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Abstract: Large-scale neural networks have attracted much attention for surprising results in various
cognitive tasks such as object detection and image classification. However, the large number of
weight parameters in the complex networks can be problematic when the models are deployed to
embedded systems. In addition, the problems are exacerbated in emerging neuromorphic computers,
where each weight parameter is stored within a synapse, the primary computational resource of the
bio-inspired computers. We describe an effective way of reducing the parameters by a recursive tensor
factorization method. Applying the singular value decomposition in a recursive manner decomposes
a tensor that represents the weight parameters. Then, the tensor is approximated by algorithms
minimizing the approximation error and the number of parameters. This process factorizes a given
network, yielding a deeper, less dense, and weight-shared network with good initial weights, which
can be fine-tuned by gradient descent.

Keywords: tensor approximation; deep learning; machine learning; VLSI

1. Introduction

Large neural networks such as convolutional neural networks have demonstrated
state-of-the-art performance in a number of benchmarks in computer vision, automatic
speech recognition, natural language processing, audio recognition, etc. [1–4]. However,
these networks have millions and billions of parameters [5], and the evaluation of such
models is computationally demanding. While the enormous computing power available
today, mainly driven by GPUs, makes us consider the evaluation easy, it comes with large
energy consumption. In embedded platforms, the evaluation is still challenging because
resources such as computing power, memory, storage, and energy are highly limited.
The large energy consumption can also be a critical issue in data centers and can restrict
the computing capacity.

Fortunately, weight parameters in neural networks are heavily redundant [6], and ex-
ploiting the redundancy, computational cost, and space requirements can be minimized
while maintaining the performance. To this end, several methods have been proposed
very recently [7–12], and all of these methods assume that neural networks are executed in
stored-program computers, including GPU-based machines. The traditional computers
have several processing bottlenecks, such as limited memory-bandwidth and a limited num-
ber of processing elements, and the performance benefit (e.g., speed-up) by the parameter
reduction is not as high as the reduction rate.

Emerging neuromorphic computers emulate biological neural networks, and silicon
synapses and neurons are processing elements [13,14]. Connections and units in neural
networks are mapped to synapses and neurons, respectively, and these computational
resources are not time-multiplexed as in the traditional computers. Thus, the runtime
is not a concern because it does not depend on the size of the models. The size of the
models affects the required synapses and neurons. To store weight parameters within
synapses or nearby, neuromorphic computers use low-density on-chip memories and equip
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with at least as many synapses as the parameters [13,15–17]. Without weight-sharing,
the number of synapses equals the number of weight parameters. Thus, the number of pa-
rameters itself is a very important metric in neuromorphic computers because each weight
parameter requires a synpase, a computational resource with its own dedicated memory
in neuromorphic systems [18]. In [19], the authors reduced the number of parameters for
neuromorphic systems by combining matrix factorization and pruning. Thus, it can be
applied to fully connected layers only and cannot take advantage of redundancy across
multiple dimensions in high-order tensors.

In this paper, we describe a general parameter reduction method using new tensor
approximation methods based on divide-and-conquer [20]. This technique can be applied
to store-program computers as well as neuromorphic computers. However, unlike previous
works, our main objective was to reduce the size of the models for neuromorphic computers,
so we consider the number of parameters as the figure of merit.

This paper makes the following contributions: (1) For neuromorphic computers, we
evaluated the methods for reducing the size of the models in terms of the parameter
reduction. (2) We approximated a tensor using a more expressive format than the canonical
polyadic (CP) format [9], which has been commonly used recently and has shown that
higher expressiveness can lead to a better quality of results. (3) For a convolutional network,
we compressed all the layers, including fully-connected layers, using a single method and
demonstrated that the network with all layers compressed could perform similarly to the
original network. (4) We show that the weights of the first fully-connected layers can be
tensor-approximated effectively.

2. Related Work

Denil et al. [6] showed that weight parameters are highly redundant by representing a
weight matrix as a product of two low-rank matrices. This implies that neural networks are
heavily over-parameterized. Their work ignited recent interest in exploiting the massive
redundancy to minimize cost at test time.

A group of works [7–9] used the redundancy to speed up the evaluation of convolu-
tional neural networks. They reduced the number of parameters from a trained network
by finding low-rank approximations to weight tensors. Jaderberg et al. [7] approximated
the 4-tensor representing a convolutional kernel as a composition of two 3-tensors and
obtained parameters that minimized the difference between the outputs of the original and
approximated layers using training data. Denton et al. [8] combined filter clustering and a
3-tensor approximation method to approximate a 4-tensor. For the first convolutional layer
and the higher convolutional layers, different clustering methods were employed, and for
the fully connected layers, low-rank matrix approximation was used. They also suggested
fine-tuning the layers above the approximated one when the accuracy is degraded after
approximation. Between the two 3-tensor approximation methods they used, the one that
produced better results approximated a 3-tensor to a sum of separable 3-tensors, which is
known as canonical polyadic (CP) decomposition [9]. They demonstrated 2× speed-ups of
convolutional layers within a 1% accuracy drop. Lebedev et al. [9] used CP decomposition
for 4-tensors and fine-tuned the whole network. They demonstrated better speed-up (e.g.,
4× speed-up of a convolutional layer) than the previous methods. In the meantime, they
also reported a failure in a fine-tuning that they suspected was caused by the instability
of CP decomposition. In the CP format, the tensor approximation problem with a given
rank is known to be unstable, and robust numerical procedures such as singular value
decomposition (SVD) [21] are in effect not available [22].

To achieve the same goal of fast feedforward execution, Jin et al. [10] trained a network
with a small number of parameters in the first place. They applied structural constraints to
obtain two separable 3-tensors for each output channel in convolutional layers and achieved
2× speed-up for the forward pass of the whole network. While reducing the number of
parameters decreases the storage and memory requirement, parameters in convolutional
layers take up a small portion of the total parameters. In order to reduce the memory
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footprint specifically, Yang et al. [11] replaced all fully connected layers with a kernel
machine. The space overhead could be minimized by finding a compact representation for
weights as well as by reducing the number of parameters. Gong et al. [12] performed scalar
quantization using k-means clustering for weights in fully connected layers. This type of
method can be combined with parameter reduction methods.

Our work differs from previous works in several ways. First, we aimed to minimize the
cost in executing neural networks on neuromorphic computers. To this end, we chose the
number of parameters as our cost metric. Second, we propose a new tensor approximation
algorithm based on divide-and-conquer [20]and achieved up to 154× reduction in weight
parameters within a 1% accuracy drop. To the best of our knowledge, such a high reduction
rate has not been reported yet. Last, our method does not have certain limitations that
some of the recent methods have. Our method is numerically stable and can be applied
to both convolutional layers and fully connected layers. Moreover, the resulting reduced
network is end-to-end trainable.

3. Tensor Factorization

In a convolutional neural network for computer vision tasks, the weights in a con-
volutional layer or the first fully connected layer can be represented in a 4th-order tensor,
and we propose a tensor factorization (approximation) method for a weight tensor.

3.1. Existing Methods

For high-order tensor decomposition, several methods are known, such as CP de-
composition and Tucker decomposition (also known as high-order singular value decom-
position) [23]. In the CP format, the tensor approximation problem with a given rank is
known to be unstable, and robust numerical procedures such as the SVD are in effect not
available [22]. Tucker decomposition can be computed via several SVDs, but the number of
parameters after the decomposition still depends on the dimension exponentially. To tackle
this issue, new methods such as tensor-train decomposition [24] and hierarchical Tucker
decomposition [25] have been proposed. These methods are different from the proposed
method, and they involve complex operations that are difficult to implement in neuro-
morphic systems, with exception of CP decomposition. We compare our method with CP
decomposition later in this paper.

3.2. Proposed Factorization Method

Definition 1. The d-mode matricization of a tensor χ ∈ Rn1×n2×···×nd is a matrix defined byM :
Rn1×n2×···×nd → Rnd×n1n2···nd−1 , (M(χ))id ,(i1,...,id−1)

= χi1,i2,··· ,id for any indices (i1, · · · , id) in
the multi-index set {1, · · · , n1} × · · · × {1, · · · , nd}.

Definition 2. The vectorization of a tensor χ ∈ Rn1×n2×···×nd is a vector defined byV : Rn1×n2×···×nd

→ Rn1n2···nd , (V(χ))(i1,...,id) = χi1,i2,··· ,id for any indices (i1, · · · , id) in the multi-index set
{1, · · · , n1} × · · · × {1, · · · , nd}.

We assume the reverse lexicographical order of the multi-indices throughout this
paper. We now propose a tensor factorization method based on divide-and-conquer [20].

Definition 3. A decomposition tree T of a tensor χ is a tree such that (1) each node s is associated
with a tensor χ(s), (2) each node has two types of successors, (3) the tensor corresponding to a
node is composed of the tensors of its successors of one type, and (4) the root is associated with χ.
The successor sets are denoted by Sa and Sb, respectively.
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Given a tensor χ ∈ Rn1×n2×···×ne , we recursively construct T (χ) from the root node.
For a node s, the successors of the first type are constructed by the SVD.Let χ(s) be a d-th
order tensor of shape n1 × n2 × · · · × nd. The SVD for the transpose ofM(χ) yields

M(χ(s))T = U(s)Σ(s)V(s)T
. (1)

Let Sa(s) = {s1, · · · , sr(s)}, where r(s) is the rank ofM(χ(s)). Each left-singular vector
(i.e., the column vectors of U(s)) is reshaped into a tensor of shape n1 × n2 × · · · × nd−1
such that the left-singular vector is the vectorization of the tensor, which results in r(s)

(d-1)th order tensors. These are χ(s1), ..., χ(sr). Thus, we can write

U(s) = [V(χ(s1)) · · · V(χ(sr))]. (2)

For the node s, the successors of the second type are constructed by subtensors. Let
Sb(s) = {s′1, · · · , s′nd

}. We obtain the subtensors by fixing the highest order index (i.e., the d-

mode), and they become χ(s′1), ..., χ
(s′nd

). Thus, we produce r(s) + nd one-level lower-order
tensors in total using both the methods. Given a tensor, we apply this procedure recursively
until it produces vectors (i.e., 1st-order tensors). Since we break the same tensors in the
two ways during the recursion, we have two possible factored forms for each tensor and
choose either one of them. This allows us to explore numerous factored forms and make
our model very expressive.

Let us denote the number of parameters of the tensor associated with a node s by η(s).
Since Σ(s) can be collapsed into either U(s) or V(s), the number of parameters η(s) in χ(s)

after the factorization becomes Σr(s)
i η(si) + r(s)nd if the SVD form is taken. If the subtensor

form is taken, η(s) = Σnd
i η(s′i).

Let x(s)i1,··· ,id = χ
(s)
i1,··· ,id , v(s)id ,j = V(s)

id ,j, and λ
(s)
j = Σ

(s)
j,j . Our tensor decomposition can also

be written in an elementwise form as

x(s)i1,i2,··· ,id = α(s)
r(s)

∑
j

λ
(s)
j x

(sj)

i1,··· ,id−1
v(s)id ,j + (1− α(s))x

(s′id
)

i1,··· ,id−1
, (3)

where α(s) is a binary free variable that can be set to either one or zero. The decomposition
for a 3rd-order tensor is depicted in Figure 1.
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Figure 1. A 3rd-order tensor of shape n1 × n2 × n3 is decomposed into r(s) + n3 tensors of shape
n1 × n2. The r(s) tensors are obtained by the SVD, and the n3 tensors are the 3-mode subtensors. All
the 2nd-order tensors are decomposed again in the same manner into 1st-order tensors.
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3.3. Low-Rank Tensor Approximation

The parameter reduction by the factorization is usually possible when r(s) is small.
Thus, we perform low-rank approximation with the factorization. Since we break a tensor
down into smaller, lower-order tensors, the problem of approximating a tensor is now
solved by combing small, approximated tensors into a larger tensor. If a tensor is broken
down by the SVD, the approximation χ̃(s) to the original tensor is obtained as follows:
(i) small singular values are replaced by zero, and (ii) χ(si) is approximated by χ̃(si). If a
tensor is broken down into the nd subtensors, its approximation is simply obtained by
combing the approximations to the nd subtensors. Since a tensor is broken down in both
ways, we can choose one of the two approximations to the tensor.

To approximate the given tensor χ using the decomposition, we zero-out small singular
values in a recursive manner. For this, we introduce another binary variable β(s) and write
the approximated tensor χ̃(s) in an elementwise form as

x̃(s)i1,i2,··· ,id = α(s)
r(s)

∑
j

λ
(s)
j β

(s)
j x̃

(sj)

i1,··· ,id−1
v(s)id ,j + (1− α(s))x̃

(s′id
)

i1,··· ,id−1
, (4)

Unlike the standard low-rank approximation method, we can zero-out a singular
value when a smaller singular value than that remains. That is, we do not necessarily
zero-out trailing singular values. Thus, we use the set of the binary values β

(s)
1 , · · · , β

(s)
r(s)

instead of the target rank. We define the approximation error by

ε(s) , ‖χ(s) − χ̃(s)‖2
F. (5)

where ‖‖F is the Frobenius norm. Then, the approximation error by the proposed method is

ε(s) = α(s)
r(s)

∑
j=1

λ
(s)
j

2(
β
(s)
j + (1− β

(s)
j )ε(sj)

)
+ (1− α(s))

nd

∑
j=1

ε
(s′j) (6)

since U(s) and V(s) are orthogonal matrices.

4. Dual-Objective Optimization

The choices between the two possible approximations and the decisions on the zero-out
through the recursion lead to various candidate solutions to the problem of approximating
a tensor. Our objective is to minimize both the approximation error and the number of
parameters. For this dual-objective optimization, we use two algorithms. The first algorithm
finds Pareto optimal solutions in a recursive manner with several pruning methods. The
second algorithm is a greedy algorithm that takes a threshold value as input and determines
singular values to zero out using the value. This algorithm chooses the one with a smaller
cost between the two possible approximations.

4.1. Pareto Front Method

To tackle the optimization problem, we compute the Pareto front in a recursive manner.
A tuple (l,m) corresponds to a possible approximation to a tensor, where l and m are the
cost and the approximation error, respectively, representing the results of the approxima-
tion. We call the tuple the option. As an inductive hypothesis, we suppose that for each
χ(s1), · · · , χ

(s
r(s)

) generated by χ(s), we have a Pareto optimal set of options in Figure 2.
Since the approximation to χ(s) is a composition of the approximations to the one-level
lower-order tensors, an option for χ(s) is associated with a combination of options, each
from each Pareto optimal set. In order to obtain the set of options for χ(s) from all the
Pareto sets, the approximation errors in the Pareto set for χ(sj) are multiplied by λ

(s)
j for

j = 1, · · · , r(s). Then, the set of options for χ(s) is the Minkowiski sum of all the Pareto opti-
mal sets. We also suppose that for each d-mode subtensor of χ(s), we have a Pareto optimal



Electronics 2022, 11, 214 6 of 10

set of options. We also perform the Minkowiski operation. Then, we have two option sets
for χ(s). Since we can choose either one of the approximations, we perform the union oper-
ation for the two sets and non-Pareto optimal options are discarded, resulting in the Pareto
optimal set for χ(s). In this manner, we obtain the final Pareto optimal set for χ. When χ(s)

is a matrix, we just perform the k(s)-rank approximation for k(s) = 1, ..., bn1n2/(n1 + n2)c,
which yields a Pareto optimal set. A larger rank than these values results in a larger cost
than the non-approximated one.

6 9 6

0.1
0

0 6

0.875

18

0.5

0.26

0.5
0.36

costcost cost

1(s )( )2

1λ εs2(s )( )2

2λ εs
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0
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0.6

0

159 12

( )ε s
Minkowski 

sum
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= +

Figure 2. For a tensor of shape 3× 3× 2, the merge of Pareto optimal sets is illustrated, assuming

α(s) = 1. It implies that λ
(s)
1

2
= 0.5 and λ

(s)
2

2
= 0.375 since ‖χ(s1)‖F = ‖χ(s2)‖F = 1. The option (6,

0.6) is associated with the case that β
(s)
1 = 0 and β

(s)
2 = 1, showing that zeroing out trailing singular

values can result in sub-optimal solutions. This occurs since λ
(s)
1

2
λ
(s1)
1

2
< λ

(s)
2

2
λ
(s2)
1

2
.

4.2. Greedy Method

We also use a greedy algorithm for the optimization problem. This algorithm takes a
threshold value τ as input and zero-outs trailing singular values as the standard low-rank
approximation method, and the target rank is denoted by k(s). We determine k(s) based on
the approximation error to χ per unit cost. Thus, we set k(s) to the largest integer j ≤ r(s)

such that
ψ(sj)

n1 × n2 × · · · × nd−1 + nd
> τ (7)

where ψ(sj) = λ
(s)
j

2
ψ(s), ψ

(s′j) = ψ(s), and ψ(φ) = 1. To determine α(s), we compare the costs
of the two possible approximations and take the one with a smaller cost.

5. Application to Weight Tensors

Let χ ∈ RKh×Kw×C×F be the weight tensor of a convolutional layer (a fully connected
layer), where Kh and Kw are the height and width of the kernel (the input map), respectively,
C is the number of input channels, and F is the number of output feature maps. We assume
that this tensor is approximated by the greedy method without loss of generality, and
we further assume that α(s) = 1 for all nodes s in T (χ). Let Li be the set of the nodes at
level i in T (χ). Then we define

Ri = ∑
s∈Li

k(s) (8)

for i = 1, · · · , 3. In the greedy method, we can enforce k(s) to 1 for every node s ∈
L2 ∪ L3. Then, our method comes to use the CP-format, and we have R1 = R2 = R3. Our
decomposition method factorizes the original layer into five sublayers. If we represent
the weights of each sublayer in the same format as those of the original layer, the weight
tensors of the sublayers are of shape 1× 1× C× R2, Kh × 1× R2 × R3, 1× Kw × R3 × R3,
1× 1× R3 × R1, and 1× 1× R1 × F, respectively. If the original layer is convolutional,
the sublayers are also convolutional. Note that these layers are sparsely connected across
channels.

Fine-Tuning

Artificial neural networks are known to be error tolerant. As we reduce the number of
parameters, the approximation error increases, but the performance of the networks can
remain the same due to the resilience. However, despite the resilience, the performance
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of ANNs will drop in the end, as the network diverges from the original one. In the dual-
objective optimization, the approximate error is a surrogate metric to evaluate the quality
of networks. The true metric is the performance of ANNs, such as classification accuracy.
To maximize the performance of ANNs while minimizing the number of parameters,
the reduced parameters can be fine-tuned against the training data.

6. Experiments

We implemented the proposed algorithms in Python on top of Pylearn2 [26]. The pro-
posed methods were evaluated on MNIST, CIFAR-10, and ILSVRC 2012 image classification
datasets. We used a convolutional neural network (CNN) for MNIST. The network had
two convolutional layers with 5 × 5 filters and a final softmax layer. Each convolutional
layer included a max-pooling with sizes of 4 and strides of 2 and the rectified linear unit
as the activation function. The weight decay was set to 0.00005; the momentum was set
to 0.5; the learning rate was set to 0.01. The baseline model had 109,760 parameters and
achieved 99.18% classification accuracy after training for 33 epochs. Our method can be
applied to any layer, and we first performed layer-wise experiments. The results are shown
in Figure 3. The classification accuracy dropped gradually as the approximation error in-
creased, which shows that the surrogate metric to evaluate the quality of networks worked
well. The second convolutional layer had 102,400 parameters, which was 93.3% of the total
parameters. When we reduced it by 43× to 2375 parameters, the classification accuracy
dropped to 76.45%. However, after fine-tuning the factored network again for 30 epochs,
including the other layers, the accuracy was recovered to 99.25%. Thus, we achieved the
43× reduction without loss of accuracy. If some accuracy loss would have been acceptable,
we could have reduced it by 164× to 627 parameters at the cost of 0.75% accuracy loss.

For the following experiments, we used the greedy algorithm. We used a CNN
described in [27] for CIFAR-10. The network had three convolutional maxout layers, a fully
connected maxout layer, and a fully connected softmax layer. The baseline model achieved
88.29% accuracy. We performed experiments on the fully connected maxout layer with
12 M parameters, which was 73.9% of the total parameters. We reduced it by 154× to 77.8 K
at the expense of 0.9% accuracy drop.

We used AlexNet [1] implemented in [28] for ILSVRC 2012. The network contained
five convolutional layers and three fully connected layers. The baseline model achieved
56.4% top-1 accuracy. We performed experiments on the first fully connected layer with
37.7 M parameters, which was 61.9% of the total parameters. We reduced it by 28× to 1.3 M
parameters at the expense of 0.83% top-1 accuracy drop. We could have reduced it further
by 58× to 654 K parameters by sacrificing 2.25% top-1 accuracy.

Comparison with Existing Parameter Reduction Techniques

Since all the existing methods use different neural network architectures, learning
techniques, hyperparameters, and data sets, it is difficult to compare them directly. Nev-
ertheless, we mention some results here that can be roughly compared with our results.
Considering that we did not use any adaption and dropout to keep the MNIST experi-
ments simple, our MNIST results may be compared with the jointly trained Fastfood-1024
in [11], which had 38,821 total parameters and achieved 0.83% error. When we applied our
techniques to the layer with the largest number of parameters only, the resulting network
had 9375 total parameters and achieved 0.75% error. When we applied our technique to
all the layers, the resulting network had 3270 total parameters and achieved 0.81% error.
The results are summarized in Table 1. The resulting model by our method was very small
compared with the other models.
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Figure 3. The Pareto optimal solutions to the dual-objective problem of cost and approximation
error are shown in red. For 30 sampled solutions, the classification accuracy is shown in blue,
and classification accuracy after re-training is in green. In the re-training, all parameters including the
other layers are fine-tuned. Comparing (c) with (d) shows that it is better to approximate the weights
of the layer as a tensor rather than as a matrix.

Table 1. Parameter reduction results on MNIST dataset.

Methods Layer
Baseline Reduced Model

Params Error Params Error

[11] Conv. layers 25,500 0.87% 25,500 0.83%FC layer 405,000 13,321

[10]

Conv. layer 1 7200

0.38%

7200

0.44%Conv. layer 2 307,200 30,912
Conv. layer 3 819,200 102,144

FC layers NA NA

CP-decomp.
Conv. layer 1 1600

0.82%
600

1.14%Conv. layer 2 102,400 828
FC layer 5760 1920

This work
Conv. layer 1 1600

0.82%
588

0.81%Conv. layer 2 102,400 824
FC layer 5760 1858

For a recent method based on CP decomposition [9], we performed a direct comparison
by implementing it within our environments. We used alternating least squares (ALS) for
CP decomposition. The method usually finds a better approximation to a given tensor with
a same cost budget. This seems to be caused by the facts that (1) we find orthogonal vectors
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during the SVD, and (2) our method approximates decomposed tensors independently.
Better approximation provides a good initial solution to the fine-tuning after approximation,
and the initial solution can be close to the original solution. However, a slightly worse
starting point is easily compensated for during the fine-tuning. Our factored form was a
generalization to the CP format and was more expressive. This expressiveness paid off
after the fine-tuning. We set the target rank of CP decomposition such that the number
of parameters would become similar to that of our reduced model. In CP decomposition,
the sizes of resulting models are coarse-grained, and the reduced model by CP decomposi-
tion was slightly larger than our reduced model. We fine-tuned the approximated model
using learning rates 0.01, 0.001, and 0.0001, and the best result was selected, which is also
shown in Table 1. In the previous experiment for CIFAR-10, the greedy algorithm achieved
87.42% accuracy when the size of the first fully connected layer was reduced to 77,750
parameters. For the same experiment, the CP decomposition achieved 86.31% accuracy
when it was reduced to 78,358 parameters.

7. Discussion

As a part of our research toward building a neuromorphic computer that forward-
executes neural networks with minimum energy consumption, we presented a parameter
reduction technique based on our own tensor approximation method and achieved up to
154× reduction within negligible loss of performance.

The proposed method provided an enormous reduction rate for convolutional layers
and first densely connected layers. For subsequent densely connected layers, the proposed
method was reduced to the standard low-rank approximation method. A possible research
direction for future works is to reshape a low-order tensor (e.g., a matrix) into a higher-order
tensor. We believe that this could be possible because the first densely connected layers were
compressed significantly even without fast-decaying singular values. Another interesting
research avenue is to combine the strengths of our methods and CP decomposition. We may
be able to come up with better approximation algorithms to the proposed factored format.
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