estimation accuracy decreases during operation due to cumulative errors. The OCV
method obtains the SOC by mapping the relationship between SOC and OCV. This method
can achieve high estimation accuracy, but the battery has to rest for several hours, which
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is not suitable in practical applications [6]. In [7], the initial SOC was obtained by the
OCV method, and the SOC was then estimated by the Coulomb counting method based
on capacity and Coulombic efficiency modification. Under constant current conditions,
the estimation error was less than 5%. However, in the changeable conditions of electric
vehicles, the error of this method would be further enlarged, and the problem of cumulative
error would remain unsolved. An artificial neural network (ANN) can be used to obtain
the SOC as the output by training on a large amount of battery operation data. The back-
propagation neural network (BPNN) is a commonly used ANN. In [8], a BPNN composed of
five neurons and two hidden layers was introduced to estimate the SOC of Li-ion batteries
using different drive profiles and ambient temperatures. The maximum SOC error was
3.5% under the US06 test at 25 ◦C. In [9], a radial basis function neural network was used to
measure the parameter uncertainties and improve the parameter accuracy. The maximum
SOC error was under 2% in series-connected batteries. The ANN method has high accuracy
in SOC estimation, but this algorithm is complex and highly dependent on training data,
so it cannot meet the requirements of a real-time system. Plett [10–12] used the extended
Kalman filter (EKF) for the first time to estimate the SOC. Subsequently, many scholars
studied deuterogenic algorithms based on the Kalman filter for SOC estimation, including
the extended fractional Kalman filter, correntropy EKF, and improved EKF [13–15]. These
methods combine the CCM and the OCV method, and they possess the advantages of
real-time performance, good computational efficiency, and good estimation accuracy. In
recent years, they have been gradually applied in battery management systems.

The SOH is used to reflect the aging degree of a battery, which is usually expressed
by the ratio of the current available capacity of the aged battery to its nominal capacity.
It is generally considered that the battery reaches the end of its life when the current
available capacity decreases to 80% of the initial capacity or the current internal resis-
tance is two times the initial internal resistance. SOH estimation methods mainly include
the experience-based method, electrochemical-model-based method, equivalent-circuit-
model-based method, and curve-characteristic-based method [16,17]. The experience-based
method uses a large number of aging experiments to obtain the battery aging characteristics.
In [18], the effects of temperature, discharge depth, and discharge rate on battery aging
were studied, and an aging model for batteries was established. This method relies on
a large number of experiments designed to reflect the actual use of the battery as far as
possible. The electrochemical-model-based method reflects the changes in battery charac-
teristics by describing the physical and chemical reactions during the use of the battery.
In [19], the changes in thermodynamic factors, diffusion coefficient, and lattice parameters
during battery aging were studied, and an electrochemical SOH estimation method was
proposed. As the aging process of batteries is affected by a variety of factors, and there
is a coupling relationship between the factors, an accurate electrochemical aging model
is complex [20–22]. The equivalent-circuit-model-based method evaluates the SOH of a
battery by identifying parameters such as ohmic resistance in the equivalent circuit model.
The curve-characteristic-based method evaluates the SOH by studying the time-varying
characteristic of the OCV curve. In [23], an SOH estimation model was established using a
Gaussian regression process, and the OCV range, which has sensitive characteristic param-
eters, was quantified. This method has great estimation accuracy, but the conditions of low
current and specific range variation are unlikely to be met in practical applications.

Based on the aforementioned studies, the SOC and SOH should be considered at the
same time, because their coupling relationship will allow for mutual improvement of SOC
and SOH estimation accuracy. In [24], an equivalent circuit model was used to construct an
EKF-based SOC and SOH estimation algorithm. However, the existence of multiple state
observers increased the computing burden for online applications, and the increase in data
dimensions in the calculation process reduced the stability of the system, which would be
likely to lead to divergence. In [25], the author proposed a SOC and SOH joint estimation
algorithm using state estimators and offline data; this method requires a lot of data to
make sure the algorithm converges. The current estimation methods with high accuracy
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also have high calculation cost, which is not suitable for embedded systems. Therefore,
this study proposes an accurate and real-time algorithm to estimate the SOC and SOH in
vehicle battery management systems.

The remainder of the paper is organized as follows: Section 2 describes the experiment
setup; Section 3 introduces the Thevenin equivalent circuit model and explains how the
model parameters were acquired; Section 4 presents the co-estimation algorithm; Section 5
discusses the results of the co-estimation algorithm; and Section 6 offers the conclusions.

2. Experiment
2.1. Test Bench and Battery

The experiment test bench consisted of: (1) 18,650 cylindrical lithium-ion batteries
provided by Huizhou EVE Energy Co. Ltd, the parameters of which are listed in Table 1;
(2) a fixture for clamping a battery; (3) a temperature chamber with a temperature range of
−40 ◦C to 100 ◦C and a control accuracy of 1 ◦C; (4) a Neware BTS4002 battery test station,
which was used to provide current profiles with a range of −10 to 10 A and measure signals
in a voltage range of 0 to 5 V and a current range of −10 to 10 A, where the errors of current,
voltage, and temperature measurement are less than 0.2%; and (5) a host computer with
Neware software used to set and monitor the battery test station.

Table 1. Key parameters of battery.

Name Type Nominal
Capacity (mAH)

Nominal
Voltage (V)

Discharge Cut-Off
Voltage (V)

Charge Cut-Off
Voltage (V)

EVE ICR 18650 NCM 2000 3.6 2.5 4.2

The schematic of the battery test under different ambient temperatures is shown in
Figure 1. The battery was clamped in a fixture and placed inside the temperature chamber,
which provided a stable ambient temperature. The battery test station was connected to the
clamping fixture and a host computer using sample cables and Ethernet cable, respectively.
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2.2. Static Capacity Test

Static capacity, which has a strong relationship with aging and ambient temperature, is
an important parameter of batteries. In this study, static capacity was obtained at different
aging stages and ambient temperatures (0 ◦C, 25 ◦C, and 45 ◦C) via the following steps. Step
1: discharge the battery to discharge cut-off voltage (2.5 V) and allow the battery to stand
for 2 h to reach thermodynamic equilibrium. Step 2: charge the battery to charge cut-off
voltage (4.2 V) using the constant current (CC) and constant voltage (CV) method at the
specific ambient temperature. In the CC stage, charge the battery using a constant current
with 1/2 C rate (about 1 A) until the voltage reaches the charge cut-off voltage (4.2 V). Then
switch to the CV stage. In the CV stage, reduce the current from 1/2 C to 1/25 C (about
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0.08 A), keeping the voltage at 4.2 V, and then relax it for 2 h. Step 3: discharge the battery
with a constant current of 1 C rate (about 2 A) and calculate the capacity released from
the battery. Step 4: repeat step 2 and step 3 twice. If the maximum error of the three test
results is less than 2% of the nominal capacity, take the mean capacity measured in the
three experiments as the static capacity of the battery; otherwise, check the experimental
setup and retry the experiment.

2.3. SOC–OCV Test

The open-circuit voltage (OCV) represents the voltage difference between the positive
and negative poles of the battery after reaching thermodynamic equilibrium [26]. Studies
show that the OCV is a function of the SOC. The incremental test and the low current test
are commonly used to obtain SOC–OCV curves. In this study, the incremental test was
used to acquire the SOC–OCV curves as follows. Step 1: first charge the battery to 100%
SOC using the CC–CV method at a specific ambient temperature and then rest it for 2 h.
Step 2: discharge the battery with constant current of 1 C rate until the SOC has decreased
by 10%, then rest it for 2 h. Repeat the process of discharge and resting eleven times until
the battery is discharged to the discharge cut-off voltage (2.5 V). Step 3: charge the battery
with a constant current of 1 C rate until the SOC has increased by 5%, then rest it for 2 h.
Repeat the process of discharge and resting ten times until the battery is charged to the
charge cut-off voltage (4.2 V).

2.4. DST and FUDS Tests

To verify the performance of the proposed algorithm, two typical variable power dis-
charge tests, namely, the dynamic stress test (DST) and the federal urban driving schedule
(FUDS) test were conducted, which were both combined with the characteristic vehicle
driving process.

The DST test profile is a series of constant power discharge and charge steps, each
lasting for 360 s. It was used to validate the parameter identification algorithm of the
battery model in this study. The whole test process is illustrated in Figure 2a.

The FUDS test profile, a standard test profile in the automobile industry, involves
applying a dynamic load for 1372 s. Compared with the DST test profile, the FUDS test
profile shows more dynamic power changes and is closer to real working conditions. It
was used to validate the performance of the joint estimation algorithm for SOC and SOH in
this study. The FUDS test process is shown in Figure 2b.
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3. Battery Model
3.1. Equivalent Circuit Model

The equivalent circuit model describes the external characteristics of a battery through
the electrical components. Establishing the equivalent circuit model is the basis of devel-
oping state estimation algorithms. There are two main considerations when establishing
a model. First, the basic function of the equivalent circuit model is to reflect the response
of the battery accurately when a dynamic current is applied. Secondly, the equivalent
circuit model should have reasonable complexity to ensure the real-time performance of the
algorithm in battery management systems. The Rint model, Thevenin model, second-order
resistor–capacitance circuit (RC) model, and PNGV model are widely used. In [27], the
complexity and accuracy of each model were evaluated based on the Akaike information
criterion, and the results showed that the Thevenin model achieved accurate modeling
of the battery with less RC network structure, which is suitable for embedded hardware
with limited computation resource. Therefore, the Thevenin model was selected in this
study, consisting of an ideal voltage source, an ohmic resistance, and an RC network. The
schematic of the model is shown in Figure 3, and the equation describing the model is
given as Equation (1).
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{
dUp
dt = − Up

CpRp
+ I

Cp

UL = Uocv − IR0 − Up
(1)

where Uocv is the OCV, R0 is the ohmic resistance, Rp is the polarization resistance, Cp is
the polarization capacitance, the polarization network composed of Rp and Cp is used to
describe the polarization effect of the battery, UL is the battery terminal voltage, and I is
the current (the negative value represents the charge state in this paper). The SOC can be
defined as in Equation (2).

SOC(t) = SOC(t0)−
1
C

∫ t

t0

ηi I(t)dt (2)

where SOC(t) is the SOC of the battery at time t, SOC(t0) is the initial value of the SOC at
time t0, C is the available capacity under the current state, ηi is the Coulombic efficiency
when the current is i, and I(t) is the current at time t. The state space equation and the
observation equation of the Thevenin model can be achieved by discretizing Equations (1)
and (2) as follows:[

SOCk+1
Up,k+1

]
=

[
1 0
0 e

−∆t
τ

][
SOCk
Up,k

]
+

[
− ηi∆t

C
Rp(1 − e

−∆t
τ

) ]ik (3)

UL,k = OCV(SOCk)− ikR0 − Up,k (4)

where ∆t is the sampling period, τ is the value of the time constant (which is equal to the
product of Rp and Cp), and OCV(SOCk) is the mapping relationship between SOC and OCV
at time k.
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3.2. Model Parameters

The accuracy of the model parameters is of great importance in ensuring the reliability
of the battery model. The parameters that must be identified include OCV, R0, RP, and
CP. In this study, the function of the OCV and SOC was identified by polynomial curve
fitting, and the other parameters were identified by the recursive least squares method with
a forgetting factor (FFRLS).

3.2.1. SOC–OCV Curve

The SOC–OCV test results at different temperatures are shown in Figure 4a. In this
test, the OCV for discharge and charge at different SOC values were acquired. The test
was composed of 21 cycles, and each cycle contained a discharge or charge process to
decrease or increase the SOC by 10% and rest the battery for 2 h. When the battery reached
a stable state after the 2 h rest, the terminal voltage was regarded as the OCV. It can be
seen that the voltage undergoes a rebound process during the rest period after discharge,
and the amplitude of the rebound voltage is smaller at normal temperatures (25 ◦C and
45 ◦C) than at low temperature (0 ◦C) in the 0–20% SOC range. This is mainly because
the high temperature promotes the electrochemical reaction of the battery, allowing it to
release more energy during the discharging process. The OCV in the charging process
is larger than in the discharging process due to the hysteresis effect; therefore, the mean
values of the OCV were used to acquire the SOC–OCV curves. In this study, MATLAB
software was used to perform the sixth-order polynomial fitting of the experimental data.
Figure 4b shows the fitting process for the SOC–OCV curve at 25 ◦C, and SOC–OCV curves
at different temperatures are shown in Figure 4c,d. It can be observed that the SOC–OCV
curve varies at different ambient temperatures. Taking the SOC–OCV curve obtained at
25 ◦C as a reference, the greatest difference between these SOC–OCV curves can be found
in the range of SOC below 20%, where the SOC–OCV curve becomes lower as the ambient
temperature increases.
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3.2.2. RLS Algorithm with Forgetting Factor

The recursive least squares (RLS) method is an online parameter identification method
developed on the basis of adaptive filtering theory, and it is suitable for cases in which the
system model parameters are easily affected by external input and are difficult to determine.
The system equations are shown in Equations (5)–(7).

yk = ΦT
k θk + ek (5)

Φk = [1 UL,k−1 ik ik−1] (6)

θk = [ (1 − a1)Uocv,k a1 a2 a3] (7)

where yk is the output observation value of the system at time k, ΦT
k is the data matrix of

the system at time k, θk is the system parameter matrix to be identified at time k, ek is the
system error at time k, and ik is the system input at time k. The cost function is defined in
Equation (8). The aim of RLS is to minimize the cost function. The parameter estimation
equation is shown in Equation (9).

J(θ) =
(

yk − ΦT
k θk

)T(
yk − ΦT

k θk

)
(8)

θ̂k =
(

ΦT
k Φk

)−1
Φkyk (9)

where θ̂k is the estimated value of the system parameter matrix to be identified at time k.
FFRLS introduces a forgetting factor into RLS, which can reduce past data information

and strengthen new data information, effectively avoid data saturation, and improve
the accuracy of model parameter identification. The recursive equations are shown in
Equations (10)–(12).

θ̂k = θ̂k−1 + Kkek (10)

Kk =
Pk−1Φk

λ + ΦT
k Pk−1Φk

(11)

Pk =
Pk−1 − KkΦT

k Pk−1

λ
(12)

where Kk is the gain matrix of the algorithm at time k, Pk is the covariance matrix calculated
at time k, and λ is the forgetting factor, which is generally between 0.95 and 1 according to
experience. The identification parameters can be analyzed as shown in Equation (13).

R0 = a3−a2
1+a1

Rp = − 2(a1a2+a3)

1−a2
1

Cp = − (1+a1)
2

4(a1a2+a3)

(13)

4. Collaborative Estimation Algorithm
4.1. SOC Estimation Algorithm Based on EKF

The Kalman filter (KF) is a recursive estimation algorithm based on the least mean
square error (MSE) and filtering theory [28]. The principle of the algorithm is to establish the
state space model of the system, compare the estimated observation value at the previous
moment with the actual observation value at the current moment, update the state variable,
and calculate the estimated value at the current moment. An accurate system state can be
obtained in the continuous “prediction–comparison–update” process. The traditional KF
algorithm is only suitable for linear systems, but batteries are nonlinear systems, so the KF
must be modified.
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Based on the KF, the extended Kalman filter (EKF) completes the linearization of
the system by removing the higher-order terms from the nonlinear part through Taylor
expansion. For any nonlinear system, the algorithm can be expressed as follows.{

xk+1 = f (xk, uk) + wk
yk = g(xk, uk) + vk

(14)

where f (xk,uk) is the state function; g(xk,uk) is the observation function; xk is the state vector
of the system at time k; yk is the observed value of the system; uk is the input vector of the
system at time k; and both wk and vk are white noise terms and are independent of each
other. Via Taylor expansion of Equation (14), the general form of the state space model can
be obtained, as shown in Equation (15).{

xk+1 ≈ Akxk + Bkuk + wk
yk ≈ Ckxk + Dkuk + vk

(15)

Combined with the Thevenin model, the description of the EKF parameters is shown
in Equations (16)–(22).

xk =
[
SOCk, Up,k

]T
(16)

uk = ik (17)

yk = UL,k (18)

Ak =

[
1 0
0 e

−∆t
τ

]
(19)

Bk =

[
− ηi∆t

CSOH

Rp(1 − e
−∆t

τ )

]
(20)

Ck =
[

dUOCV
dSOC , −1

]
(21)

Dk = −R0 (22)

The available capacity of the battery decreases gradually as the battery ages. There-
fore, CSOH in Bk indicates that the available capacity is a variable related to the SOH
status, which is the update object of the SOH algorithm in the cooperative estimation
algorithm in this study. The process of the EKF algorithm is summarized in Algorithm 1.

Algorithm 1 The flow of extended Kalman filter (EKF) algorithm

Step 1: Initialization, {
x̂+0 = E(x0)
O+

x0
= E[( x0 − x̂+0 )(x0 − x̂+0 )T ]

Step 2: Iteration,
State update:

x̂−k = f (x̂+k−1, uk−1)

O−
xk

= Âk−1O+
xk−1

ÂT
k−1 + ∑ w

Kalman gain:

Lk = O−
xk

Ĉ
T
k

(
ĈkO−

xk
Ĉ

T
k + ∑ v

)−1

Measurement update:
x̂+k = x̂−k + Lk

(
yk − ŷ−

k

)
O+

xk
=
(
I − LkĈk

)
O−

xk

4.2. SOH Estimation Algorithm

The SOH can be evaluated by the battery’s capacity or the ohmic resistance. The
capacity was taken as the evaluation indicator for the SOH in this study. When the battery is
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fresh (SOH of 100%), the available capacity of the battery is its nominal capacity. Therefore,
the definition of SOH is as shown in Equation (23) [29].

SOH = (
C
Cr

− 0.8) ∗ 5 (23)

where C is the current available capacity and Cr is the initial nominal capacity. The current
available capacity of the battery can be calculated by the ratio of the accumulated current
over time to the change of SOC, as shown in Equation (24).

C =

∫ tend
tstart

Idt

SOC(tstart)− SOC(tend)
(24)

where tstart and tend are the start time and end time of the algorithm. SOC(tstart) and
SOC(tend) can be obtained from the SOC–OCV curve at the start time and end time of the
algorithm, and OCV can be obtained from online identification based on FFRLS. It can be
seen from Equation (24) that the reliability of the FFRLS algorithm and the SOC estimation
affect the SOH estimation accuracy. Therefore, in order to ensure the accuracy of the SOH
algorithm, the limit conditions associated with the SOC and the temperature are analyzed
in Section 5.2.2.

The scheme for the collaborative estimation is shown in Figure 5. Since battery
aging is a slow process, the SOH estimation algorithm has low requirements for real-time
performance and can be used over an interval of a few weeks in practical applications.
The real-time-scale SOC estimation and the long-time-scale SOH estimation comprise a
multi-time-scale state estimation algorithm for batteries. The SOH estimation algorithm
updates the battery capacity state and improves the estimation accuracy of the SOC. The
parameter identification results and the accurate estimation of the SOC guarantee the
accurate estimation of the SOH.
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5. Results and Discussion
5.1. Analysis of the Model Accuracy

An accurate battery model and accurate parameters are necessary for effective battery
state estimation. In this study, the accuracy of parameter identification was verified at
different temperatures (0 ◦C, 25 ◦C, and 45 ◦C) under different test profiles (DST and FUDS).
The error in the terminal voltage, which is identified by FFRLS, is shown in Figure 6. The
terminal voltage error shows similar trends with the increase in discharge depth under
different ambient temperatures and test profiles, and can be divided into three stages. The
first stage is the initial discharge stage. The large error in this stage occurs because of the
random initialization of the estimated parameters described in Equation (7), which cannot
reflect the state of batteries accurately. However, according to the closed-loop feedback
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mechanism of FFRLS described in Section 3.2.2, the estimated error will quickly converge to
a low value after a certain number of iterations. The maximum error (DST profile: 63 mV,
FUDS profile: 30 mV) occurred at 0 ◦C. The error was between 13 mV and 20 mV at 25 ◦C
and 45 ◦C. The second stage is the stable discharge stage. The result calculated by the
FFRLS algorithm gradually converges in this stage, and the terminal voltage error of the
battery can be stabilized. The error was about 20 mV at 0 ◦C and 5 mV at 25 ◦C and 45 ◦C.
The third stage is the end of the discharge process. The decreasing battery reactivity leads
to strong nonlinear characteristics, which cause the performance of FFRLS to decrease and
the error in parameter identification to increase. It should be noted that the error increased
obviously at 25 ◦C in this stage.
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The root mean square error (RMSE) is an evaluation index which describes the error
level under a certain number of observations. Figure 7a,b shows the RMSE of the parameter
identification results for DST and FUDS, respectively, under different ambient temperatures
and SOC ranges. The RMSE calculated by the identification results at the low ambient
temperature (0 ◦C) was larger than that at the other ambient temperatures (25 ◦C and 45 ◦C)
in each SOC range. Using the DST test profile as an example, the overall RMSE at low
ambient temperature (0 ◦C) was 6.22 mV, which is larger than that at normal temperatures
(25 ◦C: 1.45 mV, 45 ◦C: 1.94 mV). Furthermore, the RMSE at normal temperatures remains
in the range of 0.8 to 1.1 in the 10–90% SOC range under different test profiles, which means
that FFRLS can achieve good performance at normal temperatures.
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5.2. Analysis of Collaborative Estimation Algorithm
5.2.1. Analysis of the SOC Estimation Result

Compared with the DST test profile, the FUDS test profile is closer to the real conditions
of batteries. Thus, the FUDS test profile was used to verify the SOC estimation algorithm
of the power battery. To avoid damage to the battery caused by overdischarge, the SOC
range between 10% and 100% was selected.

The SOC estimation results in Figure 8a–c compare the EKF estimation results and the
reference values at different ambient temperatures. The estimation values follow the trend
of the reference values but exhibit slight fluctuations. Under the same ambient temperature,
the stability of the estimation result in the high SOC range was better than that in the low
SOC range. Taking the estimation result at 25 ◦C as an example, within the SOC range of
50–90%, the maximum error was 0.97%. Within the SOC range of 10–50%, the error was
higher, at 1.46%. The reason for this phenomenon is that the EKF achieves linearization of
nonlinear problems through Taylor expansion and truncation of high-order terms. In the
high SOC range, the battery shows linear characteristics, so the EKF can track the system
changes well. In the low SOC range, due to the nonlinear characteristics of the battery, the
omission of higher-order terms reduces the accuracy of estimation. It was demonstrated
in [30] that the degree of nonlinearity of a battery is mainly determined by the OCV. The
estimation results at 0 ◦C and 45 ◦C also show similar characteristics.

Figure 8d,e presents the mean absolute error (MAE) and RMSE for the SOC estimation
results at different ambient temperatures. The EKF shows better accuracy when the battery
runs at 25 ◦C and 45 ◦C, and the MAE and RMSE are both lower. The accuracy of the
EKF should be further optimized for the low SOC range and low ambient temperature.
However, the overall maximum estimation error was less than 2.3% in the SOC range
of 10% to 90%, which meets the requirements for SOC estimation accuracy in practical
applications. In addition, it should be noted that in the SOC range between 50% and 90%,
the EKF had high estimation accuracy.
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5.2.2. Analysis of the SOH Estimation Result

The relationship between the SOH estimation accuracy and the SOC estimation accu-
racy is discussed in Section 4.2. According to the analysis of the SOC estimation algorithm
in Section 5.2.1, it can be determined that the operating conditions of the SOH algorithm are
as follows: the SOC used in the SOH algorithm should be greater than 50%, and the battery
should not be at a low ambient temperature when the algorithm is calculated. In this
study, two batteries with different aging degrees (i.e., SOH at 89% and 84.5%) were selected
to verify the SOH estimation algorithm under the FUDS profile at 25 ◦C. For the sake of
simplicity, the two aged batteries are denoted by B01 (SOH = 89%) and B02 (SOH = 84.5%).

SOH estimation verification was conducted for each battery in the time ranges of
3000 s to 4000 s, 5000 s to 6000 s, 7000 s to 8000 s, and 9000 s to 10,000 s, and the mean value
of the estimation results of the four intervals was obtained. Table 2 shows the verification
results. It can be observed that in a single range, the maximum SOH estimation error was
4.3% and the minimum estimation error was 0.4%. For a single battery, there were also
differences in estimation errors in different estimation ranges, mainly because the accuracy
of the algorithm depends on the OCV identification results at the beginning and end of the
estimation range, and the OCV identification results obtained by the FFRLS have certain
random errors, leading to differences in SOH estimation results in different ranges. To solve
this problem, the mean values of the SOH estimated in the four ranges were calculated.
According to Table 2, the maximum error of B01 was reduced from 3.8% to 2.1% and the
maximum error of B02 was reduced from 4.3% to 1.4%. It can be observed that the influence
of random error on the estimation results can be reduced effectively, and the robustness of
the algorithm can be enhanced through the process of calculating the mean value.

Table 2. The reference state of health (SOH) and estimated SOH of aged batteries.

Battery Start Time (s) End Time (s) Change of
SOC (%)

Used Capacity
(mAH)

Estimated
Capacity (mAH)

Estimated
SOH (%)

Estimation
Error (%)

B01

3000 4000 3.58 63.46 1772 88.6 −0.4
5000 6000 3.98 72.32 1817 90.8 1.8
7000 8000 4.22 78.34 1856 92.8 3.8
9000 10000 4.04 74.64 1847 92.3 3.3

Mean Value ——– ——– 1823 91.1 2.1

B02

3000 4000 3.82 63.46 1661 83 −1.5
5000 6000 4.34 72.32 1666 83.3 −1.2
7000 8000 4.42 78.34 1772 88.6 4.1
9000 10000 4.2 74.64 1777 88.8 4.3

Mean Value ——– ——– 1719 85.9 1.4

5.2.3. Analysis of the SOC and SOH Collaborative Estimation Algorithm

According to Equation (2), C is the current available capacity under any conditions,
which decreases as the battery ages. Therefore, it is important to calibrate C as the SOH
changes to improve the SOC estimation accuracy over the whole battery life. In this section,
the SOC estimation accuracy of the two aged batteries mentioned in Section 5.2.2, with or
without capacity calibration, are compared to validate the co-estimation algorithm.

The estimated values of the SOH (B01: 91.1%, B02: 85.9%) are used in this section.
Figure 9 depicts the SOC estimation results of the two aged batteries, with or without
capacity calibration, under the FUDS test profile at 25 ◦C. From Figure 9a,b, it can be
observed that the SOC estimation accuracy of B01 clearly increased after capacity calibration.
The RMSE decreased from 1.26% to 0.82%, the MAE decreased from 0.96% to 0.59%, and
the maximum error decreased from 2.65% to 1.88% within the SOC range of 20–90%. In
addition, according to Figure 9b, the fluctuation of the error curves remained similar
over the whole SOC region, demonstrating the effectiveness of capacity calibration. After
capacity calibration, the error curve remained within the ±2% error boundary in the 10–90%
SOC range. As discussed above, capacity calibration is extremely important to guarantee
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the SOC estimation accuracy when the battery is close to the end of its life. Figure 9d,e
shows the SOC estimation results for B02, whose SOH was 84.5%. It can be clearly seen
that after capacity calibration, the estimated SOC could track the reference over the whole
SOC region well, whereas without capacity calibration, the maxmium SOC estimation error
exceeded 3.5% when the SOC was below 50%. Furthermore, the RMSE decreased from
1.78% to 1.05%, indicating a 0.73% improvement, and the MAE decreased from 1.33% to
0.82%, indicating a 0.51% improvement. Compared with B01, the improvement was much
greater. According to the analysis above, it can be concluded that calibrating the capacity as
the SOH changes can effectively improve the SOC estimation accuracy for aged batteries.
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84.5% SOH battery.

6. Conclusions

The purpose of this study was to establish a collaborative estimation algorithm for
the SOC and SOH that considered accuracy and real-time performance. According to the
characteristics of the battery, the Thevenin model was established. At the real-time scale,
FFRLS and EKF were used to identify the model parameters and estimate SOC under
different test profiles and ambient temperatures (0 ◦C, 25 ◦C, and 45 ◦C). At the long-term
scale, SOH estimation was realized through the capacity estimation of the battery. The
primary conclusions are as follows:

(1) FFRLS was used to identify the parameters of the Thevenin equivalent circuit
model, and the identification results for the DST and FUDS test profiles were analyzed.
The identification accuracy of this method was better at normal temperatures (25 ◦C and
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45 ◦C) than at low temperature (0 ◦C). The terminal voltage error was about 20 mV at low
temperature, and was about 5 mV at normal temperatures. The RMSE of this algorithm
remained between 0.8 and 1.1 mV in the range of 20–90% SOC at normal temperatures,
which means that this algorithm has high identification accuracy.

(2) The SOC estimation algorithm based on EKF had high accuracy in the FUDS test
under different ambient temperatures. The maximum estimation error was 1.46% at normal
ambient temperatures (25 ◦C and 45 ◦C) and 2.3% at low temperature (0 ◦C). In addition,
the estimation accuracy in the high SOC range from 50% to 90% was greater and more
stable than in the low SOC range from 10% to 50% in the estimation process.

(3) According to the accuracy of the SOC estimation based on EKF, the temperature
and interval conditions of the SOH estimation algorithm were proposed. The maximum
error for single interval estimation was 4.3%, and the maximum error for multi-interval
mean estimation was 1.4%. Furthermore, calibration of the capacity as the SOH changed
could effectively improve the SOC estimation accuracy over the whole battery life.
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