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Abstract: In system science, a swarm possesses certain characteristics which the isolated parts and
the sum do not have. In order to explore emergence mechanism of a large–scale electromagnetic
agents (EAs), a neighborhood selection (NS) strategy–based electromagnetic agent cellular automata
(EA–CA) model is proposed in this paper. The model describes the process of agent state transition,
in which a neighbor with the smallest state difference in each sector area is selected for state transition.
Meanwhile, the evolution rules of the traditional CA are improved, and performance of different
evolution strategies are compared. An application scenario in which the emergence of multi–jammers
suppresses the radar radiation source is designed to demonstrate the effect of the EA–CA model.
Experimental results show that the convergence speed of NS strategy is better than those of the
traditional CA evolution rules, and the system achieves effective jamming with the target after
emergence. It verifies the effectiveness and prospects of the proposed model in the application of
electronic countermeasures (ECM).

Keywords: unmanned aerial vehicle (UAV); electromagnetic agent cellular automata (EA–CA) model;
neighborhood selection (NS); electronic countermeasures (ECM)

1. Introduction

The unmanned aerial vehicle (UAV) has gradually gained popularity in the last few
years. In the beginning, UAVs were mainly used for military purposes, and now they
are increasingly appearing in the fields of industry and academic research. In terms of
autonomous flight research of UAVs, [1] proposes the development of a camera-based
quadrotor positioning system to finish the process of automated landing. Reference [2]
studies the autonomous navigation system for small UAVs suitable for GPS–denied envi-
ronment, and realizes the collision–free navigation in fully autonomous missions. The state
feedback linear quadratic regulator (LQR) controller is applied to the quadrotor UAV to
realize the complete autonomy of the control system [3].

Due to limitations of the load and battery capacity of a single UAV, it is difficult to com-
plete some tasks in complex environments. In recent years, UAV swarms have developed
rapidly due to their potential huge application value [4]. UAV swarms show the group
behavior through the local interaction between individuals, to solve the global collaborative
task [5]. Meanwhile, the current trend of electronic countermeasures (ECM) is moving
towards intelligent and distributed direction. Compared with traditional centralized ECM,
distributed ECM takes advantage of its number and space to achieve better jamming with
targets [6]. The background of distributed ECM and the key technical challenges can be
referred to in [7]. In [8], the influence of distributed suppression and deception jamming
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on radar detection performance is studied. It investigates the jamming effect of a dense
UAV swarm on the detection performance of air defense radar. The optimization for the
position of each individual through sparse array synthesis is addressed in [9]. However,
these studies only demonstrate the effectiveness of distributed ECM, and there is still a
lack of corresponding theoretical modeling for analysis on the evolution mechanism of
distributed ECM.

The cellular automata (CA) has been used to model the propagation and emergence of
cluster behavior in complex systems [10]. The traditional modeling method is based on the
differential equations and is studied by deductive reasoning, while the CA model simulates
and predicts the overall dynamic process. The CA model has been widely used in many
fields such as computer network modeling and communication [11–13]. In the computer
field, the side profile flow calculation of sand-like particles in video games is researched
in [11]. The CA model can also be used to model computer networks [12]. Reference [13]
studies a node scheduling algorithm based on CA, which saves the energy of sensor nodes
while ensuring communication coverage. However, there is no literature addressing the
application of CA in the field of ECM.

Given these gaps in this research, the main contributions of this paper are summarized
as follows:

(a) The process of agent state transition is explored, in which the all selection (AS)
strategy of the traditional CA model is improved based on the neighborhood selection (NS)
strategy; (b) On the basis of (a), the convergence performance of the model in the four evo-
lution strategies is analyzed; (c) Electromagnetic agents (EA) are UAVs that carry electronic
reconnaissance or jamming equipment. By regarding each as a cell, the electromagnetic
agent-cellular automata (EA–CA) model is proposed. It is used to simulate the process
of cluster jamming in distributed ECM scenarios; (d) By adjusting the parameters of the
simulation, the conditions for the system to realize the emergence jamming are analyzed.

The rest of this paper is organized as follows: Section 2 describes the state transition
process of CA based on the neighborhood selection-all selection (NS–AS) strategy. The
application of the EA–CA model under ECM scenario is introduced in Section 3. In Section 4,
the performance of the model and the ECM simulation results are provided to demonstrate
the effectiveness of proposed model. Concluding remarks are given in Section 5.

2. The EA-CA Model
2.1. Mechanism of EA-CA

The definition of CA is described based on the set theory as follows: Denote the
dimension of the cell space as d, the neighbor radius of the cell as r, and time as t. The
cell state is a value in the finite state set S, and Z is a set of integers in one dimension. In
distributed ECM scenarios, two-dimensional CA [14] are commonly used for modeling.
The state of a cell at the next moment is determined by the current states of its neighboring
cells. Thus, the state value of a cell at t can be summarized as

St
i,j = f (St−1

i,j , St−1
i−1,j, St−1

i+1,j, St−1
i−1,j−1, St−1

i−1,j+1, St−1
i,j−1, St−1

i,j+1, St−1
i+1,j+1, St−1

i+1,j−1) (1)

Let G(V, E, A) represent the diagram of communication topology structure of the CA
model. The elements in the set V = 1, 2, . . . , n are used to mark the corresponding n agent
members in turn, and the state of agent i is denoted by xi(t). The set of communication
edges between members is represented by E = {(i, j) : i, j ∈ V, i 6= j}.

According to the rules of CA, the consensus algorithm [15] of the system can be
defined as

ẋi(t) = − ∑
i,j∈E

aij(t)
(
xj(t)− xi(t)

)
(2)
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where aij is an element of the adjacency matrix A(t) = [aij(t)] at t ≥ 0. The weight assigned
to the edge of the graph G is defined as

(i, j) ∈ E⇐⇒ aij > 0, (i, j) /∈ E⇐⇒ aij = 0, aii = 0 (3)

Then, the adjacency matrix A represents the communication network between all
agents in the system. Given that G is an undirected graph, the degree of the agent i is

d(i) = din(i) = dout(i) =
n

∑
j=1

aji (4)

and the degree matrix can be denoted by D = diag{d(i), i ∈ V}; the elements of D can be
written as

di =

{
∑n

j=1 aji, i = j
0, i 6= j

. (5)

Combining Formulas (3) and (5), the Laplacian matrix of the figure G can be obtained
by L = D− A. The element of L, lij, is given by

L = [lij](i, j = 1, 2 . . . , n) =

{
∑n

j=1 aij, i = j
−aij, i 6= j

. (6)

The consensus algorithm of the system based on CA can be written in matrix form
ẋ = −Lx, x = [x1, x2, . . . , xn]. It can be seen from the evolutionary rules of CA that the
state of each agent is determined by the states of its neighbors. Therefore, when t → ∞
and

∣∣xi(t)− xj(t)
∣∣→ 0 , the system achieves global consistency, i.e., the states of all agents

converge to a common value.

2.2. The NS–AS Strategy

The traditional CA model adopts the AS strategy, i.e., the state of agent is determined
by the states of all its neighboring agents. This makes the system more computationally-
consumed and difficult to converge, while using the NS strategy can increase the con-
vergence speed of the system and improve the stability of the system [16,17]. In the NS
strategy, neighboring agents are divided into several communication sectors. In order to
benefit the system convergence and enhance the system consistency, the neighbor agents
with the smallest state difference in each communication sector are selected to construct
the backbone network topology. In the network topology, all candidate neighbor agents of
agent i participate in the calculation of the state update for agent i. Thus, the state transition
equation is given by

xi(t + 1) = xi(t) + ui(t) (7)

where ui(t) represents the control input. Supposing a neighborhood member j with the
smallest state difference between the communication area and that of the agent i, the agent
i selects the agent j for collaborative cooperation and adds it to the candidate set. Then,
ui(t) can be written as

ui(t) = α(
m

∑
u=1

(
xmin(iu)(t)− xi(t)

)
+ ∑

ii∈Pi(t),ii/∈Ai(t)
(xii(t)− xi(t))) (8)

where α is the adjustment factor of the model, m represents the number of communication
sector, iu represents the neighbor agents set of agent i in the uth sector, and xmin(iu)(t) is the
state of the agent with smallest difference from the state of agent i among its neighboring
agents in the uth sector at time t . In the above, Pi(t) and Ai(t) represent the set of



Electronics 2022, 11, 184 4 of 17

neighborhood members of agent i and the set of agents from the smallest state difference in
each sector, respectively.

As the NS strategy only selects the neighbor agent with the smallest difference in each
sector to participate in the update calculation, a small sum of state difference is obtained.
The step of each update of the agent is small, which causes the system to converge too slowly.
Therefore, in order to improve the convergence speed of the system, the system switches to
the NS–AS strategy. When the system is fully connected, the number of neighbor agents of
agent i is n− 1, and all agents within communication range are select to participate in state
evolution. The algorithm process of the NS–AS strategy is shown in Algorithm 1.

Algorithm 1: The NS-AS Strategy Algorithm
The NS-AS strategy for n agents:
1: Initialize the network topology and xi(t), i ∈ 1, 2 . . . N
2: for agent i=1 to N
3: if the network is not fully connected
4: Adopt the NS steategy
5: Divide the agents into several communication sectors.
6: Calculate the rotation angle set β = rotate_array(min(std(Nn)))
7: for j = 1 to m
8: Selects the neighbor agent min(iu) =argmin||xiu(t)− xi(t)||,

add the agent into candidate set ui(t), update xi(t);
9: ∃ii, ii ∈ Pi(t), ii /∈ Ai(t), add agent ii into candidate set ui(t);
10: Acooording to candidate set ui(t), update xi(t).
11: end for
12: else
13: Switch to AS strategy
14: Select all agents in the neighborhood, update xi(t)
15: end for

By calculating the standard deviation of the number of agents in each sector, the angle
of the rotating sector can be adjusted. In Algorithm 1, rotate_array represents the list of
rotation angles to be searched, which cannot exceed the angle of each sector. Nn represents
the number of agents in each sector and Nc denotes the number of communication sector.

Combining Formulas (11) and (12), the state information of agent can be set as

∀i, Ni(t) < n− 1 :

xi(t + 1) = xi(t) + α1{∑
u=1

xmin(iu)(t)− xi(t)

+ ∑
ii∈Pi(t),ii/∈Ai(t)

(xii(t)− xi(t))}; (9)

∀i, Ni(t) = n− 1 :

xi(t + 1) = xi(t) + α2 ∑
j∈Ni(t)

(
xj(t)− xi(t)

)
. (10)

where Ni represents the number of neighbor agents of agent i, and α1 and α2 represent the
adjustment factor in different condition, respectively.

3. Signal Model of ECM

The EA–CA model can be used to simulate the process of agent state transition in
ECM application scenarios. The jamming consistency to radiation sources can be achieved
through the information interaction between agents [18]. In order to realize the distributed
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noise suppression jamming with the radar [7], each jammer is regarded as an electromag-
netic agent that transmits jamming noise that drowns the echo of a radar-detected target.

The radar detection equation without jamming can be written as [19]

Pr =
PtGtGr(θt)δλ2KIKC

(4π)3R4Ls
(11)

where Pt and Gt correspond to the transmitting power and the gain of the transmitting
antenna, respectively. Gr(θt) is the gain of the radar antenna in the target direction, δ is
the radar cross section, λ is the wavelength of signal, and KI and KC represent the pulse
accumulation correction factor and the pulse compression correction factor, respectively.
In the above, R is the distance between radar and target. Ls is the signal transmission loss
in clear air; Appendix A the definition of mathematical symbols, Appendix B gives the
specific calculation process.

The noise power of the system contains the thermal noise power of the receiver and
the jamming noise power. The thermal noise power can be written as Prn = kT0BrFn, where
k is Boltzmann constant, and T0 is the standard room temperature. Br is radar receiver
bandwidth, and Fn is noise figure.

The jamming signal power of n jammers received by the radar is represented as
follows [20]

Prj =
n

∑
i=1

PjGjGr(θj)λ
2

(4π)2R2
j Lj

.
Br

Bj
(12)

where Pj and Gj represent the jammer power and gain. Gr(θj) is the gain of radar antenna
in the direction of jammer, and Rj denotes the distance and loss of the jammer, of which Br
and Bj stand for the bandwidth of receiver and jammer, respectively.

The total noise power of the system is given by Pn = Prn + Prj [6]. The total signal–
noise ratio (SNR) of the system can be expressed as follows:(

S
N

)
S
=

Pr

Pn
=

PtGr(θt)δλ2KIKC

(4π)3R4Ls
(
kT0BrFn + Prj

) (13)

In practice, it draws more attention to SNR or detection probability of the radar
receiver. For a radar receiver, (SNR)o min is the minimum output SNR [21]. The minimum
detectable signal power is

Si min = kT0BrFn(SNR)o min (14)

The detection probability is related to false alarm probability Pf a, output SNR (SNR)o,
and the type of target fluctuation. The detection probability of a non-undulating target [22]
can be calculated approximately by

Pd = 0.5er f c(
√
−ln(Pf a)−

√
(SNR)o + 0.5). (15)

where er f c() represents the complementary error function.

4. Simulation Results Analysis
4.1. Performance Analysis of the EA–CA Model

The EA–CA model is evaluated in a simulated scenario. The initial topology in the
EA–CA model is connected. When an EA detects the radiation source, it transmits the
information to its neighboring agents and the neighborhood agents transform their states
from the reconnaissance state to the jamming state. The evolution process of the EA state
information in different strategies is shown in Figure 1. The color keys in the figure indicate
the evolution of each agent state. In the ECM scenarios, state Y represents the state of agent
with the initial state being reconnaissance state. When the radiation source is detected, the
agent state evolutes to the jamming state with the increase of reconnaissance information.
The performances of different evolution strategies are determined by final convergence
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or divergence. It can be seen that when the AS strategy is adopted, the communication
topology of the EA–CA model is not always connected during the evolution process, and
the system will converge to multiple local centers. The NS strategy 1 represents dividing the
neighboring agent into several sectors. The NS strategy 2 is based on the NS strategy 1, by
adjusting the angle of the sectors to make the individuals of each sector evenly distributed.
When using the NS strategy 1, the communication area of each agent is divided into several
sectors, and the communication topology is always connected during the evolution process.
The EA–CA model converges to a small area quickly, then to achieve the consensus at a
very slow speed. When the NS strategy 2 is adopted, the number of agents in each sector
is evenly distributed, and its convergence speed is faster than the NS strategy 1. When
the communication topology of the model has not reached full connectivity, the system
adopts NS strategy 2, and the convergence speed at this time is closed to the NS strategy 2.
When the communication topology of the model reaches full connectivity, it switches to AS
strategy; the convergence speed at this time is faster than NS strategy 2.

The influence of different parameters, such as the number of communication sectors,
the communication radius of agent, the number of agents, and the different adjustment
factors on the convergence speed of the system are also analyzed.

(a) AS Strategy (b) NS Strategy 1

(c) NS Strategy 2 (d) NS–AS Strategy

Figure 1. The evolution process of EA–CA model state information in different strategies.
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4.1.1. The Number of Communication Sector

The evolutions of state using NA–AS strategy with the different number of communi-
cation sectors are shown in Figure 2. The number of agents in the candidate set decreases
when the number of sectors is too small, which leads to the system converge to multiple
local centers. If the number of sectors is set too large, though the convergence speed can be
improved, the computational cost increases.

(a) Ncs = 2 (b) Ncs = 3

(c) Ncs = 4 (d) Ncs = 5

Figure 2. The evolution performance with the number of different sectors.

4.1.2. The Communication Radius of the Agent

Figure 3 shows the evolutions of state using NA–AS strategy with different communi-
cation radius. It can be seen that the number of candidate agents is positively correlated
with the size of communication radius, so the convergence speed of the system increases
accordingly. The number of neighbor agents decreases when the communication radius is
too small, which causes divergence.

4.1.3. The Number of the Agents

The evolutions of state using NA–AS strategy with the different number of agents
are observed in Figure 4. The system converge speed is related with the density of agents,
the system diverges to multiple statuses when the number of agents is small. However,
a large number of agents leads to the increase of the computation cost, resulting in a
slow converge speed.
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(a) Ra = 0.2 (b) Ra = 0.4

(c) Ra = 1 (d) Ra = 1.4

Figure 3. The evolution performance with different communication radius.

(a) Ns = 50 (b) Ns = 100

Figure 4. Cont.
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(c) Ns = 150 (d) Ns = 200

Figure 4. The evolution performance with the different number of agents.

4.1.4. The Adjustment Factor

Figure 5 shows the effect of different adjustment factors on the system convergence
performance. Adjustment factor denotes the step–step process of the agent state change.
The unreasonable adjustment factor set may cause the modeled divergence.

(a) α = 0.01 (b) α = 0.05

(c) α = 0.1 (d) α = 0.2

Figure 5. The evolution performance with different α.
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4.2. ECM Simulation Results
4.2.1. ECM Simulated Scenario

An ECM simulated scenario is shown in Figure 6. Each UAV carries reconnaissance
and jamming payloads. When the radar radiation source is detected, it will perform
jamming, covering the target. The relevant parameters with their values are shown in
Table 1.

Figure 6. The ECM scenario based on UAV swarm.

Table 1. Simulation parameters with their values.

Parameter Definition Value

Fr The radar center frequency 3.1 GHz
Tr The pulse width 20 µs
Bw The chirp bandwidth 30 MHz
Br The bandwidth of receiver 100 MHz
Gr The antenna gain of radar in the jammer direction 38.5 dB
Bj The bandwidth of jammer 50 MHz
Pj The jammer transmitting power 3 W
Gj The jammer transmitting antenna gain 20 dB
Lj The comprehensive loss of jammer 5 dB

The jamming pattern of this paper is noise convolutional jamming signal. The jamming
signal Sj is formed by the convolution of the received radar signal Sr and the Gaussian
white noise signal Sn. The jamming signal can be represented as follows:

Sj = conv(Sr, Sn) (16)

Sr = exp(jπKt2) (17)

where exp() is the exponential function with the constant e as the base, and K = Bw/Tr is
the frequency modulation slope.

The time domain and frequency domain of jamming signal are shown in Figure 7.
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(a) Time domain of jamming signal (b) Frequency domain of jamming signal

Figure 7. Time domain and frequency domain of the jamming signal.

4.2.2. The Performance Analysis of Different Evolution Strategies

Figure 8 shows the radar detection power map of a single radar interfered with by
multiple jammers. When the main lobe of the radar antenna points to the direction of
jammer distribution, multiple jammers effectively suppress the radar exposure area.

Figure 8. Radar detection power map.

In order to verify the influence of the number of jammers on the performance of the
radar, the relationship between the number of UAVs and the signal-to-noise ratio of the
system is shown in Figure 9. As the evolution process progresses, the number of UAVs in
jamming state gradually increases, and the signal-to-noise ratio of the system decreases
accordingly.
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Figure 9. The influence of the number of jammers on the system SNR.

The curve of the radar target detection probability with different number of jammers is
shown in Figure 10. The detection probabilities under various jammer transmit power are
compared. In an actual scenario, the number of jammers and the jamming power should
be considered comprehensively. The experimental results show that to optimally allocate
jamming resources, the number of jammers and the interference power can be adjusted
according to actual application requirements.

Figure 10. The curve of the radar target detection probability.

Figure 11 shows the influence of different evolution strategies on the radar detection
probability. It can be seen that as the evolution progresses, the number of UAVs in the
jamming state gradually increases, and the radar detection probability gradually decreases.
From the previous analysis results, the AS strategy and NS strategy 1 converge to multiple
local centers with only certain individuals evolving to the interference state. Due to the
lack of sufficient interference power, these two strategies cannot effectively interfere with
the radar. On the contrary, both NS strategy 2 and NS–AS strategy can eventually achieve
effective interference with the radar. Meanwhile, as the convergence speed of the NS–AS
strategy is faster than the NS strategy 2, it achieves effective interference faster.
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Figure 11. The influence of different evolution strategies on the radar detection probability.

When radar performs the searching and tracking task, it usually uses pulse compres-
sion technology to improve the target detection capabilities. The effect of a few jammers
on the radar pulse compression output is described in Figure 12. It can be seen that as
the evolution process progresses, the number of UAVs in the jamming state gradually in-
creases, and the radar detection probability gradually decreases. The target echo is detected
normally when the SNR is large in Figure 12a. However, with the constant transition of
the agent state, more agents are transformed into the jamming state. As can be seen in
Figure 12b, the target echo submerges into background noise with the jamming power
increasing. It verifies the effectiveness of the interference signal by comparing the results of
pulse pressure output under different signal-to-noise ratios.

(a) Target detected (b) Target not detected

Figure 12. Target detection results after radar pulse compression.

5. Conclusions

In this paper, an EA-CA model based on NS strategy was proposed, and the effective-
ness of the model was verified in an ECM scenario. Firstly, the process of the agent state
transition was analyzed based on the CA method. Then, four state evolution strategies were
studied, and the convergence performances of different parameters on the system were
compared. Finally, the radar detection performance under different evolution strategies
was simulated in distributed cooperative jamming scenarios. By comparing the detection
probability of the system under different evolution strategies and the results of pulse
compression output under different SNRs, the effectiveness of the interference signal was
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verified. It can be concluded that the system achieves convergence and jamming quickly
with an improved stability when the NA-AS strategy is adopted. However, the UAV
communication is often limited by real-time transmission bandwidth. It is necessary to
establish a suitable communication mechanism. Meanwhile, when multiple radiation
sources appear in the actual environment, the UAV swarm needs to self-organize to sense
the radiation sources and allocate interference resources. We will carry out the related
research in future work.
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Abbreviations
The following abbreviations are used in this manuscript:
UAV Unmanned aerial vehicle
LQR Linear quadratic regulator
EA Electromagnetic agent
CA Cellular automata
AS All selection
NS Neighborhood selection
ECM Electronic countermeasure
SNR Signal–noise ratio

Appendix A

Table A1. The definition of mathematical symbols.

Mathematical Symbol Definition

G The communication topology diagram of the CA model
E The set of communication edges between members
D The degree matrix
A(t) The adjacency matrix
L The Laplacian matrix of the figure G
xi(t) The state of agent i
ui(t) The candidate set of the agent i
α The adjustment factor of the model
Nn The number of agents in each sector
Nc The number of communication sector
Pr The radar receiving power
Pt The radar transmitting power
Gt The gain of the radar transmitting antenna
Gr(θt) The gain of the radar antenna in the target direction
σ The radar cross section
λ The wavelength of radar signal
KI The pulse accumulation correction factor
KC The pulse compression correction factor
R The distance between radar and target
Ls The loss of system
Prj The interference power received by the radar
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Table A1. Cont.

Mathematical Symbol Definition

Pj The jammer transmitting power
Gj The jammer transmitting antenna gain
Lj The comprehensive loss of jammer
Fr The radar center frequency
Tr The pulse width
Bw The chrip bandwidth
Br The bandwidth of receiver
Bj The bandwidth of jammer
Prn The thermal noise power
Pn The total noise power of the system
T0 The standard room temperature
Fn The noise figure
Pf a The false alarm probability
Pd The target detection probability
Si min The minimum detectable signal power

Appendix B

Appendix B.1. The Clear Air Atmosphere Attenuation

The calculation process of the electromagnetic wave propagation attenuation model is
as follows:

Ls = γ0r0 + γwrw (A1)

where γ0 and γw represent the ground attenuation rates of oxygen and water vapor. r0 and
rw are the equivalent path lengths of oxygen and water vapor, respectively.

Suppose the path elevation angle is θ, and the smaller and larger heights of the
radiating source antenna and the reconnaissance receiver antenna are h1 and h2, respectively.
r0 and rw can be calculated as follows:

r0 =


h0(e

− h1
h0 − e−

h1
h0 )

sinθ
, 10◦ ≤ θ ≤ 90◦

√
aeh0[F(χ1)e

− h1
h0 − F(χ2)e

− h2
h0 ]

cosθ
, 0◦ ≤ θ < 10◦

. (A2)

rw =


hw(1− e−

h1−h2
hw )

sinθ
, 10◦ ≤ θ ≤ 90◦

√
aeh0[F(χ

′
1)− F(χ

′
2)e
− h1−h2

hw ]

den
, 0◦ ≤ θ < 10◦

. (A3)

where h0 and hw are the equivalent heights of oxygen and water vapor. ae is the equivalent
radius of the Earth. h0 and hw can be calculated as follows:

aah0 =

 6, f ≤ 63GHz

6 +
40

( f − 118.7)2 + 1
, 63GHz < f ≤ 350GHz . (A4)

hw = hw0[1 +
3

( f − 22.2)2 + 5
+

5
( f − 183.3)2 + 6

+
2.5

( f − 325.4)2 + 4
], f < 350GHz (A5)

where hw0 is the water vapor coefficient, and the value is 1.6 for sunny days and 2.1 for
rainy days.
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The calculation equation of F(χ) can be represented as follows:

F(χ) =
1

0.661χ + 0.339
√

χ2 + 5.51
(A6)

χi = cosθ[sinθtan2θ

√
ae

h0
+

√
ae

h0
sin2θ +

2hi
h0

+
h2

i
2aeh0

], (i = 1, 2) (A7)

χ
′
i = cosθ[sinθtan2θ

√
ae

hw
+

√
ae

hw
sin2θ +

2hi
hw

+
h2

i
2aehw

], (i = 1, 2) (A8)

Appendix B.2. Multipath Propagation Factor

In the process of calculating the multipath effect in the electromagnetic wave transmis-
sion process, it is first necessary to establish a vertical profile model of the actual ground
on the transmission path from the radiation source to the reconnaissance receiver, and then
analyze the possible arrival of the reconnaissance receiver antenna according to the electro-
magnetic wave reflection model. The radiation source reflects the signal. Finally, according
to the electromagnetic characteristics of the reflecting surface and the transmission path,
the reflection intensity and phase lag of the reflected signal are calculated, and then the
composite signal of the direct wave and the reflected wave at the reconnaissance receiver is
obtained. The calculation equation of multipath propagation factor is as follows:

F = fd|
√

1 + x2 + 2xcosα| (A9)

where x = ρ0ρsD fr
fd

is the generalized reflection coefficient. ρ0 and ρs represent the elec-
tromagnetic reflection coefficient and roughness factor of the reflecting surface. D is
the divergence factor of the reflecting surface. fd and fr represent the value of the am-
plitude of the pattern coefficient on the direct path and the reflected path, respectively.
α = 2πδ

λ + ϕ + βr − βd is the total phase difference between direct wave and reflected wave.
σ is the path length difference between the direct wave and the reflected wave. ϕ is the
phase angle of reflection coefficient. βr and βd represent the phase of the reflected and
direct directions of the pattern factor.
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