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Abstract: In this study, the characteristic analysis of a permanent magnet synchronous generator
was performed using the analytical method, and the validity of the analytical method was compared
with that of the finite element method (FEM). For the initial design, the rotor size was selected using
the torque per rotor volume method, and the stator size was selected according to the saturation
of the stator iron core. In addition, fast Fourier transform analysis was performed to determine
the appropriate magnet thickness point, and it was confirmed that the open circuit and armature
reaction magnetic flux densities were consistent with the FEM analysis results. Based on the analytical
method, the generator circuit constants (phase resistance, back EMF, and inductance) were derived
to construct an equivalent circuit. By applying the equivalent circuit method to the derived circuit
constants, the accuracy of the equivalent circuit method was confirmed by comparing the FEM and
experimental results.

Keywords: permanent magnet synchronous generator (PMSG); analytical method; finite element
method (FEM); magnet usage

1. Introduction

Permanent magnet synchronous generators (PMSGs) are increasingly used in various
applications owing to their high efficiency and high torque-to-volume ratio [1,2]. Electro-
magnetic analysis is essential to understand the characteristics of PMSG, and the prediction
of the magnetic field distribution is crucial. Currently, researchers are performing electro-
magnetic analyses using various methods, and many studies have been published. An
analytical method for calculating the governing equation using the subdomain method is
shown in [3–10], a simplified magnetic equivalent circuit method based on the analytical
method is shown in [11,12], and the finite element method (FEM) using numerical anal-
ysis is shown in [13–19]. In addition, a hybrid calculation method that combines the two
methods was used in [20,21]. Currently, FEM with high accuracy is being used frequently,
considering the increase in the saturation effect [22]. However, the model needs to be
designed directly into a software program, and transient analysis has a long computation
time. The analytical method using the space harmonic method is complicated because
the governing equation must be directly solved using Maxwell’s equation [23,24]. As
a disadvantage of this method, the accuracy is lower than the FEM, and the magnetic
saturation phenomenon cannot be considered [9,24]. In addition, it is necessary to calculate
the undefined coefficient by setting the boundary condition according to the machine
shape. However, this method has an advantage over FEM in cases involving various design
parameters. Moreover, an important part of the initial design is the analysis time, which is
only a few seconds using the analytical method [9].
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In this study, for the initial design of the PMSG, the rotor size and axial length were
selected using the torque per rotor volume (TRV) method for the initial design of the PMSG,
and the stator size was selected according to the design requirements. When designing a
machine, the permanent magnet used can be said to be an important factor influencing the
performance of the machine. However, if the magnet usage increases, it causes the price to
rise. Therefore, in order to reduce magnet usage, harmonic analysis was performed through
fast Fourier transform (FFT) according to magnet thickness. As a result of the analysis,
the magnetic flux density began to saturate at a magnet thickness of 5 mm. By applying
the selected magnet thickness to the initial design, unnecessary magnet usage could be
reduced. The magnetic field characteristics of the open circuit and armature reactions
were calculated using the subdomain method to elucidate on the design parameters. The
calculated results were compared with the FEM analysis results, and circuit constants such
as phase resistance, back EMF, and inductance were derived to construct an equivalent
circuit of the generator. The equivalent circuit method was applied using the derived
circuit constants, and the FEM and experimental results were compared. The validity of the
analytical method was proved by showing that the calculation results were consistent. In
this study, all FEMs compared with analytical methods were analyzed using a commercial
software, ANSYS Maxwell.

2. Initial Design
2.1. Process of Initial Design

In this study, the initial design of the PMSG was performed according to the design
flowchart shown in Figure 1. First, after checking the design requirements in Table 1, the
rotor size was selected using the TRV method, as shown in Figure 2. Thereafter, the structure
and number of turns of the stator were selected according to the design requirements, and
circuit constants such as inductance were derived by analyzing the no-load magnetic
field characteristics.
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Table 1. Design requirements.

Parameter Value Unit

Rated power 500 W
Rated speed 300 rpm

Permanent magnet N35SH -
Efficiency 90 %

Residual magnetic flux density 1.21 T
Current density limit 7 A/mm2
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At this time, if the saturation of the iron core of the stator is satisfied, the load magnetic
field characteristic analysis may be performed, but if not satisfied, the stator design should
be performed again. Similarly, when the load magnetic field characteristic analysis is per-
formed, the stator design must be repeated if the requirements are not satisfied. Conversely,
the performance of the device can be improved by optimizing the permanent magnet if the
requirements are satisfied.

2.2. Size Selection

The TRV method was used to select the initial design model of the PMSG. Here, TRV
is the torque that can be used in a given rotor volume per unit rotor volume; it can be
observed as an empirical value by the designer and varies depending on the material of the
permanent magnet [25]. The TRV method can be calculated according to Equation (1) and
can be represented by the TRV curve shown in Figure 2. In addition, because the material
of the permanent magnet used is the neodymium series, the TRV value was selected as
20 kNm. Finally, the rotor size and axial length were selected as 150 and 45 mm, respectively.

TRV =
Tout

π
4 D2

roLstk
(1)

where Dro is the outer diameter of the rotor, Lstk is the axial length, and Tout is the output
torque. The stator size was selected as 250 mm according to the design requirements
listed in Table 1, and a surface PMSG with a small torque ripple and easy control was
selected. After the voltage applied to the inverter is determined, the number of turns can be
calculated by determining the value of the back EMF. The back EMF induced in the state in
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which the armature winding is an open circuit can be calculated according to Equation (2),
and the number of turns per slot can be calculated according to Equation (3) [25].

Emax = NpNtkdkpBrLstkγωn (2)

Ns =
Er

NpNsppkdkpBrLstkγωm
(3)

where Np is the number of poles, kd is the distribution factor, kp is the short-pitch factor, Br
is the air-gap flux density, Nt is the number of turns per phase, and ωn is the rotor angular
velocity. Compared to distributed winding, concentrated winding produces less heat and
fractional pole/slot combination is possible; therefore, it is advantageous to improve the
cogging torque and the back EMF [26,27]. Therefore, concentrated winding was applied. In
addition, concentrated winding is easy to manufacture with small resistance and copper
loss as the length of the end coil is short. Figure 2 shows the final selected analysis model
and the manufactured prototype.

3. Magnetic Field Characteristics Analysis Using Analytical Methods
3.1. Analytical Method

The analytical method is used to analyze the magnetic field distribution by calculating
the magnetic vector potential from Maxwell’s equation. During calculation, the domain
was divided using the subdomain method with several assumptions. In each domain, the
governing equations were calculated based on Maxwell’s equations, and the undefined
coefficients were derived using the appropriate boundary conditions. Figure 3 shows
the general calculation process for calculating the magnetic field distribution using the
analytical method.
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3.2. Assumptions for Analysis

Figure 4 shows a simplified model of the analysis of the magnetic field characteristic.
In the initial design of the machine, it is important to quickly secure the tendency of
the machine characteristics. This is because designers conduct design and characteristic
analysis several times to satisfy design requirements. Using the analytical method that
takes only a few seconds, the tendency of machine characteristics can be quickly obtained.
In addition, even if teeth were not included, a result with high accuracy was derived
from the analysis result. Therefore, the simplified model was analyzed as a slotless model.
The analysis region consisted of an air-gap region (I) and a permanent magnet region
(II) for the analysis of the magnetic field characteristic. For the analysis of the magnetic
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field distribution characteristics of the open circuit and armature reactions, the magnetic
permeability of the stator and rotor iron cores could be assumed to be infinite. In addition,
the relative permeability of the permanent magnet material and the air gap was assumed to
be 1, which is the same as that of air. Because the relative permeability of neodymium-based
permanent magnets is close to 1, there was no significant difference in the analysis results.
Therefore, for the convenience of calculation, the relative permeability of the permanent
magnet was determined to be 1. When performing the magnetic field distribution analysis
of the armature reaction, it was considered that a current sheet was applied to the stator
core. The main parameters of the analytical model presented in this study are shown in
Table 2.
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Figure 4. Simplified analytical model.

Table 2. Parameters of simplified analytical model.

Parameter Designation Unit

Ra Inner radius of stator mm
Rp Outer radius of PMs mm
Rr Inner radius of PMs mm
αp Pole-arc ratio -
so Width of slot opening mm
lstk Axial length mm

3.3. Magnetization Modeling and Current Modeling

Because the magnetization direction of the permanent magnet of this model is parallel
magnetization, it is expressed as Equation (4) by a Fourier series.

M =
∞

∑
n=1,odd

{Mrn cos(qθ)ir + Mθn sin(qθ)iθ} (4)

Mrn =

∣∣∣∣∣∣
M0αp[Kmo(q + 1) + Kmo(q− 1)]

M0αp[Kmo(q + 1)]
0

n = ip, i = 1, 3, 5, . . .
n = ip = 1
otherwise

(5)

Mθn =

∣∣∣∣∣∣
M0αp[Kmo(q + 1)− Kmo(q− 1)]

M0αp[Kmo(q + 1)]
0

n = ip, i = 1, 3, 5, . . .
n = ip = 1
otherwise

(6)

where Mrn and Mθn are the Fourier coefficients in the r and θ directions, respectively; q is
expressed as n (nth harmonic) × p (pole pair); and ir and iθ indicate unit vectors in the r
and θ directions, respectively. In addition, M0 = Br/µ0 indicates that αp, n, Br, and µ0 are the
pole-arc ratio, harmonic order, residual magnetic flux density of the permanent magnet,
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and magnetic permeability of the vacuum, respectively. The coefficient Kmo(•) is given
according to Equation (7).

Kmo(•) =
sin
(
• · αp · π

2
)(

• · αp · π
2
) (7)

A magnetic field is generated by an armature reaction that occurs when the current
flows through the windings of the stator. To derive this, current modeling was performed
according to Equations (8)–(10). The n-order Fourier coefficient for the current density
distribution is expressed by Equation (11).

Ja =
∞

∑
n=1,odd

Inia cos(qθ) (8)

Jb =
∞

∑
n=1,odd

Inib cos
{

q(θ − 2
3

π

p
)

}
(9)

Jc =
∞

∑
n=1,odd

Inic cos
{

q(θ +
2
3

π

p
)

}
(10)

In =
2Nppt

nsoπ

[
sin
{

q
so

2Ra

}
+ sin

{
q
(

π

p
− so

2Ra

)}]
(11)

where ia, ib, and ic are the maximum current values of phases a, b, and c, respectively, and
the phases have a phase difference of 120◦. Nppt, So, and Rs represent the number of turns
per pole, the length of the slot opening, and the inner radius of the stator, respectively.
Therefore, three-phase current modeling can be expressed according to Equation (12).

J = Ja + Jb + Jc

=
∞
∑

n=1,odd
In

[
ia cos(qθ) + ib cos

{
q(θ − 2

3
π
p )
}
+ ic cos

{
q(θ + 2

3
π
p )
}]

(12)

3.4. Selection of Appropriate Magnet Usage Point

The performance of the device improves as the usage of the magnet increases, but
the cost increases; therefore, appropriate magnet usage is required. Studies on replacing
rare earth permanent magnets with ferrite magnets to reduce magnet usage are presented
in [28–30] and deal with the reduction in magnet usage through pole-arc change. In this
study, magnet usage is reduced only by changing the thickness of the magnet without
changing the design parameters. Figure 5 shows the FFT analysis of the 1st harmonic to
find the appropriate magnet usage point before performing the open circuit and armature
reaction magnetic field characteristics analysis. First, using the analytical method, the
thickness of the magnet was analyzed from 1 mm to 10 mm at intervals of 1 mm. As a
result, the magnetic flux density began to saturate at a magnet thickness of 5 mm, and it
could be observed that the change in the magnetic flux density converged as the thickness
increased. Therefore, in this study, a magnet thickness of 5 mm, which is the point with the
largest magnet usage versus magnetic flux density, was selected as the appropriate point.
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3.5. Open Circuit Magnetic Field Characteristics

The expression for the magnetic flux density is B = µ0 (H + M), and it becomes
H = 0 when considering the magnetic field characteristics of the open circuit because
there is no displacement current component. It becomes an open circuit when there is
no current component, and the magnetic flux density can be obtained by the permanent
magnet. Thereafter, by taking ∇ on both sides and applying the vector identity formula,
∇× (∇×A) = ∇(∇ ·A)−∇2A, Equation (13) can be obtained.

∇2A = −µ0(∇×M) (13)

Using Equation (13), the air-gap region (I) does not have a magnetization component;
therefore, it can be expressed using the Laplace equation, and the permanent magnet region
(II) has a magnetization component and can be expressed using the Poisson equation.
Equations (14) and (15) show the governing equations for the two domains.

∇2AI = 0 (14)

∇2AII = −µ0(∇×M) (15)

In a cylindrical machine, the magnetic vector potential, A, acts in the z-direction;
therefore, it can be expressed as A = A(r)sin(qθ)iz. In addition, using ∇ × A = B, the
definition of the magnetic vector potential, is expressed according to Equations (16)–(19),
and the boundary conditions for deriving the undefined coefficient are listed in Table 3.
Figure 6 shows a comparison of the open circuit magnetic field characteristics, and it was
confirmed that the analysis results were consistent. At this time, the analysis was performed
without applying a current in the FEM as well.

B I
rn =

∞

∑
n=1,3,5,...

q
r

[
CI

nrq + DI
nr−q

]
cos(qθ)ir (16)

B II
rn =

∞

∑
n=1,3,5,...

q
r

[
CII

n rq + DII
n r−q − µ0qrMn

1− q2

]
cos(qθ)ir (17)

B I
θn =

∞

∑
n=1,3,5,...

q
[
CI

nrq−1 − DI
nr−(q+1)

]
sin(qθ)iθ (18)

B II
θn =

∞

∑
n=1,3,5,...

−q
[

CII
n rq−1 − DII

n r−(q+1) − µ0Mn

1− q2

]
sin(qθ)iθ (19)
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Table 3. Boundary conditions for deriving undefined coefficients.

Open Circuit Armature Reaction

(r = Ra) B I
θn = 0

(r = Ra) B I
θn = −µ0 Ja(r = Rp) B II

rn = B I
rn

(r = Rp) B II
rn − B I

rn = µ0 Mθn (r = Rr) B I
θn = 0

(r = Rr) B II
θn = µ0 Mθn
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3.6. Magnetic Field Characteristics of Armature Reaction

The magnetic field of the armature reaction is similar to the process of deriving the
magnetic field of the open circuit, but it is assumed that there is no permanent magnet,
and the current sheet is applied to make M = 0. In addition, because it is assumed that the
permeability of the iron core is infinite, it becomes H = 0 when it is applied to B = µH; thus,
∇2A = 0 is derived. Here, if ∇ × A = B, which is the definition of the magnetic vector
potential, is applied, a magnetic flux density equation such as Equations (20) and (21) can
be derived.

B I
rn =

∞

∑
n=1,3,5,...

− jq
r

[
CI

nrq + DI
nr−q

]
e−jqθ ir (20)

B I
θn =

∞

∑
n=1,3,5,...

−q
[
CI

nrq−1 + DI
nr−(q+1)

]
e−jqθ iθ (21)

In addition, the undefined coefficient was derived using the boundary conditions
listed in Table 3 for the magnetic field characteristics of the armature reaction. Figure 7
shows the comparison of magnetic field characteristics by the armature reaction. For
accurate analysis results, the characteristic analysis was performed with the same initial
position as in the method used in this study and the FEM.

Figure 8 is comparison of magnetic field characteristics considering both open circuit
and armature reaction. When compared with Figure 6, it can be seen that there is no
significant difference. Because, when analyzing the armature reaction magnetic field
characteristics, the equation of ia =−ib − ic was used. That is, the calculation was performed
with ia = 1 [A], ib = −0.5 [A], and ic = −0.5 [A].
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4. Equivalent Circuit Method (ECM)
4.1. Circuit Constant Derivation
4.1.1. Phase Resistance

The circuit constant must be derived to construct the equivalent circuit required for
the analysis of the output characteristics of the PMSG. Electromagnetic performance can be
analyzed by coupling the proposed analytical model with the ECM. The phase resistance
was calculated using Equation (22).

Rph = ρc
lc

AcNsn
(22)

where Ac and Nsn represent the cross-sectional area of the conductor and the number of
strands, respectively. Because ρc is the resistance of copper and it varies with temperature,
it can be calculated according to Equation (23).

ρc = ρ0{1 + αr(T − T0)} (23)
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where ρ0 represents the resistivity at room temperature (T0) and it has a value of ρ0 =
1.724 × 10−8 [Ω·m] for general copper. Finally, the total length, lc, of the coil is calculated
according to Equation (24).

lc = NpcNct(2× Lstk + 2πre) (24)

where Npc, Nct, and Lstk denote the number of coils per phase, number of turns per
coil, and axial length, respectively. In addition, because there are two end-turn parts,
it can be expressed as 2πre. Figure 9 shows a conceptual diagram to elucidate the phase-
resistance calculation.
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4.1.2. Inductance

The inductance that can be derived from the magnetic field of the armature reaction is
crucial as a circuit constant that affects the power factor and efficiency. Inductance is the
amount of flux linkage per unit current and it is expressed as the sum of the self-inductance
and mutual inductance [27]. In this study, the magnitude of the inductance occurring at the
end-turn part is very small; therefore, it is not considered, and the self-inductance can be
calculated according to Equation (25).

Lsel f =
λa

ia
(25)

where ia is the maximum current of phase a, and because it is a three-phase balanced load,
a phase difference of 120◦ occurs. Therefore, ia = −ib − ic, and the mutual inductance can
be expressed as M = −0.5Lself. The flux linkage by phase A can be calculated according to
Equation (26), where Ls is the synchronous inductance.

λa = Lsel f ia + Mib + Mic = 1.5Lsel f ia = Lsia (26)

4.1.3. Back EMF

Back EMF is the voltage generated in the coil by the flux linkage generated while
the rotor rotates, and it can be derived using the magnetic field characteristics of the
permanent magnet. The back EMF of the coil generated in one phase is expressed according
to Equation (27) using Faraday’s law.

Eem f = −
dλ

dt
(27)

When the flux linkage generated by the permanent magnet is substituted in Equation (27),
the back EMF generated in one phase can be expressed according to Equation (28). In addi-
tion, the back EMF constant can be calculated according to Equation (29).

Eem f = 2ωr pNpptRslz ∑
n=1,odd

Bn sin
(

q
αy

2

)
sin(qωrt) (28)
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Ke = max(
Eem f

ωr
) (29)

4.2. Composition of Equivalent Circuit

To analyze the output characteristics of the PMSG, an equivalent circuit composition is
essential. Figure 10 shows the equivalent circuit composed of the circuit constants derived
in Section 4.1. Equations (30)–(33) are formulas for deriving the terminal voltage per
phase (Vt), current per phase (Iph), induced electromotive force per phase (Eph), and rated
power (P0).

Vt = IphRload = Eph ×
Rload√

(Rph + Rload)
2 + X2

s

(30)

Iph =
Vt

Rload
=

Eph√
(Rph + Rload)

2 + X2
s

(31)

Eph = Vt + IphRph + jIphXs (32)

P0 = Vta Ia + Vtb Ib + Vtc Ic (33)

where Rload is the load resistance and Xs is the synchronous reactance. Xs can be derived as
Xs = 2πfLs, and it represents the electrical frequency. In addition, the terminal voltage and
current per phase were calculated as root mean square values.
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4.3. Comparison of Generating Characteristics Analysis Results

Figure 11 shows the FEM analysis model and the actual model. Table 4 lists the
specifications of the manufactured PMSG based on the design requirements. Figure 12
shows the device for the experimental verification of the method used in this study. The
experimental setup consisted of a PMSG, torque sensor, driving motor, inverter, and power
analyzer to measure the power generation characteristics. In addition, the rated power was
over 500 W and the current density was 3.02 A/mm2; therefore, the design requirements
were satisfied.



Electronics 2022, 11, 205 12 of 15
Electronics 2022, 11, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 11. Analysis model: (a) FEM analysis model and (b) actual model. 

Table 4. Specifications of the actual PMSG. 

Parameter Value Unit 
Pole/slot 16/18 - 

Stator diameter 250 mm 
Rotor diameter 150 mm 

Axial length 45 mm 
Magnet thickness 5 mm 

Winding Concentrated - 
Pole-arc ratio 0.82 - 

Air gap length 1 mm 
Coil diameter 0.511 mm 

Number of strands 17 - 
Number of turns 25 - 

 
Figure 12. PMSG setup for experimental verification. 

Figure 13 shows the comparison of back EMF results of analytical methods, FEM 
(slotless model), FEM (slot model), and actual experiments. There is no significant differ-
ence between the slotless model applied in this study and the slot model. Table 5 summa-
rizes the comparison between the phase resistance and back EMF constant, and the phase 
resistance was analyzed with the same value. The back EMF constant shows similar val-
ues, although there is a slight error. Figure 13 shows the current, voltage, power, and ef-
ficiency curves according to the change in the load resistance at the rated speed. We 
wanted more experimental results, but we could not add more due to the lack of number 
and variety of load resistances. However, as shown in Figure 14, the accuracy of the char-
acteristic analysis results according to the load resistance is excellent. Therefore, it is con-
sidered to have high accuracy of the experimental results at another load resistance point. 
Although the experimental value of the efficiency is excluded from Figure 14d, it is con-
sidered that the efficiency is consistent because the comparison of other characteristic val-
ues is consistent. 

Figure 11. Analysis model: (a) FEM analysis model and (b) actual model.

Table 4. Specifications of the actual PMSG.

Parameter Value Unit

Pole/slot 16/18 -
Stator diameter 250 mm
Rotor diameter 150 mm

Axial length 45 mm
Magnet thickness 5 mm

Winding Concentrated -
Pole-arc ratio 0.82 -

Air gap length 1 mm
Coil diameter 0.511 mm

Number of strands 17 -
Number of turns 25 -
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Figure 12. PMSG setup for experimental verification.

Figure 13 shows the comparison of back EMF results of analytical methods, FEM
(slotless model), FEM (slot model), and actual experiments. There is no significant difference
between the slotless model applied in this study and the slot model. Table 5 summarizes
the comparison between the phase resistance and back EMF constant, and the phase
resistance was analyzed with the same value. The back EMF constant shows similar values,
although there is a slight error. Figure 13 shows the current, voltage, power, and efficiency
curves according to the change in the load resistance at the rated speed. We wanted more
experimental results, but we could not add more due to the lack of number and variety of
load resistances. However, as shown in Figure 14, the accuracy of the characteristic analysis
results according to the load resistance is excellent. Therefore, it is considered to have
high accuracy of the experimental results at another load resistance point. Although the
experimental value of the efficiency is excluded from Figure 14d, it is considered that the
efficiency is consistent because the comparison of other characteristic values is consistent.
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Table 5. Comparison of phase resistance and back EMF constant.

Analytical FEM Experiment

Phase resistance 0.16 0.16 0.16
Back EMF constant 1.38 1.33 1.32
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5. Conclusions

In this study, the size of the rotor was selected using the TRV method to perform the
initial design of the PMSG, and the size of the stator was selected considering the saturation
of the stator core. After performing the initial design, the magnetic field characteristics
of the no-load and load were analyzed. In addition, to use the analytical method, which
has the advantage of rapid initial design, the domain was divided using the subdomain
method, and several assumptions were made. After performing magnetization modeling
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and current modeling, FFT analysis was performed by changing only the thickness of
the magnet using an analytical method to reduce the magnet usage. After verifying the
analysis results through FEM, the point with the largest magnet usage versus magnetic
flux density was derived. In addition, boundary conditions were applied to calculate the
undefined coefficients of the open circuit and armature reaction. It was compared with the
magnetic flux density of the FEM, and it was consistent. Circuit constants (phase resistance,
inductance, and back EMF) were derived using the ECM method based on the analytical
method. The analysis was performed according to the change in load resistance by the
analytical method and compared with FEM. Additionally, the results of the experimental
setup for verification were consistent. Therefore, the validity of the proposed method was
verified in this study.
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