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Abstract: In this paper, we demonstrate the feasibility and efficiency of approximate computing
techniques (ACTs) in the embedded Support Vector Machine (SVM) tensorial kernel circuit imple-
mentation in tactile sensing systems. Improving the performance of the embedded SVM in terms
of power, area, and delay can be achieved by implementing approximate multipliers in the SVD.
Singular Value Decomposition (SVD) is the main computational bottleneck of the tensorial kernel
approach; since digital multipliers are extensively used in SVD implementation, we aim to optimize
the implementation of the multiplier circuit. We present the implementation of the approximate
SVD circuit based on the Approximate Baugh-Wooley (Approx-BW) multiplier. The approximate
SVD achieves an energy consumption reduction of up to 16% at the cost of a Mean Relative Error
decrease (MRE) of less than 5%. We assess the impact of the approximate SVD on the accuracy of the
classification; showing that approximate SVD increases the Error rate (Err) within a range of one to
eight percent. Besides, we propose a hybrid evaluation test approach that consists of implementing
three different approximate SVD circuits having different numbers of approximated Least Significant
Bits (LSBs). The results show that energy consumption is reduced by more than five percent with the
same accuracy loss.

Keywords: approximate computing; digital multiplier; Singular Value Decomposition; embedded
machine learning; tensorial kernel; tactile data processing; FPGA

1. Introduction

Embedding Machine Learning (ML) near the sensor is increasingly required for many
application domains such as wearables [1], health care devices [2], and tactile sensing
systems [3]. A tactile sensing system is composed of three main blocks: (1) a tactile sensor
array that senses the mechanical input stimuli; (2) an interface electronic system for signal
conditioning and data acquisition; (3) an embedded electronic system (EES) for digital
signal processing. In particular, the EES extracts meaningful information from raw data [4].
ML algorithms provide effective solutions for nonlinear and complex problems through a
“learning by examples” approach. Such methods are employed to design predictive systems
that can make decisions on unseen input samples [5,6]. ML methods have been investigated
to extract structured information from raw data, e.g., texture/touch modality classification.
A tensorial kernel ML approach has proven its effectiveness in processing tactile data [3].
Despite the accuracy of the tensorial kernel approach [4], its high computational load [7]
imposes high energy consumption. The computational bottleneck of the tensorial kernel
approach lies in the SVD implementation.

On the other hand, SVD plays a significant role in ML algorithms: dimensionality
reduction methods are required for ML algorithms with large size datasets. State-of-
the-art studies report the usage of SVD in ML algorithms to extract low-dimensional
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features [8–10]. The focus of this paper remains on improving the energy consumption of
the SVD implementation by exploiting energy-efficient circuit design techniques. There-
fore, the solution presented in this paper could be exploited in various embedded ML
algorithms [8–10]. Our main focus lies in implementing an energy-efficient SVD for tac-
tile sensing systems. To this aim, the approximate computing paradigm is exploited in
this paper.

In recent years, approximate computing techniques (ACTs) have attracted much
research since they may enhance the energy efficiency of embedded digital systems. ACTs
target error-resilient applications to trade accuracy for power consumption, time latency,
and hardware size [11,12]. Approximate computations are effective in many applications, e.g.,
image processing [13], data mining [14], and tactile data processing [15], where there is a
possibility to take advantage of energy reduction with minimal loss of accuracy [16]. ACTs
could be considered as a potential solution to reduce the computational cost of our targeted
SVD implementation in the tensorial kernel approach. In this perspective, this paper aims
to answer the following questions:

(1) What could be the impact of ACTs on the performance of the SVD?
(2) What could be the impact of ACTs in tactile data processing tasks?

Since digital multipliers are extensively used in SVD circuit implementation, we aim
to optimize the implementation of the multiplier circuit by adopting ACTs. Most of the
research works have focused on applying ACTs to the SVD at the algorithmic level [17–19]
but till now, no research works have investigated the usage of ACTs in the SVD circuit.
The main contribution in this work lies in implementing an efficient approximate SVD
based on an approximate multiplier. In this perspective, the research objective of this paper
is to demonstrate that approximate multipliers could be effectively used to decrease the
energy consumption of the SVD and reduce consecutively the energy consumption of
the embedded SVM-based tensorial kernel circuit implementation [4]. We systematically
analyze the energy–accuracy trade-offs offered by different approximations in the tensorial
SVM circuit. In this work, we have demonstrated the applicability of ACTs for embedded
ML algorithms in tactile sensing systems at the circuit level. The main contributions of this
work are summarized as follow:

1. We assess the performance of the Approx-BW multiplier with respect to the approxi-
mate multipliers presented in the state-of-the-art. The work presented in this paper
is an extension of the work proposed in [20] where an extensive comparison among
the BW multiplier with different state-of-the-art multipliers has been addressed. The
results in [20] have shown that the Approx-BW multiplier achieves power consump-
tion reduction up to 60% with respect to a Rounding based approximate multiplier
(ROBA) [21] and multiplier based on inexact ETA adder (META) [22] multipliers with
degradation of MRE of less than 4%.

2. We propose the implementation of the approximate SVD circuit based on the Approx-
BW multiplier [20]. The approximate SVD circuit shows a reduction of energy con-
sumption by up to 16% at the cost of an MRE increase of less than 5%.

3. We analyze the impact of the approximate SVD on the accuracy of the classification
in a case study, i.e., classification of two touch modalities (sliding a finger vs. rolling
a washer). We show that the Error increases from 1% to less than 8% when using
approximate SVD circuits. We show that energy consumption could be reduced by
more than 5% at the same accuracy loss when applying a hybrid approach, which
consists of implementing three different approximate SVD having different numbers
of approximated Least Significant Bits (LSBs).

2. Related Works

State-of-the-art works have addressed the hardware implementation of ML using
different methods and approaches. Most of the hardware implementations are based on
software implementation [23] or custom digital circuits [24]. Different state of the art
works [23,25–27] have presented the hardware implementation of various embedded ML
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algorithms (Extreme learning machine (ELM), Neural networks, etc.) on FPGA devices for
various applications (e.g., epileptic seizure detection).

Few works have focused on implementing embedded ML algorithms based on SVM at
the hardware level. To give some examples, Ortega and Anguita [28] presented the imple-
mentation of an efficient support vector machine (SVM) on FPGA for online classification
applications. Fafoutis et al. [29] investigated the benefits of embedded ML algorithms for
extracting features for wearable sensor devices. An energy-efficient SVM classifier using
approximate computing is presented in [30]. An approximate adder is proposed, then
an approximate fixed-width multiplier is introduced. The proposed circuits have been
evaluated on the architecture of the support vector machine (SVM) classifier. Results have
shown that the use of approximate computing can reduce the area and critical path delay,
and the power delay product (PDP), by 18.7, 16.0, and 32.4%, respectively, compared to the
exact classifier. Another energy-efficient-based approximate computing SVM classifier is
proposed in [31]. The authors have proposed a hardware architecture with reconfigurable
kernels where the optimum energy is achieved by choosing and configuring different
kernels. Results show up to 15% energy and 14% area savings when compared to exact
SVM implementation. An optimized approximate SVM FPGA accelerator is presented
in [32]. The authors have proposed an approach by applying two algorithmic approxima-
tion techniques: precision scaling and loop perforation. Results show that the approximate
SVM classifier achieves a speedup of 15× while preserving accuracy of 96.7%.

Ibrahim et al. [7] implemented a real-time SVM classifier based on the tensorial kernel
approach [4] on FPGA, to distinguish three touch modalities classification: sliding a finger,
rolling a washer, and brushing a brusher, which is three binary classification problems. The
tensorial kernel SVM consumes a significant amount of power consumption, i.e., 1.14 W.
The importance of this approach is that it maps the variation of the stimuli generated
from the two-dimensional sensor array in terms of time. Most of the ML approaches deal
with input vectors, and they are not able to handle tensorial inputs. The approach of [7]
preserves the inherent tensorial structure of the signals provided by the sensing device.
However, the main drawback of [7] is the high energy consumed.

To improve the energy consumption of embedded ML algorithms, some works in
the state-of-the-art demonstrated the effectiveness of some low power techniques and
ACTs approaches in embedded ML algorithms implementations. In [33], The authors have
used the All Spin Logic Device (ASLD), which is a spintronic device that provides the
properties of small area, zero leakage, and low operating voltage. Presented results have
shown that ASLD has identical power dissipation through the switching operations. The
authors in [34] have used silicon nanowire field-effect transistors (SiNW FETs) to preserve
lower power and area consumption when compared to conventional CMOS technology.
Ibrahim et al. [28] presented a survey showing the main techniques adopted at the circuit
level for embedded ML algorithms such as approximate arithmetic circuits, approximate
memory, and quantization techniques. Particularly, researchers have focused on introduc-
ing approximate multipliers in the embedded ML implementation since the latter requires
a high number of multiplications. Several approximate multipliers for ML algorithms
have been proposed in the literature [14,35–38]. Reference [36] evaluated the use of an
Alphabet Set Multiplier (ASM) in a deep neural network: the conventional multiplication is
substituted by simplified shift and add operations [36]. The power consumption is reduced
by 18% to 27% at the cost of an accuracy loss of less than 0.4%. In [37], the energy efficiency
is improved by 43.9 to 62.5% after implementing the approximate multiplier using the
inexact logic minimization approach in a neural network. Hammad et al. [39] demonstrated
that approximate multipliers could improve the performance of the VGGNet deep learning
network. They showed that the cost of the multiplications in VGGNet could be reduced by
50% in terms of energy consumption with a mean relative error (MRE) of 1.5%.

Inspired by the approach adopted in [39], we have applied ACTs in our previous
work [7] by implementing approximate multipliers in the tensorial SVM. The main differ-
ences in our work compared with [39] are: (1) Ref. [39] employs approximate multipliers
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from the state-of-the-art, while in this work we use the approximate multiplier proposed
in our recent work [20]; (2) In [39], the MRE of the approximate multipliers is estimated,
while in our work the approximate multiplier is implemented directly in the SVD, (3) the
study in [39] is applied for image classification, while in our work the study is applied for
touch modalities classification.

3. Machine Learning-Based Tensorial Kernel Approach
3.1. General Approach

The tensorial kernel approach proposed in [40] is implemented in two stages: offline
training and online classification. During the offline training, data are used to build the
classifier. In the online classification, the system classifies the touch modalities. Figure 1
shows a sketch of the tensorial kernel approach. The tactile data generated from the sensor
array are arranged in a three-dimensional tensorial representation. The first two dimensions
represent a 4 × 4 sensor array, while the third dimension represents the time. This work
employs the Support Vector Machine for the classification [4]:

ŷ = fSVM(in) = ∑Np
m=1 βm K(im, in) + b (1)

where in, ŷ, βm, and K(im, in) are respectively the input, the predicted category, the weights,
and the kernel function. The tensorial kernel extended from the Gaussian kernel is defined
and computed as follow:

K(i, j) = ∏N
n=1 Kn(i, j) (2)

where Kn is the kernel factor defined as:

K(i, j) = exp(
−1
2σ2 ‖ViV

T
i −VjVT

j ‖
2
F

)
(3)

where ‖.‖F, Vi,Vj, and σ are, respectively, the Frobenius norm, the singular vectors of the
unfolded matrix in the online stage, and the singular vectors of the unfolded matrix in the
training stage and the bandwidth of the kernel function. The singular values in Equation (3)
are generated after computing the SVD.
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Figure 1. Sketch of the tensorial kernel approach, which is composed of three main phases: (a) a three-
dimensional tensor (representing the tactile data generated from a sensor array), (b) X1 X2 X3 are the
unfolded matrices, (c) SVD to compute the eigenvalues of the unfolded matrices, (d) classifying the
eigenvalues based on the SVM.

The SVD is the main block of the kernel computation, it factorizes each matrix M of
size (m× n) into a product of matrices as follows:

M = USVT (4)
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where M, U, S, and V are respectively the unfolded input matrix, an orthogonal matrix
(m×m), a diagonal matrix (m× n), and a unitary matrix (n× n). U and V contain,
respectively, the left and right singular vectors of M. The diagonal elements (σ0, . . . ,σn−1)
are the singular values of M. The SVD is implemented based on the one-sided Jacobi
algorithm [41] where a sequence of rotations are applied to the matrix U =MT M. Depending
on the input data, the one-sided Jacobi algorithms needs between five to eight iterations to
converge [7]. The sequence U1, U2, U3, etc. Is generated as follow:

Ua+1 = J(a, b, θ)TUa J(a, b, θ) (5)

where the Jacobi rotation J(a, b, θ) consists of an identity square matrix with four elements
on the intersection of rows a and columns b. A Jacobi rotation is generated for each
sub-matrix to annihilate the off-diagonal elements (w) of the matrix U as follow:[

x̂ 0
0 ŷ

]
=

[
cos θ − sin θ

sin θ cos θ

]T[ x w
w y

][
cos θ − sin θ

sin θ cos θ

]
(6)

3.2. Dataset Preparation

The dataset is adopted from [4]: seventy participants were asked to apply two touch
modalities (sliding the finger vs. rolling a washer) on a 16 sensors array. Each touch
modality was repeated twice for two directions (horizontally and vertically) as shown in
Figure 2. The total number of collected touch modalities is 560 (70 participants, 2 modalities,
2 directions, 2 trials).
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Figure 2. Touch modalities (a) finger sliding, (b) washer rolling.

3.3. Data Preprocessing

The collected touch modalities were represented by a tensor of three dimensions (4 × 4
sensor array and time) of size T (4 × 4 × 30,000). The third component of the tensor T was
determined by a time interval of (10 s) in each experiment with an adopted sample rate
of (3 k samples per second). Pre-processing is used to remap the original tensor mostly to
reduce the dimensionality of the third component of T. Only a portion of the 30,000 samples
in the third component of T carry information about the tactile stimulus. The relevant
signal lies in a limited time window as shown in Figure 3. The localization of the relevant
time window is defined after evaluating the amount of energy provided by the sensors as
proposed in [4]. In the following, the tensor t obtained after extracting the relevant time
window from T is as follows: t (4 × 4 × 20).
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4. Proposed Methodology

This section will describe the methodology adopted to assess the impact of approxi-
mate SVD on online classification accuracy. Figure 4 presents the methodology, which is
organized into three main steps:
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In the first step, the approximate adder and multiplier circuits are implemented and
simulated in Vivado Design Suite 2017.1 using VHDL Hardware Description Language.
Six approximate adders are selected that belong to two classes: speculative adders and
approximate full adders. Seven approximate multipliers are selected from the state-of-the-
art, including two approximate multipliers proposed in our recent work. The source codes
of the approximate multipliers and adders are found in [42]. The accuracy is evaluated
after selecting 105 input patterns with uniform probability density distribution. The energy
consumption and time delay are reported after synthesizing the designs by using the Xilinx
Vivado synthesizer, with Virtex-7 xc7vx485tffg1157-1 device files. Then, we assess the
performance of the approximate multipliers, to select the circuit to be used in the online
classification.
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In the second step, the selected circuit (i.e., Approx-BW) is implemented in the SVD
since the SVD takes 95% of the operations of the tensorial SVM as demonstrated in [43]. The
error-resilience [44] of the approximate SVD is analyzed after implementing Approx-BW
compared with the exact multiplier in the SVD. The number of approximated LSBs is
varied to extract the energy-quality trade-off of the approximate SVD. The error-resilience
of approximate multipliers and approximate SVD is evaluated based on the mean relative
error (MRE) [45] defined as follow:

Error = |Approximate result− Exact result| (7)

RE (%) =
| Approximate result− Exact result|

Exact result
× 100 (8)

MRE =
∑n

i=1 RE
n

(9)

where n represents the number of the inputs for the multiplier and the SVD.
The RE of the approximate SVD is analyzed based on a set of matrices selected based

on uniform distribution ranging from 0 to 1, which represents the values generated from
the sensor array in a real application. The probability density function for a uniform
distribution [46] a and b represents the range of values.

f (x) =
{ 1

b−a i f a ≤ x ≤ b
0 otherwise

(10)

Three tests are implemented as follow:
Test 1: calculating the MRE of the eigenvalue Si generated from each of the input

matrices from the approximate SVD as follow:

RE (Si) =
| Approximate Si − Exact Si|

Exact Si
× 100 (11)

where Si represents the eigenvalue such as S1,
The MRE is computed as follows:

MRE (Si) =
∑n

j=1(RE (Si))j

n
(12)

where n represents the number of input matrices (n = 20). The goal is to find the MRE
for each eigenvalue. Five eigenvalues are generated from the SVD; therefore, the same
procedure is applied for each eigenvalue from S1 till S5.

Test 2: calculating the RE of the five eigenvalues generated from each of the input
matrices from the approximate SVD as follow:

RE
(

MEigen
)
=

∑5
i=1 RE (Si)

5
(13)

where MEigen represents the matrix of eigenvalues containing the five eigenvalues (S1, S2,
S3, S4, S5). The MRE of MEigen is computed as follow:

MRE
(

MEigen
)
=

∑n
j=1 RE

(
MEigen

)
n

(14)

Test 3: calculating the MRE by taking into consideration only the value of the eigen-
value having the highest RE from the five eigenvalues generated from each of the input
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matrices from the approximate SVD, e.g., if S5 has the highest RE among the remaining
eigenvalues, then the RE of S5 is selected as follow:

RE
(

MEigen
)
= RE (S5) (15)

MRE
(

MEigen
)
=

∑n
j=1 RE

(
MEigen

)
n

(16)

The goal of the third test is to figure out the range of the maximum error that could be
generated from the approximate SVD. The tensorial kernel algorithm is modeled in the C
language in the third step. The approximate SVD model is introduced in the simulation
program as shown in Figure 5. We test the impact of the approximate SVD on the accuracy
of the classification. The MRE generated from the approximate SVD from each of the three
tests done above (test 1, test 2, and test 3) is added to the simulation program. The MRE is
applied through element-wise multiplication with the eigenvectors of the SVD, as follow:

error(1) = Vx1 ×MRE
error(2) = Vx2 ×MRE
error(3) = Vx3 ×MRE

(17)

where Vx1, Vx2, and Vx3 represent the right singular vectors. The approximate model
generates the error(1), error(2), and error(3) as shown in Figure 5. Consecutively, the final
eigenvalues are generated as follow:

X1 = Ux1 Sx1 V′x1
X2 = Ux2 Sx2 V′x2
X3 = Ux3 Sx3 V′x3

(18)

where
V′x3 = Vx3 + error(3)

where V′x1, V′x2, and V′x3 are the modified right singular vectors after applying an MRE
generated from the approximate SVD as shown in Figure 5. Finally, after classifying the
touch modalities (sliding vs. rolling), the Error Rate (Err) of the SVM is computed as
follows:

Err (%) =
number o f incorrect touch modalities

total number o f touch modalities
× 100 (19)
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5. Experimental Results
5.1. First Step Analysis
5.1.1. Approximate Adders

Efficient approximate adder circuits from the literature have been selected and imple-
mented. The approximate adders belong to two classes: speculative adders and approxi-
mate full adders.

Speculative adders: (Approximate XNOR-based Adder (AXA) [47], Input Pre-Processing [48]).
Approximate full adders: (Approximate NAND-carry out bit [49], Approximate AND-

carry out bit [49], (LOA) [38], and Error Tolerant Adder (ETA) [50]).
Energy consumption and delay have been evaluated for each adder implementation

with a testbench of 3 × 10−6 s. Figure 6a illustrates the power consumption and time
latency of the approximate adders concerning MRE. Table 1 shows the circuit synthesis
results, i.e., Lookup Table (LUT) utilization, power-delay product (PDP), and PDP-MRE
products: AFA and LOA adders (which have the lowest MRE of 1.52%) have also the lowest
energy consumption (0.09 pJ, 0.11 pJ) since carry propagation has been omitted. While
AXA has the worst MRE (4.95%) with higher energy consumption (0.17 pJ). AFA and LOA
have been selected to be implemented in the approximate multiplier circuits.

Table 1. PDP and PDP-MRED of Adders Designs.

Approximate Adders PDP (pJ) PDP-MRED

AFA 0.09 0.13%
LOA 0.11 0.16%

AND-C 0.17 0.47%
NAND-C 0.16 0.71%

IPP 0.14 0.43%
AXA 0.17 0.83%Electronics 2022, 11, 190 10 of 21 
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5.1.2. Approximate Multiplier Circuits

Seven relevant approximate multipliers from the state-of-the-art [20,21,51] including
two approximate multipliers proposed in our recent work [20], Reference [22] have been
selected for the analysis. META [22] multiplier is a rounding multiplier based on the
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Error tolerant Adder (ETA). Approx-BW multiplier [20] is based on dividing the circuit
architecture into two parts: accurate and approximate, as shown in Figure 7. From right
to left, an exact addition is computed in the accurate part. Through a half adder, the
partial products are added; the generated carry signal is propagated to the following partial
column in the next column. The partial products in the second column are computed
through the Ripple Carry Adder (RCA). While in the approximate part, the addition of the
partial products is done through the AFA approximate adder [20]. Starting from the first
column on the left, an input carry signal set to “0” is added to the first partial product. Then,
in each column the values of the partial products are checked through the AFA [20] adder,
which consists of two blocks: control block and carry free adder block as shown in Figure 8.
The control block applies an AND logic operation for the two input bits A and B. Then, the
result performs an OR operation with the control signal obtained from the previous control
block. While the carry-free adder block is composed of an XOR and OR gates generating a
sum bit based on a control signal obtained from the control block. As shown in Table 2, if
all the values of the partial products are 0, or if one partial product is equal to 1, a normal
addition is computed. Otherwise, if two partial products or more are equal to 1, then the
sum of the partial products in the selected column and all the remaining right columns is
set to 1. The approximation strategy adopted is inspired by the approach employed in [50];
where the control check approach has achieved good improvements in the Error Tolerant
Adder (ETA). Therefore, we have applied this approach to the approximate multiplier.

To find the most optimal multiplier, we have implemented five other versions of META
and Approx-BW based on approximate adders presented in Section 5.1.1. All the multipliers
are implemented by respecting the same conditions and constraints. The configuration
adopted for all the multipliers is as follows: half of the number of bits are approximated
while the other half is accurate. The multipliers are the following:

• Mul-LOA and Mul-AXA, which are based on lower-part-OR and XNOR-based adders,
respectively.

• MNAND, MAND, and MIPP multipliers are based, respectively, on NAND-carry out
a bit, AND-carry out bit, and Input pre-processing approximate adders.
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Table 2. Output of Sum and Carry bits for Different Cases.

Cases Partial Products Sum Bit Carry Bit

First an−1·b0 |an−2·b1 |. . .| a0·bn−1 = 1 Sn−1 = 1 Cn−1 = 0

Second an−1·b0 = an−2·b1 = . . . = a0·bn−1 = 0 Sn−1 = 0 Cn−1 = 0

Third
an−1·b0 = an−2·b1 = 1 Or

an−1·b0 = an−2·b1 = an−3·b2 = 1 Or:
an−1·b0 = an−2·b1 = . . . = a0·bn−1 = 1

Sn−1 = Sn−2
= . . . = S0 = 1 Cn−1 = 1

In total, 12 approximate multipliers have been implemented. The energy consumption
and delay of the implemented multipliers have been determined after running a test for
3 × 10−6 s. Table 3 shows that the energy consumption of Approx-BW and Mul-LOA is
reduced by more than 50% when compared to the exact BW multiplier. Approx-BW is 10%
more accurate than Mul-LOA; thus outperforming Mul-LOA in terms of accuracy. Approx-
BW and Mul-LOA are the most efficient with an MRE around 0.1. Table 4 shows the power
consumption breakdown of Approx-BW. Among the twelve approximate multipliers, we
conclude that Approx-BW is the most appropriate architecture to be employed for the
target implementation.

Table 3. PDP and PDP-MRED of Multipliers Designs.

Approximate Multipliers PDP (pJ) PDP-MRED

Approx-BW 0.13 1.29%
Mul-LOA 0.13 1.38%
Mul-AXA 0.57 8.85%

MAND 0.5 4.53%
MNAND 0.51 7.61%

MIPP 0.43 5.67%
ROBA 0.67 6.09%
META 0.48 4.31%
Evo0 0.37 2.96%
Evo25 0.08 1.72%

Kulkarni 0.41 3.13%
Shafique 0.32 5.12%
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Table 4. Power consumption breakdown of Approx-BW.

Characteristics Power Consumption(mW)

Dynamic power 22
I/O 19

Signal 1
Logic 2

5.2. Second Step Analysis
5.2.1. SVD Hardware Implementation Details

Figure 9 illustrates a block diagram for the computational blocks of the SVD algorithm.
As described in Section 3, the one-sided Jacobi algorithm expects a square and symmetric
matrix at the input. For that, the Matrix Symmetrization block in the figure is in charge of
multiplying the input matrix by its transpose, implying a square and symmetric matrix.
In the next step, The Coordinate Rotational Digital Computer (CORDIC) Phase block
computes the rotation angles to be then used by the one-sided Jacobi rotation block to rotate
the row/columns of the symmetric matrix in each pre and post-rotation. After a series of
rotations, the algorithm converges to provide the singular vectors at its output.
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Moreover, the hardware implementation of the SVD adopts a hybrid data represen-
tation. The architecture starts with 8 bits integer, then the data representation will be
transformed to 23 bits integer after matrix symmetrization. CORDIC algorithm uses 32 bits
fixed-point representation where 2 bits are used as integers, and 30 bits for the decimal
part. Then, the output of the multiplier is 42 bits, which are to be truncated before starting
the next iteration. Since SVD is an iterative algorithm, a truncation process is applied each
time, the data needs to be reiterated. This approach has been adopted to not fix the data
representation to the maximum number reducing the complexity as much as possible.

5.2.2. Error Resilience Analysis

The Approx BW has been selected as mentioned above. Four Approx BW multipliers
have been implemented in place of the exact multipliers in the architecture of the SVD
as shown in Figure 10. The number of bits for the exact and approximate multiplier is
42 bits in fixed-point representation. The scalability of the approximate multiplier has been
assessed as follow:

• The approximation is enabled for the eight LSBs of the Approx-BW into the SVD
(SVD-approx8), where 8 LSBs are approximated while the rest bits are exact.

• The number of the approximated LSBs is increased to 12 bits, where the rest MSBs are
exact.

• The same procedure is applied until approximating 28 LSBs.

The error will increase when increasing the number of the approximated bits. Based
on Test 1 presented in Section 4, simulations have shown that the MRE of the eigenvalues
of the SVD (S1, S2, S3, and S4) remains lower than 1% after approximating 16 LSBs as is
shown in Figure 11. While the MRE of the eigenvalues increases from 1% to 14.5% when
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approximating 20 LSBs. When approximating 24 and 28 LSBs, the MRE of the eigenvalues
(S2, S3, S4, S5) increases drastically to more than 50%. From this simulation, we assume
that 20 LSBs can be approximated. Figure 12 shows the MRE of approximate SVD after
simulating test 2 and test 3, presented in Section 4. The MRE (SVD-approx8, SVD-approx12,
and SVD-approx16) remains less than 5% for both tests. The MRE of SVD-approx20 is 11%,
while in the worst cases, the MRE increases by up to 30% based on test 3. The MRE of SVD-
approx24 and SVD-approx28 reaches values far from being acceptable (more than 50%)
for both tests. From these simulations, we may conclude that ACTs are applicable for the
SVD showing an increment of the MRE by less than 11%. In the following, we evaluate the
performance of the approximate SVD in terms of power/energy consumption, time latency,
and LUT usage. Figure 13 indicates the performance analysis of the SVD in terms of LUT
and power/energy.

In Figure 13a, the x-axis represents the numbers of output LSBs approximated in the
SVD and the y-axis represents, respectively, the percentage of reduction of LUT and latency.
The power/energy consumption concerning the exact SVD is shown in Figure 13b. y-axis
denotes the MRE of the outputs generated from test 2, indicating the range of acceptable
accuracy. Based on these experiments, we notice that the power/energy consumption,
LUT utilization, latency have been reduced when increasing the number of approximated
LSBs. For instance, when approximating 20 LSBs, the LUT utilization and latency have been
improved by more than 4%. The power and the energy consumption have been reduced
respectively by up to 14 and 16% after approximating 20 LSBs with an MRE of less than 11%.
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5.3. Third Step Analysis

In this section, the values of the MRE generated from the second and the third tests
presented in Section 5.2 are added to the simulation program of the tensorial SVM [4].
Figure 14 shows the results of the classification problem (sliding a finger vs. rolling a washer).
For each test, the Err value of the SVM has been reported after increasing the number of
approximate LSBs in the SVD from 8 to 28 bits. The simulation with the exact SVD shows
an Err value of 12.5% for sliding and 20% for rolling. Such values have been assumed as a
baseline to assess the impact of approximate SVD. Figure 14a shows that the Err value for
sliding and rolling does not increase when employing SVD-approx8 and SVD-approx12.
In the case of SVD-approx16, the Err value for sliding increases by 1.25%; while with
SVD-approx20 the Err value reaches 28.75% for sliding and 21.25% for rolling. The Err
reaches values far from being acceptable such as 46.25% when using SVD-appox24 and
SVD-approx28 for sliding. Based on the third test, Figure 14b shows that the Err value for
sliding increases by not more than 2% in the case of SVD-approx12 and SVD-approx20 con-
cerning the Err value shown in Figure 14a. The Err value for sliding and rolling is fairly
constant to the Err resulting in the second test in the case of SVD-approx8 and SVD-approx16.
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The Err in Figure 14b is expected to be higher than the Err in Figure 14a; since in the third
test, only the highest RE from the eigenvalues is taken into consideration.
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Table 4 shows the hybrid approach simulation results. The results are extracted based
on the MRE generated from the second test in Section 5.2. In this approach, SVD’s of
different values of approximated LSBs are applied to the SVM. The added Err is less than
10% when applying the hybrid approach in the first three cases, as shown in Table 5. The
benefits of the hybrid approach lie in improving additionally the power consumption
concerning the previous results. For example, the following combination (SVD-approx16,
SVD-approx20, and SVD-approx12) shows an additional Err of 1.87%; the Err is approxi-
mately equal to the case of using only SVD-approx12 or SVD-approx16 in all SVD’s blocks.
By adopting the hybrid approach, energy consumption could be improved additionally by
more than 5% with respect to previous results, i.e., SVD-approx12.

Table 5. Tests results for the hybrid approach (error comparison is the error difference between the
error of the approximate SVD and the baseline error of the exact SVD).

SVD (A) SVD (B) SVD (C) Error Rate (%) Error Difference (%)

Exact Exact Exact 16.25 0
Approx12 Approx16 Approx20 18.12 1.88
Approx16 Approx20 Approx12 18.12 1.88
Approx20 Approx24 Approx16 25.62 9.38
Approx16 Approx20 Approx24 29.38 13.12
Approx20 Approx24 Approx28 35 18.75
Approx24 Approx28 Approx20 36.25 20

6. Discussion and Conclusions

An investigation of the applicability of ACTs in SVM-based tensorial kernel approach
for tactile data processing was presented in this paper. The paper started by introducing
the tensorial kernel approach adopted for tactile data processing, showing the main imple-
mentation challenges of the tensorial SVM. The main contribution in this paper focused on
exploiting the applicability of ACTs to the SVD; since SVD is the main computational bot-
tleneck in many ML algorithms [8–10]. To this aim, we demonstrated that the Approx-BW
multiplier successfully improves the energy consumption of the SVD. Three different tests
have been done to analyze the accuracy of the approximate SVD. We simulated the impact
of the approximate SVD on the accuracy of the tensorial SVM when classifying different
touch modalities. We proved that approximate SVD improves the energy consumption
of the tensorial SVM by up to 16% within the range of an Err from 1% to 8%. Addition-
ally, a hybrid approach has been proposed, which consists of three different approximate
SVD of different numbers of approximated LSBs. The energy consumption has improved
additionally by more than 5%, concerning the previous approach within the same range
of an Err. It should be noted that the reduction of the energy consumption by 16% is
considered acceptable for embedded ML algorithms when compared to other state of the
art works, which have an energy consumption reduction within the range of 15–20%, such
as [36,50,52].

In the context of the research area of approximate computing, it should be noted that
the first exploration of applying ACTs to the SVD at the circuit level is presented in this
work. The proposed approximate SVD could be adopted in different research works since
SVD plays a significant role in various DSP and ML applications. Moreover, this research
work demonstrated that any embedded ML algorithm that employs an SVD could be
optimized using ACTs. However, one of the main challenges of the adopted approach is
to study well the scalability of the approximate SVD before exploiting it in embedded ML
algorithms.

To sum up, in this paper we evaluated the use of the approximate BW multiplier in the
ML algorithm to validate its importance in such applications. However, the SVD uses only
three multipliers which represents a low percentage compared to the whole circuit. This is
the main reason behind the limited reduction in the overall application. Nevertheless, the
results achieved in this work motivate us to investigate the implementation of different
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ACTs to further reduce the energy consumption, such as approximate memory storage,
voltage-scaled memory (circuit level), and quantization techniques (algorithmic level).
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