f}lg electronics

Article

Design and Implementation of a Metadata Repository about
UML Class Diagrams. A Software Tool Supporting the
Automatic Feeding of the Repository

Paolino Di Felice V*{, Gaetanino Paolone 2, Romolo Paesani 2 and Martina Marinelli 2

check for
updates

Citation: Di Felice, P,; Paolone, G.;
Paesani, R.; Marinelli, M. Design and
Implementation of a Metadata
Repository about UML Class
Diagrams. A Software Tool
Supporting the Automatic Feeding of
the Repository. Electronics 2022, 11,
201. https://doi.org/10.3390/
electronics11020201

Academic Editor: Juan M. Corchado

Received: 24 October 2021
Accepted: 29 November 2021
Published: 10 January 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Department of Industrial and Information Engineering and Economics, University of L’Aquila,

67100 L’Aquila, Italy

Gruppo SIS.c.a.rl., 64100 Teramo, Italy; g.paolone@softwareindustriale.it (G.P.);
r.paesani@softwareindustriale.it (R.P.); m.marinelli@softwareindustriale.it (M.M.)
* Correspondence: paolino.difelice@univaq.it; Tel.:+39-320-423-2540

Abstract: Model-Driven Engineering is largely recognized as the most powerful method for the
design of complex software. This study deals with the automated archival of metadata about the
content of UML class diagrams (a particularly relevant category of models) into a pre-existing
repository. To define the structure of the repository, we started from the definition of a UML
metamodel. From the latter, we derived the schema of the metadata repository. Then, a parser was
developed that is responsible for extracting the useful information from the XMI file about class
diagrams and enters it as metadata into the repository. The parser has been implemented as a Java
web interface, while the metadata repository has been implemented as a PostgreSQL database based
on the JSONB data type. The metadata repository is thought to support modelers in the initial phase
of the process of the development of new models when looking for artifacts to start from. The schema
of the metadata repository and the Java code of the parser are available from the authors.

Keywords: MDE; UML; class diagram; metadata; repository; NoSQL database

1. Introduction

Time and quality are critical factors in the development of complex software projects,
so it is necessary to enforce consistent reuse to increase the quality while reducing the devel-
opment time. Regarding programming, reuse has been successful for decades. Nowadays,
however, software development is moving in the direction of modeling while the code is
largely generated. The more the development of complex software is based on modeling,
the more models become of paramount importance.

In the context of software application development based on Model-Driven (System)
Engineering (MD(S)E) [1], UML models (in particular, class models and use case models [2,3])
are the artifacts to be reused. The models stored inside a company’s folders represent
valuable information since they capture domain knowledge. This is the reason that locating
such artifacts can help new modelers to become familiar with recurrent modeling patterns
and best practices within their business context. In [4], it is claimed that the support for
finding and reusing modeling artifacts is still limited. Consequently, developers too often
have to develop artifacts from scratch.

Repositories are the precondition for reuse, as highlighted in many studies (e.g., [4-9]).
Ref. [4] provides a list of the most representative repositories. In this study, we assume that
the corporate repository is structured as three independent but interrelated components:

* arepository about the modeling artifacts, briefly the Model Repository [10], developed
in previous projects;

* arepository about the generated code;

* arepository containing metadata about modeling artifacts, briefly the Metadata Repos-
itory [10].

Electronics 2022, 11, 201. https://doi.org/10.3390/electronics11020201

https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11020201
https://doi.org/10.3390/electronics11020201
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-3552-0199
https://doi.org/10.3390/electronics11020201
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11020201?type=check_update&version=1

Electronics 2022, 11, 201

20f22

The design of the metadata repository about UML class diagrams (which are a relevant
specification technique to describe the structure of the software system to be developed)
is the focus of the first part of the present paper. A metadata repository can be defined as
a shared database of information regarding engineered artifacts [9]. The metadata in the
database describe the class diagrams, besides providing the link to those artifacts inside
the model repository. Our metadata repository is structured as a PostgreSQL database.

Once a metadata repository about UML artifacts is made available, a relevant, time-
consuming, and monotonous task is to feed it. The second part of this paper describes
a parser that makes such a step automatic. This accomplishment was possible because
UML models can be saved into a CASE tool format (e.g., StarUML) and then into the XMI
format. These files contain all model information (e.g., class names, attributes, operations,
association ends, multiplicities, association names, etc.). By processing them, it is possible
to find the information to be stored in the metadata repository. In the present version of
the parser, the extraction of the content of an XMI file and its formatting as NoSQL records
works for XMI files coming from StarUML (https://staruml.io/download, accessed on 6
September 2021). The extension of this software component to other UML tools is planned
as future work.

The paper is structured as follows. Section 2 describes our approach. Section 3 presents
the UML metamodel of the metadata repository about class diagrams, while Section 4 details
the storage technology for implementing it. Section 5 depicts the paths to feed the metadata
repository. Then, it focuses on the software module, which takes as input the XMI file about
a single class diagram present in the model repository and finds the data to be stored in the
metadata repository. These metadata provide a detailed description of the class diagram.
Section 6 proposes a simple case study; Section 7 recalls previous studies similar to ours;
Section 8 concludes the paper and outlines the future work.

Three appendices integrate the information given in Sections 4-6. In detail,
Appendix A contains the SQL scripts for the creation of the database tables and shows
the actual implementation of the OCL constraints that complete the description of the
metamodel of Section 3. Appendix B shows an excerpt of the content of the database
concerning the information coming from the case study. Appendix C simulates a session of
interaction with the metadata repository by a software engineer looking for class diagrams
to be reused. The queries are general, so they can be reused by the modelers.

2. Our Approach

In [11], the authors provide an overview of the objectives, beneficiaries, architecture
and technologies of an ongoing industrial project whose goal is to release an open-source
software tool (called xMetaRep) devoted to the creation, feeding and querying of a metadata
repository about UML class diagrams. The project comprises two distinct actions: the first
belongs to the conceptual level, while the second one belongs to the technological level
(Figure 1). Action 1 involves the design of the metadata repository about class diagrams,
while Action 2 concerns the development of the user interface (i.e., xMetaRep) on top of it.

2.1. Action 1

The design of the metadata repository starts from a general UML metamodel of the
repository. The latter is then mapped into the corresponding Entity—Relationship (E-R)
conceptual metaschema (Figure 2). The translation of such a schema produces the logical
schema of a relational database.

https://staruml.io/download

Electronics 2022, 11, 201 30f 22

Conceptual level Technological level
I
Action 1 N XMI XMI XMI Model
P file file file R .
U epository
Metadata T
Repository
Design _ _
¢ Yamm N
[Action 2 \
M
o
D xMR User
[]:I MR MR Qu'ery Interface
E Creator Parser Builder
S
\\\7 Y
D
A
T NoSQL DB
A

Figure 1. Overview of our approach [11].

Conceprual level

UML metamodel of a metadata repository about class diagrams
l Conceptual mapping
The E-R metaschema corresponding to the UML metamodel

Logical mapping

The Database

Logical Schema

Figure 2. Design activities at the conceptual level.

As pointed out in [10], the preliminary task of a repository architect is to choose
the storage technology for the metadata repository. In this paper, we structured it as a
PostgreSQL database. The PostgreSQL Object Relational Database System is an open-source
mix of relational and NoSQL databases; in fact, it has supported, for many years, document
databases and key-value databases—two of the most common NoSQL database types. This
is the reason that, in the EnterpriseDB white paper [12], the expression “Postgres NoSQL”
is used. In line with [12], in our paper, we state that our metadata repository is a NoSQL
database because it is composed of tables comprising attributes of the JSONB data type. In
detail, the work identifies the number and the schema of the tables composing the metadata
repository. The schema of the tables is independent of the internal organization of the
classes inside the class diagram. This result is brought about by the flexibility of the JSONB
data type. Several advantages come from storing metadata about UML models within a
company NoSQL repository. First, NoSQL databases overcome “pure” relational ones in
terms of flexibility. Second, NoSQL databases guarantee a high level of interoperability.
Third, a company database ensures the cooperation of modelers and developers in the
development of a system. Fourth, querying the metadata inside the company’s repository
helps in the reuse of the artifacts that best fit the requirements of new projects. Fifth,
studying UML diagrams from previous high-quality projects can help novice modelers
to learn from the experience of senior ones. This latter motivation has been pointed out
by Gosala et al. in [8]. The availability of a centralized company repository containing
metadata about UML diagrams implemented as a NoSQL database represents the ultimate

Electronics 2022, 11, 201

4 0f22

alternative to the current scenario, where software engineers have to manually search these
artifacts inside a huge number of files stored in different folders (i.e., the model repository).

2.2. Action 2

The field of modeling repositories addresses mostly collaborative work (e.g., [13—15]).
The Repository for Model-Driven Development (ReMoDD) [6,7] is a project from industry
and academia aiming at developing a public resource collecting artifacts coming from
high-quality MDD experiences (ReMoDD is located at the following URL: http://www.
cs.colostate.edu/remodd/, accessed on 11 September 2021). The objective of the project
is to facilitate the sharing of relevant knowledge and experience for improving MDD
research productivity and education. In the collaborative domain, a relevant issue concerns
the management of the versioning of artifacts during their development. This aspect is
marginal in our reference scenario delimited by the firm’s boundaries. In this context, we
assume that single modelers undertake the development of UML diagrams (e.g., use case
diagrams, class diagrams, sequence diagrams, etc.) for specific software projects. At the
end of the development process, it is a modeler’s responsibility to invoke the archiving, in
the company repository, of the metadata about the developed diagrams.

Figure 1 (right side) shows the components of xMetaRep:

¢ The Model Repository of the company contains the XMI files about UML class dia-
grams. These files are the input data for the overall process for building and feeding
the metadata repository about such a category of artifacts.

¢ The User Interface is composed of three software components: xMR Creator, xMR
Parser (in [16], xMR Parser is called XMI_to_Parser) and xMR Query Builder. They
support, in turn, (a) the creation of an empty instance of the NoSQL DB; (b) the
extraction of metadata from the XMI files and the copying of them into the NoSQL DB;
(c) the instantiation of a predefined set of flexible query templates against the NoSQL
DB.

¢ The NoSQL DB layer denotes the Metadata Repository about UML class diagrams in
the Model repository.

The parser has been implemented as a Java web application that adheres to the
Model-View-Controller (MVC) pattern. The Spring framework was used for creating
the application. Spring is the most adopted Java framework worldwide. The core of
the web application is xMR Parser. It is the result of a long and engaging journey that
started in 2008 [17], in which research, implementation and validation in the domain
of enterprise web applications have been joined together. In 2020, Paolone et al. [16]
introduced an automatic process to develop such a category of web applications. The
frame of reference is MDA, and the pillars of the proposal are use cases, class and sequence
diagrams. These diagrams cover, in order, the structure and the behavior of the system to
be developed, as well as their interactions. In this way, all the system requirements that the
OMG recommends are satisfied. The methodological process ensures continuity between
business modeling, system modeling, design and implementation. This lays the foundation
for the mapping of the behavioral business model into a consistent software that meets the
requirements. A proprietary Java technology platform called xGenerator implements the
Software Development Process described in [16]. At a high level of abstraction, such a tool
acts as a black box that receives as input a UML model and returns the Java code of the
web application. xMR Parser is a component of xGenerator.

3. UML Metamodel for a Metadata Repository about Class Diagrams

The basic elements that determine the structure of a metadata repository about class
diagrams are collected in the UML metamodel of Figure 3. The metamodel shows that the
class diagram, which models the structural view of a completed software project, is stored
inside a company’s package, possibly nested. Each diagram comprises a set of classes
linked through several different kinds of relationships; moreover, classes may be linked
through a generalization hierarchy, while association classes are a specialization of the

http://www.cs.colostate.edu/remodd/
http://www.cs.colostate.edu/remodd/

Electronics 2022, 11, 201

50f22

notion of class. Each association is described in terms of two or more association ends; an
association end is bound to a class. The metamodel of Figure 3 depicts the meta-associations
between the UML elements class and generalization as a two-way relationship, for the
reasons explained in [18].

The metamodel of Figure 3 introduces two variants to standard UML class diagrams:
operations constitute part of the class description with their signature; moreover, the data
types of the attributes are made explicit. Unlike previous studies, whose purpose was to
build a repository that offers support for checking the structural consistency of the class
diagram during the process of modeling of a software product (e.g., [19,20]), in our work,
the emphasis is on providing support to the modelers before they start the modeling stage
of the new software product. In this phase, it makes sense to investigate whether there
are artifacts (in the model repository of the company) from which to start. In this working
scenario, the more metadata about classes in the class diagram, the more effective and
aware the decision regarding what to start from will be. Moreover, in the Lindholmen
database schema (http://models-db.com/oss/default.aspx, accessed on 18 September
2021), the metadata about UML classes include attributes” data type, methods and their
signature. Such a dataset includes links to more than 93,000 UML files spread across more
than 24,000 GitHub repositories [21].

—— *
Package - 1 Project
0..1

1

1.*
1

i * 1 * q
® —— ° Auribute
Operation ——4p Class Attrib
Association . !
Class child |1 0..1] parent

* *

Generalization

*

1 2.*
Association €p——————— AssociationEnd

Figure 3. UML metamodel of a metadata repository about class diagrams.

According to the OMG conventions, if the association ends of a class are not explicitly
named in the class diagram, the implicit rule is that their names are given as follows: ([2],
p. 202): "end" <class-name> (Figure 4 proposes an example). Moreover, if the associations
are not explicitly named, then their given names come from the following rule ([2], p.19):

"A_"<association-end-namel>"_"<association-end-name2>,

where <association-end-namel>> is the name of the first association end and <asso
ciation-end-name2> is the name of the second association end (see Figure 4).

A_endC_endA A A_endA_endB

endC endA endA endB

Figure 4. Examples of OMG naming conventions.

UML diagrams cannot by themselves provide all relevant aspects of a specification.
To add more semantics to the metamodel of Figure 3, a set of integrity constraints, which
each state of the information base must satisfy, is to be used. The OMG Object Constraint
Language (OCL) is used to describe expressions on UML models [22]. Many studies have
pointed out the relevance of adding OCL constraints to UML models for controlling the

http://models-db.com/oss/default.aspx

Electronics 2022, 11, 201

6 of 22

correctness of their structure (e.g., [19]). In the present study, we focus on two categories of
constraints. The first category must be satisfied by each class instance (briefly, the intra-
UML-element constraint), while the second one must be satisfied by pairs of class instances
(briefly, the inter-UML-element constraint). Of course, many more constraints need to
be taken into account. For example, the OCL expression of Equation (1) formalizes the
following invariant constraint: “a root class has no parent” (an invariant OCL expression
must be true for all instances that it refers to at any time).

context class inv:self.isRoot implies self.generalization->isEmpty; (1)

4. The Schema of the Metadata Repository

As pointed out in [10], the preliminary task of a repository architect is to choose
the storage technology for the metadata repository. In this paper, we structured it as a
NoSQL database. NoSQL is an umbrella term for different technologies. The most mature
are known as: key—value databases, document databases, column databases and graph
databases. Key-value databases are the simplest NoSQL databases. They store a set of key—
value pairs. Redis implements this model. Document databases contain key—value pairs,
which can be any sort of value, array or even another document. MongoDB implements
this model. Column databases organize data into columns rather than rows; however,
they operate in the same manner as tables do in relational databases. Apache Cassandra
implements this model. Graph databases are for general-purpose use, particularly with
unstructured data and social networks. Neo4j is a popular system example.

To build the metadata repository about class diagrams, the flexibility demonstrated by
document databases is fully satisfactory; in fact, it makes the database schema independent
of the internal organization of the classes in the class diagram. Specifically, flexibility is
needed to model the names and data types of attributes and the names and I/O parameters
of the operations. Both these features are highly variable moving from one class to another.
We took into account two alternative open-source technologies: MongoDB and PostgreSQL
(from version 11.0, the latter system fully supports the storage of documents in the JSONB
format, as MongoDB does). The final choice was to adopt PostgreSQL because it closed the
gap that motivated the rise and development of NoSQL technologies; moreover, PostgreSQL
provides capabilities that NoSQL technologies simply cannot, namely a powerful query
language, a sophisticated query optimizer, data normalization, joins and referential integrity.
A positive consequence of the availability of a powerful query optimizer is that PostgreSQL
outperforms MongoDB in almost all cases, as has been pointed out in recent studies
(e.g., [23,24]). For example, in [24], the authors loaded a dataset of 200 million records of
JSON documents in MongoDB (Community Serverl, ver. 4) and in PostgreSQL (ver. 11)
using the JSONB data type. The aim of the experiment was to compare the performance
of the two systems on four custom-written queries over one year of GitHub archive data.
PostgreSQL was found to be between 35 and 53% faster on three of the four queries, and
22% slower on the other one.

As the next step, repository architects have to decide whether to add version metadata
or not [10]. As explained in Section 1, our solution does not include metadata about versions
of class diagrams simply because only their final version is stored in the model repository.
Moreover, affiliation information about the artifact owners, which might be relevant in the
case of collaborative repositories [10], is not necessary for corporate metadata repositories.

In order to determine the schema of the metadata repository, the UML metamodel of
Figure 3 was mapped to the corresponding Entity—Relationship (E-R) schema (Figure 5).
The translation of such a schema gives rise to the seven tables listed below (underlined
attributes denote the primary key). Appendix A contains the SQL scripts for the creation of
these tables.

- project(projectID, name);
- package(packageID, name, URI, projectID);
- class(classID, name, packageID, associationClass, parent);

Electronics 2022, 11, 201

7 of 22

- operation(classID, list);
- attribute(classID, list);

- association(associationID, name);
- associationEnd(associationEndID, name, classID, associationID).

The Primary Key constraint is the mechanism offered by the database technology for
implementing OCL intra-UML-element constraints. Seven Primary Key constraints have
to be defined, one for each class.

(1,N) (1,1 Package Attibute

Project

(LN) 1,1
(1,1)
Operation (LD ON) (0,N)
parent Class O.N)

(1.N)
(0,1) [(0,1)
Association Class

2.N) (1,1)

Association AssociationEnd

Figure 5. The E-R metaschema corresponding to the metamodel of Figure 3.

For example, the OCL expression of Equation (2) states that all instances of the class
classifier must have a distinct value for the property classID.

context class inv UniqueClassID:

self.allInstances() implies isUnique(ClassID); (2)

As is well-known, the relationship between classes is implemented as a referential
integrity constraint between the foreign key of the slave table and the primary key of the
master table. This mechanism of the relational database technology is the simplest means
of implementing OCL inter-UML-element constraints. For example, the OCL expression
of Equation (3) states that each instance of class must be linked to a unique value of
packagelID, i.e., to a unique physical package.

context class inv UniquePackage:

self.allInstances() implies isUnique (packageID); (3)
Appendix A shows the actual implementation of the OCL constraints mentioned above.

5. Architecture and Implementation of the XMI Parser

Figure 6 depicts the paths to feed the metadata repository about UML artifacts. The
starting point for collecting metadata about UML class diagrams is twofold. One entry
point is represented by an image of the diagram, while the alternative is represented by the
file generated by one of the available UML tools (e.g., StarUML).

Electronics 2022, 11, 201

8 of 22

XMI | @@ \‘i .ﬂ i |

Company’s
folder

NoSQL DB

Figure 6. Paths to feed a metadata repository about UML class diagrams.

A few years ago, Robles et al. [25] mined the content of 24,717 different GitHub reposi-
tories, looking for UML models. They found 93,596 UML models, of which approximately
62% were images, the rest being either XML or UML files. This finding tells us that UML
models are mostly stored as images in public repositories. To the best of our knowledge,
the situation inside firms has not been investigated yet. If the starting point is an image of
the class diagram, then a tool that automatically extracts the UML diagram from the image
is needed. Img2UML is one such tool [26-28]. It is able to recognize shapes, symbols, lines
and text; moreover, it identifies the role of diagram elements in the model. Img2UML returns
as output a file in the XML Metadata Interchange (XMI) format. The authors claim that the
class detection accuracy is 100%, relationship accuracy is 97% and symbol accuracy is 85%.
To correct recognition mistakes in the returned UML class diagrams, the authors suggest
importing the XMI file generated by Img2UML into StarUML and manually correcting the
recognition mistakes.

Alternatively, metadata about UML class diagrams may come from XMI files about
previous company projects. As explained in Section 1, we assume that the XMI files are in
the model repository of the company (“Company’s folder” in Figure 6). In both paths, the
final step consists of migrating the information in the XMI file into the metadata repository.
We have implemented this final step.

The idea of parsing the XMI file of the class diagram for extracting metadata describing
its content is not new. For instance, in [29], Girgis et al. describe an XMI file parser that
extracts metadata from this category of files to be used to calculate common metrics about
the class diagram.

The parser has been implemented as a Java web application that adheres to the Model-
View-Controller (MVC) pattern. The Spring framework (https://docs.spring.io/spring-
framework/docs/4.3.x/spring-framework-reference /html/overview.html, accessed on
14 September 2021) was used for creating the application. Spring is the most adopted
Java framework worldwide. Figure 7 shows the full stack of the Spring framework, while
Figure 8 shows only the modules that were used in the development of the parser.

It has been remarked (see, for instance, Ref. [30]) that carrying out a project based on
Spring is not a trivial task and, in fact, it takes a lot of time, even for small applications.
This is a direct consequence of the large number of XML configuration files that have to be
properly set up, so that the individual components and application modules might work
properly. In order to simplify the process, besides Spring, we used also Spring Boot. Spring
Boot is an addition to the Spring platform that makes it very easy to get started with the
tool and create stand-alone, production-grade applications. In other words, Boot is not
intended to replace Spring, but to make its operation faster and easier. According to a 2021
public survey carried out by JRebel [31] (from August through November 2020 among

https://docs.spring.io/spring-framework/ docs/4.3.x/spring-framework-reference/html/overview.html
https://docs.spring.io/spring-framework/ docs/4.3.x/spring-framework-reference/html/overview.html

Electronics 2022, 11, 201

9of22

876 members of the Java development community), 62% of the respondents were working
with Spring Boot.

Data Access/Integration Web

JDBC ORM WebSocket
OXM JMS

Portlet
Transactions

Core Container

Core Context

Figure 7. The stack of the Spring framework.

Data Access/Integration

JDBC ORM Serviet

Transactions

Core Container

Core

Figure 8. The modules of the Spring framework used to develop the parser.

The code of the parser inside the main folder is structured as shown in Figure 9.

The class ParsingApplication. java (annotated as @SpringBootApplication) is the entry
point of the Spring Boot application. Overall, the web application consists of 20 classes,
15 interfaces and 2 views, as described below:

The MVC controller layer corresponds to the controller package. It contains 1 class
that is responsible for loading the Java Server Page (JSP) views, handling events, user
actions and the navigation logic.

The Model layer corresponds to the model package, which contains 7 classes in the
entity subpackage and 1 class in the dto subpackage. The entity package contains
Plain Old Java Objects, which correspond in number and structure to the database tables
(Section 4). For instance, AssociationEntity corresponds to the association table.
The Repository layer corresponds to the repository package. It contains 7 interfaces,
one for each entity class of the model package, which extend the CRUDRepository
interface of Spring.

The Service layer corresponds to the service package. It is structured as 8 interfaces
and 8 classes; the latter implement the former. The classes use the relative interfaces of
the repository to query the database. The ParsingServiceImplementation class uses
the services of the other classes to insert the metadata extracted from the XMI file, as a
single database transaction.

The 2 utility classes contain constants and variables used to carry out the needed checks.
The webapp package collects 2 views. They are 2 JSPs that implement the user interface
of the web application. The first JSP is responsible for the loading of the XMI file
from the user; then, such a file is passed to the controller for the parsing (Figure 10);
meanwhile, the second one shows the result (either “Success” or “Error”).

Electronics 2022, 11, 201 10 of 22
java controller ‘){ [] ParsingControllerjava | | AssociationEndEntity.java
resources model _| AssociationEntity.java

dto —% | AttributeEntity.java
webapp repository ' || FileToParse java . tyj
X entity | | ClazzEntity.java
service
il || OperationEntity.java
uti
| PackageEntity.java
| | ParsingApplication.java J 9 v
|| ProjectEntity.java
|| Constantsjava | AssociationendRepository.java
|| ErrorManager.java | | AssociationRepository.java
| | AttributeRepository.java
|| AssociationEndService.java || OperationService java || ClazzRepository java
|| AssociationEndServicelmplementation.java || OperationServicelmplementation.java | OperationRepository java
|| AssociationService java | | PackageService.java _| PackageRepository java

0 PackageServicelmplementation.java L] ProjectRepository.java

O ParsingService java

0 AssociationServicelmplementation.java

\j AttributeService java

|| AttributeServicelmplementation.java || ParsingServicelmplementation.java

| | ClazzService java || ProjectService.java

|| ClazzServicelmplementation.java || ProjectServicelmplementation.java

Figure 9. The organization of the source code of the parser.

Choose the XMl file to be parsed
The XMl file

Browse

Figure 10. The input screen of the parser.

The screenshot in Figure 11 collects the statistics of the parser web application. Files
bat, gitignore, gradle, md and properties are auto-generated by the Intellij Idea
IDE when the software project is created; the remaining files (java, js, jsp and xml) were
written by us. The second column of the figure counts the number of files of a given
category in the web application. For instance, we can see that there are 35 Java classes
(Figure 9 confirms such a number). The total number of lines of CODE is 894 (blank lines
excluded), while 128 is the total number of autogenerated LOC.

gitignore

gradle
java

10kB 21kB 11kB

Figure 11. The statistics of the parser web application.

At a high level of abstraction, the processing flow of the developed Spring MVC Web
application (from receiving the modeler request till the response is returned) is shown
in Figure 12.

The extraction of the metadata from the XMI file (i.e., class names, attributes, operations,
association ends, multiplicities, association names, etc.) is done by xMR Parser, while their
persistence is the responsibility of the Repository layer (Data Access) (Figure 12). xMR Parser is
a component of the xGenerator proprietary software [16]; it has been wrapped inside the
Service layer (which implements the Business Logic of the Web application) (Figure 12). xMR

Electronics 2022, 11, 201

11 0f 22

Parser is an alternative to the well-known Acceleo (https:/ /www.eclipse.org/acceleo/,
accessed on 14 September 2021), an open-source solution. In our case, the adoption of
Acceleo would have required much more time than xMR Parser, which, on the other hand,
we were familiar with.

B Request Dispatcher Service

R Servlet Comuelies (Business Logic)
O

W

S A4

E | Response . Reposito

R [p Views f-» Model (Dag Achs)

Figure 12. The flow of the parser web application. Violet rectangles denote classes implemented by
us, while the blue ones denote components provided by the Spring framework.

The algorithm behind the parser works as follows. Preliminarily, checks are carried
out on the existence of the file chosen by the modeler, in order to ensure that it has an
XMI extension and that it is not empty. If the checks are successful, then the actual pro-
cessing begins. The first step reads the input XML file and creates a tree-like structure,
which resides in the main memory. This step is accomplished by the Java DOM parser.
The visit of the tree data structure is organized as a cycle in which, at each iteration
process, one of its “nodes” is searching for one of the six XMI types that we are inter-
ested in, namely (Figure 13): uml :Package, uml:Class, uml:Association, uml:Attribute,
uml : Operation, and uml:AssociationEnd. At the end of the iteration, it is the responsi-
bility of the saveToDb() method and the Hibernate ORM to perform the uploading of the
metadata collected in the output list into the repository.

The used technologies to develop the web application are listed in Tables 1 and 2 and
graphically summarized in Figure 14.

Table 1. List of the software technologies used.

Layer Adopted Software Technologies

User Interface JSP, JavaScript, Bootstrap
Intellij Idea, Java, Spring,
Spring Boot,

Hibernate, JDOM Parser, xMR Parser
Data PostgreSQL

Business Logic

Table 2. Communication software between adjacent layers.

Adjacent Layers Technology
User Interface-Business Logic JSP, Spring
Business Logic-DBMS Spring, Spring Boot

DBMS-DB Hibernate

https://www.eclipse.org/acceleo/

Electronics 2022, 11, 201

12 of 22

T Reached the EOF?

createPackage()

createClass()

createAssociation()

createAttribute()

createOperation()

createAssociationEnd()

Figure 13. The processing of the tree-like structure. The flow chart reproduces the structure of the
code (a “switch”) and uses the same names of the methods in it. For example, createClass () creates
an instance of a Java object, initializes its fields by means of getters and setters with the metadata
fetched from the attributes of the current node and adds such an object to the output list.

an g\

Java

12}

spring HIBER
spring
boot
\ |p IXMI_to_Parser

lS PostgreSQL

Database

Bootstrap

Client

Server

Figure 14. The mosaic of the used software technologies.

In summary, the automatic step that the parser is responsible for is fundamental for the
success of the experiment of building and keeping updated a corporate metadata repository
about UML class diagrams, since, as remarked, for example, in [32], one of the desirable
properties of repositories is that their content does not depend on a single person or a small
group of people.

6. Case Study

The example that we refer to migrates into the metadata repository information
about the UML class diagram of Figure 15. The diagram comes from the ATMProject
described in [33] (the full code of the Java classes of the project are available at https://
www.softwareindustriale.it/atmproject.html). Table 3 provides a summary of the metadata
that have to be stored into the database. In brief, only the names of the attributes and
operations of the customer class are listed. Appendix B shows an excerpt of the content of
the database as the result of the automatic parsing of the corresponding XMI file.

Appendix C simulates an interaction session with the metadata repository by a soft-
ware engineer looking for potential class diagrams to be reused. Each interaction takes
place as an SQL query against the sample database. Of course, the more metadata stored in
the database, the more powerful queries can be written.

https:// www.softwareindustriale.it/atmproject.html
https:// www.softwareindustriale.it/atmproject.html

Electronics 2022, 11, 201

13 of 22

Customer

BankAccount

-name: String
-surname: String
-birthDate: Date
-phoneNumber: String
-email: String

-description: String
-openDate: Date
-code: String
-bancomatCode: String
-PIN: String

+sethlame(5String name)
+setSurname(String surname)
+setBirthDate(Date date)
+setPhoneNumber(String phone)
+setEmail(String email)
+getName(): String
+getSurname(): String
+getBirthDate(): Date
+getPhoneNumber(): String
+getEmail(): String

Currency

-description: String

+setDescription(String desc)
+setDate(Date date)

+setCode(String code)
+setBancomatCode(String code)
+setPIN(String pin)
+getDescription(): String

+getDate(): Date

+getCode(): String
+getBancomatCode(): String
+getPIN(): String

+balance(Date from, Date to): double
+mavementList{): List of complex type

.

Transaction

-description: String
-transactionDate: Date
-amount: double
-inout: String

+setDescription(String desc)

+setDescription(String desc)
+getDescription(): String

+setTransactionDate(Date date)
+setAmount(double amount)

+setinOut(String inout)
+getDescription(): String

+getAmount{): double
+getinOut(): String

+getTransactionDate(): Date

Figure 15. The UML class diagram of reference.

Table 3. An excerpt of the metadata to be inserted into the corporate repository.

Table

Number of Tuples

Metadata

project
package
association

class

operation

attribute

associationEnd

1
1
3

32

15

ATMProject

myUMLClasses
A_endCustomer_endBankAccount
A_endBankAccount_endTransaction
A_endTransaction_endCurrency
customer

bankAccount

transaction

currency

setName (String:name)
setSurname (String: surname)
setBirthDate(Date: date)
setPhoneNumber (String: phone)
setEmail (String: email)
getName(): String
getSurname(): String
getBirthDate(): Date
getPhoneNumber () : String
getEmail(): String

name: String

surname: String

birthDate: Date
phoneNumber: String

email: String

endCustomer

endBankAccount
endBankAccount
endTransaction
endTransaction

endCurrency

Electronics 2022, 11, 201

14 of 22

7. Related Work

The idea of building a corporate repository about UML models is not new. For
example, Belaunde describes a project started in 1996 at the France Telecom research
center [34]. The aim of the project was the design and development of a repository about
UML class diagrams. As in our case, the structure of the metadata repository comes from
an UML metamodel, where the abstraction about “operations” is missed. The repository
was implemented as a Java program. Therefore, while, in [34], each metaclass maps into a
programming class, in our approach, each metaclass maps into a database table.

Ref. [5] discusses the architecture, the schema and the implementation of a repository
at the design level, therefore called the “design repository”. Such a repository is at the core
of the SPOOL reverse software engineering environment. The design repository stores
information about the source code of software systems, enabling users to conduct tasks of
system analysis and reengineering. The SPOOL design repository was implemented as an
object-oriented database.

In [13], Tran et al. adopt a NoSQL graph database to store UML artifacts. The graph
represents each model (a UML class in the paper, but the authors claim that the solution
is general) as a node, while edges between pairs of nodes express the kind of relationship
between the classes. The final aim of their research was to build a model recommender
system on top of the repository in order to support modelers during the modeling activities.

Ritter and Steiert [20] implemented a UML repository based on a metamodel and by
exploiting an object-relational database management system. The mapping of the UML
metamodel to the database schema is described in the paper. In order to enforce data
integrity in the repository, the authors implemented OCL expressions as SQL constraints.
This study was the first one exploiting the database technology for the purposes of building
an UML repository.

In [27], the authors claim that each class model processed by the Img2UML tool is stored
in a model repository implemented as a Microsoft Office Access 2010 database. Therefore,
this approach does not adopt a metadata repository about class diagrams.

In [28] (see also http://models-db.com/oss/default.aspx, accessed on 5 September
2021), a relational database schema is described. It is devoted to collecting metadata about
UML diagrams developed at the early stages of open-source projects. From the point of
view of the metadata taken into account, the schema of our (metadata) repository overlaps
with their schema significantly (Table 4), while the organization of the two databases
is totally distinct, which is a consequence of the adoption, in our case, of the JSONB
data type. This choice makes our solution more compact (seven tables vs. ten (http:
/ /models-db.com/oss/default.aspx, accessed on 5 September 2021)) and much more
flexible for the storage of the metadata about attributes and operations whose number is
highly variable moving from one class to another. From the previous two merits of the
NoSQL solution, a third one follows, namely that the formulation of queries is easier than
in the solution adopted in [28].

The Software Artifact Repository conceptual Model (briefly SARM) proposed in [35]
is composed of three main concepts: SARM Content (in turn composed of Management
Content, Model Content and Search Content), SARM Search Engine and SARM Interfaces
(Figure 16). Our metadata repository implements the Search Content component, which,
according to Hamid, must store metadata about the artifacts (e.g., UML class diagrams)
in order to facilitate their location. Our solution delegates to the developed XMI parser
the automatic extraction of information describing the artifacts in the model repository
and their subsequent upload into the metadata repository. The Search Engine (Figure 16)
manages the searching of the artifacts stored in the model repository. Hamid claims that
three different modes of searching for artifacts are valuable: simple search, advanced search
and browsing. Simple search offers support to general-purpose queries using keywords,
while advanced search supports more complex queries. Search Interfaces use the Search
Engine to search for artifacts in the repository.

http://models-db.com/oss/default.aspx
 http://models-db.com/oss/default.aspx
 http://models-db.com/oss/default.aspx

Electronics 2022, 11, 201 15 of 22

Table 4. Comparison with the schema of the metadata repository in [28].

[28] Our Repository

class_Table class

attributes_Table attribute

operations_Table operation
generalization_Table parent attribute of class table
associationEnd_Table associationEnd
association_Table association

image_Table
xmi_Table packagelID attribute of class table
realization_Table
dependence_Table
project
package

SARM Content

Management SARM

Content Interfaces
Model
Content

SARM

Search Search
Content Engine

Figure 16. SARM architecture.

8. Conclusions and Future Work

The present study belongs to the domain concerning the automated feeding of reposi-
tories of UML diagrams, a topic that is considered relevant by most scholars. A software
module was developed that is responsible for extracting useful information from the XMI
file about class diagrams and entering it as metadata into a pre-existing (metadata) reposi-
tory. The XMI parser has been implemented as a Java web interface. The structure of the
metadata repository adopted in the paper comes from a UML metamodel and it has been
implemented as a PostgreSQL database based on the JSONB data type.

The metadata repository together with the linked parser is a useful tool for companies
operating in the market segment of advanced web applications. We believe that it can be of
particular relevance for Small and Medium-Sized Enterprises (SMEs) developing software.
This category of SMEs represents the majority of software development organizations
around the world. “SMEs are made up of enterprises which employ fewer than 250 persons
and which have an annual turnover not exceeding EUR 50 million, and/or an annual
balance sheet total not exceeding EUR 43 million” (definition based on Article 2 of the
Annex to Commission Recommendation 2003/361/EC; https://ec.europa.eu/docsroom/
documents /42921, accessed on 23 September 2021). The development of web applications
often requires a team of analysts of the “business model” and a team of programmers
who implement what the first modeled. The number of human resources to be involved
is, in general, conspicuous and with a high professional profile, factors that translate into
high costs, which most SMEs are unable to afford. It follows that, to help SMEs to remain
competitive or even to survive, a software development process that is not too complex, and
easy-to-use tools for implementing it, are required. Lastly, the tools must be free of charge.

We understand that formulating NoSQL queries may be challenging. In order to make
the proposed approach appealing, it is part of our future work to supplement the metadata
repository with an additional web interface that implements advanced query mechanisms

https://ec.europa.eu/docsroom/documents/42921
https://ec.europa.eu/docsroom/documents/42921

Electronics 2022, 11, 201

16 of 22

for the retrieval of class diagrams in the model repository according to different criteria, as
suggested, for example, in [15]. Such a web interface will implement the Search Interface
discussed by Hamid in [35].

Author Contributions: Conceptualization, PD.F. and G.P.; methodology, P.D.E.; software, R.P.;
validation, M.M., R.P. and G.P,; writing, P.D.E,; funding acquisition, G.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Software Industriale. https:/ /www.softwareindustriale.it/en/
gruppo-si-and-university.

Data Availability Statement: At link http://btc.digitalbusinessolution.com/menu/menulList/, the
reader can find a simple Web application useful to check the results of the Case study. Vice versa,
the scripts to create the Metadata Repository and the parser are available from the authors, since the

xMR Parser is a proprietary software of Gruppo SI S.c.a.rl. (https://www.softwareindustriale.it/en/
gruppo-si-and-university).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. The Schema of the Metadata Repository

The scripts for the creation of the tables composing the repository are shown below. The
syntax is that of PostgreSQL 13.2 Documentation (https://www.postgresql.org/docs/13/,
accessed on 2 September 2021).

CREATE TABLE project(

projectID serial NOT NULL,
name varchar (255) NOT NULL,
PRIMARY KEY (projectID)
)3
CREATE TABLE package(
packageID serial NOT NULL,
name varchar (255) NOT NULL,
URI varchar (255) NOT NULL,
projectID integer NOT NULL,
PRIMARY KEY (packagelD),
FOREIGN KEY (projectID)
REFERENCES project(projectID) ON UPDATE CASCADE
)s

The URI provides a unique identifier for a package and remains unchanged once assigned.

CREATE TABLE association(
associationID serial NOT NULL,
name varchar (255) NOT NULL,
PRIMARY KEY (associationID)

)s

CREATE TABLE class(

classID serial NOT NULL,
name varchar (255) NOT NULL,
packageID integer NOT NULL,
associationClass boolean NOT NULL,
parent integer,

PRIMARY KEY (classID),
FOREIGN KEY (packageID)

REFERENCES package (packageID) ON UPDATE CASCADE,
FOREIGN KEY (parent)
REFERENCES class(classID) ON UPDATE CASCADE

https://www.softwareindustriale.it/en/gruppo-si-and-university.
https://www.softwareindustriale.it/en/gruppo-si-and-university.
http://btc.digitalbusinessolution.com/menu/menuList/
https://www.softwareindustriale.it/en/gruppo-si-and-university
https://www.softwareindustriale.it/en/gruppo-si-and-university
https://www.postgresql.org/docs/13/

Electronics 2022, 11, 201

17 of 22

CREATE TABLE operation(
classID integer NOT NULL,
list JSONB NOT NULL,
PRIMARY KEY (classID),
FOREIGN KEY (classID)
REFERENCES class(classID) ON UPDATE CASCADE

)s
CREATE TABLE attribute(
classID integer NOT NULL,
list JSONB NOT NULL,
PRIMARY KEY (classID),
FOREIGN KEY (classID)
REFERENCES class(classID) ON UPDATE CASCADE
)s
CREATE TABLE associationEnd(
associationEndID serial NOT NULL,
name varchar (255) NOT NULL,
classID integer NOT NULL,
associationID integer NOT NULL,
PRIMARY KEY (associationEndID),
FOREIGN KEY (classID)
REFERENCES class(classID) ON UPDATE CASCADE,
FOREIGN KEY (associationID)
REFERENCES association(associationID) ON UPDATE CASCADE
)s

As stated in Section 4, the Primary Key constraint implements the OCL intra-UML-
element constraint, while the Foresign Key ... References integrity constraint imple-
ments the relationship between classes. Notice that the latter constraint implements also
the consistency of the values of attributes parent and classID of the class class.

Appendix B. The Instance of the Metadata Repository

The DataGrip (https://www.jetbrains.com/datagrip /) screen of Figure A1 lists the
seven tables composing the metadata repository (Section 4); moreover, it shows an excerpt
of the content of the database. In detail, the top screen shows the four tuples inserted into
the class table (1 tuple for each class in the class diagram of Figure 15), the bottom-left
screen shows the corresponding operations in those classes, while the bottom-right screen
shows the association ends that describe the class diagram. In the diagram of Figure 15,
neither the association ends nor the associations are explicitly named, so the parser adopts
the OMG naming conventions of Section 3.

Figure A1. The tables of the metadata repository about class diagrams and a subset of their tuples
coming from the case study.

https://www.jetbrains.com/datagrip/

Electronics 2022, 11, 201 18 of 22

In the absence of the developed parser (Section 5), the only method available for
feeding the tables of the repository (with the metadata describing the class diagram of the
case study (Figure 15)) consists in making recourse to SQL. For example, the statements
that follow upload into the database, respectively, the operations and the attributes of the
Customer class. The writing of these scripts is error-prone and time-consuming, so the
benefits brought are obvious.

INSERT INTO operation(classID, list)

VALUES (1, “{

"Op1": {"setName": {"String":"name"}},

"0p2": {"setSurname": {"String":"surname"}},
"0p3": {"setBirthDate": <{"Date":"date"1}},
"Op4": {"setPhoneNumber": {"String":"phone"l}},
"Op5": {"setEmail": {"String":"email"}},

"Op6": {"getName": "String"},

"Op7": {"getSurname": "String"},
"0Op8": {"getBirthDate": "Date"},
"0p9": {"getPhoneNumber": "String"},
"0p10": {"getEmail": "String"} }’);

INSERT INTO attribute (classID, list)
VALUES (1, ‘{

"Attr1": {"name": "String"},
"Attr2": {"surname": "String"},
"Attr3": {"birthDate": "Date"},
"Attr4": {"phoneNumber": "String"},
"Attr5": {"email": "String"} }’);

Appendix C. Querying the Metadata Repository

The preliminary step towards the reuse of UML artifacts in the realization of new
projects consists of investigating what is already available in the corporate class repository.
In this direction, acquiring knowledge about the attributes and operations of the classes
that are part of the UML class diagrams in the class repository is a mandatory step. This
section lists a set of prototypical SQL queries against the metadata repository that can be
used to reach such a goal.

Step 1: Displaying of the contents of the project table.
Query Q1 implements the request (Figure A2).

1 SELECT projectID, name
2 FROM project;

Data Output Explain Messages Notifications

projectid , nhame N
4 [PK]integer character varying (255) s
1 1 ATMProject

Figure A2. Query 1.

Step 2: Displaying of the contents of the package table.
Query Q2 implements the request (Figure A3).

Electronics 2022, 11, 201 19 of 22

1 SELECT packageID, name, URI, projectid
2 FROM package;

Data Output Explain Messages Notifications

packageid ., name o uri . projectid.,
4 [PK] integer" character varying (ZSﬁ character varying (255) integer
1 1 myUMLClasses C:\Users\utente\Desktop\myUMLRepository 1

Figure A3. Query 2.

Step 3: Displaying of the names of the classes collected in a given package (packagelD = 1)
and the path of the latter.
Query Q3 implements the request (Figure A4).

1 SELECT c.name, p.URI

2 FROM class AS c, package AS p

3 WHERE c.packagelD = p.packageID AND p.packagelID = 1
4

Data Output Explain Messages Notifications

name uri

4 character varying (255) a character varying (255) a
1 Customer C:\Users\utente\Desktop\myUMLRepository
2 BankAccount C:\Users\utente\Desktop\myUMLRepository
3 Transaction C:\Users\utente\Desktop\myUMLRepository
4 Currency C:\Users\utente\Desktop\myUMLRepository

Figure A4. Query 3.

Step 4: Displaying of the attributes and operations in the customer class inside a given
package (packagelD = 1).

Query Q4 implements the request (Figure A5). It is worth underlining the compact-
ness of the JSONB format to visualize the organization of classes in terms of attributes
and methods.

1 SELECT jsonb_each(a.list) AS attributes,

2 jsonb_each(o.list) AS operations

3 FROM class AS c, package AS p, attribute AS a, operation AS o
4 WHERE c.packagelID = p.packageID AND p.packageID = 1 AND

5 k.classID = a.classID AND c.classID = o.classID

Data Output Explain Messages Notifications

Py @ e a
1 (Awr1,{"name™: "String"}") (Op1,{""setName™: {"String": “name™}}")
2 (Atr2{"surname™: "String™}") (Op2,{""setSurname™: {"*String™: "surname™}}")
3 (Aw Date™}") (0p3,{"setBirthDate™: ‘date™}}")
4 (Attr4,{"phoneNumber": "String".. (Op4,{"setPhoneNumber": {"String™: “phone™}}")
5 (Aws{"email™ "String"}") (Op5;{""setEmail™: {"String™: "email"}}")
6 [null] (Op6,'{"getName™: "String™}")
7 [null] (0p7,{""getSurname™" "String™}")
8 [null] (0p8,'{"getBirthDate™: "'Date™}")
9 [null] (0p9,{"getPhoneNumbel tring"}')
10 [null] (Op10,{"getEmail™: "String™}")

Figure A5. Query 4. It uses the PostgreSQL’s jsonb_each() operator.

A typical scenario is that in which the modeler queries the metadata repository in
order to verify whether exist classes whose name looks like "customer". In the affirmative
case, he is also interested in having an overview of the attributes and operations of these
classes. Q5 implements such a search (Figure A6).

Electronics 2022, 11, 201

20 of 22

SELECT
FROM
WHERE

[V, NIRRT NI

Data Output

name

4 character

1 Customer
Customer
Customer

Customer

o s W N

Customer
Customer
Customer

Customer

© o N o

Customer

Customer

c.name, jsonb_each(a.list), jsonb_each(o.list

package AS p, class AS c, attribute AS a, operation AS o
p.packagelD c.packageID AND
c.classID = a.classID AND c.classID
OR

o.classID AND

(c.name LIKE '%Customer%' c.name LIKE '%customer%'

Explain Messages Notifications
jsonb_each jsonb_each a
\Qr) record record

(A, (™

" "String"}")

(Attr2,'("'surname™: "String™}") (0p2,'{"setSurname™: {"'String™: ™

Aan,"("”birthDate“": "“DETEW)”) (OpS,"{"”setB\’rthDale"": (”"Date”": ‘”'dale"”}}“)
Attr4,'{"phoneNumber™: "String™}") (Op4,{"setPhoneNumber™: {"String™: “phone™}}")
Attr5,'{"email™: "'String™}") (0p5,'{"setEmail™: {"String™": “email™}}")
(0p

(0Op7,'{"getSurname™: "String"}")

null] ‘getNam String™}")

null]

null] (Op8,'{"getBirthDate™; "Date™}")

(
(
(
(
(
[
[
[
[null] (0p9,{"getPhoneNumber™: “"String"}")
[null] (0p10,'{""getEmail™: "String™}")

Figure A6. Query 5. It uses the PostgreSQL’s jsonb_each() operator.

A not trivial inquiry concerns investigating the existence of hierarchies among tables
in the class diagram of a given project. The complexity comes from the need to compute
the transitive closure of all superclasses (if any) of a given instance of the class table (i.e.,
of a given instance of the UML element class of Figure 3). Recursive query Q6 implements

such a re

quest (Figure A7). As expected, there are no hierarchies among the classes of the

class diagram of the case study.

ORDER

Data Output

classid
A integer

1

2w N

WITH RECURSIVE RecQuery
SELECT
FROM
UNION ALL
SELECT
FROM
WHERE

classID, name, parent) AS
classID, name, parent
class

child.classID, child.name, child.parent
RecQuery AS parent, class AS child
parent.parent = child.classID

SELECT DISTINCT classID, name, parent
FROM RecQuery

BY classID, name, parent;

Explain Messages Notifications
name parent
a character varying (255) & integer &
1 Customer null
2 BankAccount null

w

Transaction

~

Currency

Figure A7. Query 6.

References

1. Bucchiarone, A.; Cabot, J.; Paige, J.R.F.
the research. Softw. Syst. Model. 2020,

; Pierantonio, A. Grand challenges in model-driven engineering: An analysis of the state of
19, 5-13. [CrossRef]

OMG Unified Modeling Language, Version 2.5.1. OMG Document Number: Formal/2017-12-05 Normative. Available online:

https/www.omg.org/spec/UML/ (accessed on 5 September 2021).

2.

3. Rumbaugh, J.; Jacobson, I.; Booch, G.
USA, 2005.

4. Di Rocco, J.; Di Ruscio, D.; Iovino, L.;
32,28-34. [CrossRef]

5.

Systems Engineering. CAiSE 2001; Lec

The Unified Modeling Language Reference Manual, 2nd ed.; Addison-Wesley: New York, NY,

Pierantonio, A. Collaborative repositories in model-driven engineering. IEEE Softw. 2015,

Keller, R.K.; Bédard, J.-F; Saint-Denis, G. Design and Implementation of an UML-Based Design Repository. In Advanced Information

ture Notes in Computer Science; Dittrich, K.R., Geppert, A., Norrie, M.C., Eds.; Springer:

Berlin/Heidelberg, Germany, 2001; Volume 2068, pp. 448-464. [CrossRef]

http://doi.org/10.1007/s10270-019-00773-6
https/www.omg.org/ spec/UML/
http://dx.doi.org/10.1109/MS.2015.61
http://dx.doi.org/10.1007/3-540-45341-5_30

Electronics 2022, 11, 201 21 of 22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

France, R.; Bieman, J.; Cheng, B.H.C. Repository for Model Driven Development (ReMoDD). In Models in Software Engineering.
MODELS 2006; Lecture Notes in Computer Science; Kuhne, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4364,
pp. 311-317. [CrossRef]

France, R.B.; Bieman,].M.; Mandalaparty, S.P.; Cheng, B.H.C.; Jensen, A. Repository for Model Driven Development (ReMoDD).
In Proceedings of the 34th International Conference on Software Engineering (ICSE), Zurich, Switzerland, 2-9 June 2012;
pp. 1471-1472. [CrossRef]

Gosala, B.; Chowdhuri, S.R.; Singh, J.; Gupta, M.; Mishra, A. Automatic Classification of UML Class Diagrams Using Deep
Learning Technique: Convolutional Neural Network. Appl. Sci. 2021, 11, 4267. [CrossRef]

Bernstein, P.A.; Dayal, U. An overview of repository technology. In Proceedings of the of the 20th International Conference on
Very Large Data Bases, Santiago, Chile, 12-15 September 1994; pp. 705-713.

Mayr, C.; Zdun, U.; Dustdar, S. Reusable Architectural Decision Model for Model and Metadata Repositories. In Formal Methods
for Components and Objects; Lecture Notes in Computer Science; de Boer, ES., Bonsangue, M.M., Madelaine, E., Eds.; Springer:
Berlin/Heidelberg, Germany, 2009; Volume 5751, pp. 1-20. [CrossRef]

Di Felice, P.; Paolone, G.; Paesani, R.; Marinelli, M. Overview of a Project devoted to Release an open-source Software Tool for
the Creation, Feeding and Querying of a NoSQL Metadata Repository about UML Class Diagrams. In Proceedings of the 2nd
International Electronic Conference on Applied Sciences, Basel, Switzerland, 15-31 October 2021. [CrossRef]

Postgres NoSQL: Combining Developer Productivity with Enterprise Data Integrity. An EnterpriseDB White Paper for DBAs, De-
velopers & Database Architects, July 2014. Available online: info.enterprisedb.com/rs/enterprisedb/images/EDB_WhitePaper_
Postgres_NoSQL.pdf (accessed on 10 November 2021).

Tran, N.V.; Ganser, A.; Lichter, H. Multi Back-Ends for a Model Library Abstraction Layer. In Computational Science and Its
Applications—ICCSA 2013; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7973,
pp. 160-174. [CrossRef]

Couto, R.; Ribeiro, A.N.; Campos,].C. The Modelery: A Collaborative Web Based Repository. In Computational Science and Its
Applications—ICCSA 2014; Lecture Notes in Computer Science, Part VI; Springer: Cham, Switzerland, 2014; Volume 8584, pp. 1-16.
[CrossRef]

Basciani, F.; Di Rocco, J.; Ruscio, D.D.; Iovino, L.; Pierantonio, A. Model Repositories: Will They Become Reality? In Proceedings
of the 3rd International Workshop on Model-Driven Engineering on and for the Cloud and 18th International Conference on
Model Driven Engineering Languages and Systems (MoDELS 2015), Ottawa, QC, Canada, 29 September 2015.

Paolone, G.; Marinelli, M.; Paesani, R.; Felice, P.D. Automatic Code Generation of MVC Web Applications. Computers 2020, 9, 56.
[CrossRef]

Paolone, G.; Clementini, E.; Liguori, G. A methodology for building enterprise Web 2.0 Applications. In Proceedings of the
Modern Information Technology in the Innovation Processes of the Industrial Enterprises (MITIP), Prague, Czech Republic,
12-14 November 2008; pp. 228-233.

Génova, G.; Morillo, J.; Fraga, A. Metamodeling generalization and other directed relationships in UML. Inf. Softw. Technol. 2014,
56, 718-726. [CrossRef]

Queralt, A.; Teniente, E. Reasoning on UML Class Diagrams with OCL Constraints. In Proceedings of the 25th International
Conference on Conceptual Modeling, Tucson, AZ, USA, 6-9 November 2006; pp. 497-512. [CrossRef]

Ritter, N.; Steiert, H.P. Enforcing Modeling Guidelines in an ORDBMS-based UML-Repository. In Proceedings of the 2000
Information Resource Management Association, International Conference on Challenges of Information Technology Management
in the 21st Century, Anchorage, AK, USA, 21-24 May 2000; pp. 269-273.

Hebig, R.; Ho-Quang, T.; Robles, G.; Fernandez, M.A.; Chaudron, M.R.V. The Quest for Open Source Projects that Use UML:
Mining GitHub. In Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engineering Languages and
Systems, Saint Malo, Brittany, France, 2-7 October 2016.

OMG Object Constraint Language (OCL), Version 2.3.1. OMG Document Number: Formal/2012-01-01. Available online: https:
/ /www.omg.org/spec/OCL/2.3.1/PDF (accessed on 10 September 2021).

Makris, A.; Tserpes, K.; Spiliopoulos, G.; Zissis, D.; Anagnostopoulos, D. MongoDB Vs PostgreSQL: A comparative study on
performance aspects. Geoinformatica 2021, 25, 243-268. [CrossRef]

Tortosa, A.H. Performance Benchmark PostgreSQL/Mongodb. A White Paper by Ongres. Available online: https://www.
enterprisedb.com/white-papers (accessed on 10 October 2021).

Robles, G.; Ho-Quang, T.; Hebig, R.; Chaudron, M.R.V.; Fernandez, M.A. An extensive dataset of UML models in GitHub. In
Proceedings of the 14th International Conference on Mining Software Repositories, Buenos Aires, Argentina, 20-21 May 2017;
pp. 519-522.

Karasneh, B.; Chaudron, M.R.V. Extracting UML Models from Images. In Proceedings of the 5th International Conference on
Computer Science and Information Technology, Amman, Jordan, 27-28 March 2013; pp. 169-178. [CrossRef]

Karasneh, B.; Chaudron, M.R.V. Img2uml: A system for extracting uml models from images. In Proceedings of the 39th
Euromicro Conference on Software Engineering and Advanced Applications, Santander, Spain, 4-6 September 2013; pp. 134-137.
Karasneh, B.; Chaudron, M.R.V. Online Img2UML Repository: An Online Repository for UML Models. In Proceedings of the
3rd International Workshop on Experiences and Empirical Studies in Software Modeling (Co-Located with ACM/IEEE 16th
International Conference on Model Driven Engineering Languages and Systems-MoDELS 2013), Miami, FL, USA, 1 October 2013.

http://dx.doi.org/10.1007/978-3-540-69489-2_38
http://dx.doi.org/10.1109/ICSE.2012.6227059
http://dx.doi.org/10.3390/app11094267
http://dx.doi.org/10.1007/978-3-642-04167-9_1
http://dx.doi.org/10.3390/ASEC2021-11150
info.enterprisedb.com/rs/enterprisedb/images/EDB_WhitePaper_Postgres_NoSQL.pdf
info.enterprisedb.com/rs/enterprisedb/images/EDB_WhitePaper_Postgres_NoSQL.pdf
http://dx.doi.org/10.1007/978-3-642-39646-5_12.
http://dx.doi.org/10.1007/978-3-319-09153-2_1
http://dx.doi.org/10.3390/computers9030056
http://dx.doi.org/10.1016/j.infsof.2014.01.010
http://dx.doi.org/10.1007/11901181_37
https://www.omg.org/spec/OCL/2.3.1/PDF
https://www.omg.org/spec/OCL/2.3.1/PDF
http://dx.doi.org/10.1007/s10707-020-00407-w
https://www.enterprisedb.com/white-papers
https://www.enterprisedb.com/white-papers
http://dx.doi.org/10.1109/CSIT.2013.6588776

Electronics 2022, 11, 201 22 of 22

29.

30.

31.

32.

33.

34.

35.

Girgis, M.R.; Mahmoud, T.M.; Nour, R.R. UML class diagram metrics tool. In Proceedings of the International Conference on
Computer Engineering & Systems, Cairo, Egypt, 14-16 December 2009; pp. 423-428. [CrossRef]

Gajewski, M.; Zabierowski, W. Analysis and Comparison of the Spring Framework and Play Framework Performance, Used to
Create Web Applications in Java. In Proceedings of the IEEE 15-th International Conference on Perspective Technologies and
Methods in MEMS Design (MEMSTECH), Polyana, Ukraine, 22-26 May 2019; pp. 170-173.

2021 Java Developer Productivity Report. A Technical Report by JRebel, Perforce Software, Inc. 2021. https://mma.prnewswire.
com/media/1422901/2021_java_developer_productivity_report.pdf?p=pdf (accessed on 8 July 2021).

Schlick, R.; Felderer, M.; Majzik, I.; Nardone, R.; Raschke, A.; Snook, C.; Vittorini, V. A Proposal of an Example and Experiments
Repository to Foster Industrial Adoption of Formal Methods. In Leveraging Applications of Formal Methods, Verification and
Validation. Industrial Practice. 1SoLA; Lecture Notes in Computer Science; Margaria, T., Steffen, B., Eds.; Springer: Cham,
Switzerland, 2018; Volume 11247. [CrossRef]

Paolone, G.; Paesani, R.; Marinelli, M.; Di Felice, P. Empirical Assessment of the Quality of MVC Web Applications Returned by
xGenerator. Computers 2021, 10, 20. [CrossRef]

Belaunde, M. A Pragmatic Approach for Building a User-Friendly and Flexible UML Model Repository. In « UML»"99—The Unified
Modeling Language. UML 1999; Lecture Notes in Computer Science; France, R., Rumpe, B., Eds.; Springer: Berlin/Heidelberg,
Germany, 1999; Volume 1723, pp. 188-203. [CrossRef]

Hamid, B. A Model Repository Description Language—MRDL. Software Reuse: Bridging with Social-Awareness. In Software
Reuse: Bridging with Social-Awareness. ICSR 2016; Lecture Notes in Computer Science; Kapitsaki, G., Santana de Almeida, E., Eds.;
Springer: Cham, Switzerland, 2016; Volume 9679, pp. 350-367. [CrossRef]

http://dx.doi.org/10.1109/ICCES.2009.5383226
https://mma.prnewswire.com/ media/1422901/2021_java_developer_productivity_report.pdf?p=pdf
https://mma.prnewswire.com/ media/1422901/2021_java_developer_productivity_report.pdf?p=pdf
http://dx.doi.org/10.1007/978-3-030-03427-6_20
http://dx.doi.org/10.3390/computers10020020
http://dx.doi.org/10.1007/3-540-46852-8_14
http://dx.doi.org/10.1007/978-3-319-35122-3_23

	Introduction
	Our Approach
	Action 1
	Action 2

	UML Metamodel for a Metadata Repository about Class Diagrams
	The Schema of the Metadata Repository
	Architecture and Implementation of the XMI Parser
	Case Study
	Related Work
	Conclusions and Future Work
	The Schema of the Metadata Repository
	The Instance of the Metadata Repository
	Querying the Metadata Repository
	References

