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Abstract: The measurement of thermodynamic properties of chemical or biological reactions were
often confined to experimental means, which produced overall measurements of properties being
investigated, but were usually susceptible to pitfalls of being too general. Among the thermodynamic
properties that are of interest, reaction rates hold the greatest significance, as they play a critical role
in reaction processes where speed is of essence, especially when fast association may enhance binding
affinity of reaction molecules. Association reactions with high affinities often involve the formation
of a intermediate state, which can be demonstrated by a hyperbolic reaction curve, but whose
low abundance in reaction mixture often preclude the possibility of experimental measurement.
Therefore, we resorted to computational methods using predefined reaction models that model the
intermediate state as the reaction progresses. Here, we present a novel method called AKPE (ANN-
Dependent Kinetic Parameter Extraction), our goal is to investigate the association/dissociation
rate constants and the concentration dynamics of lowly-populated states (intermediate states) in the
reaction landscape. To reach our goal, we simulated the chemical or biological reactions as system of
differential equations, employed artificial neural networks (ANN) to model experimentally measured
data, and utilized Particle Swarm Optimization (PSO) algorithm to obtain the globally optimum
parameters in both the simulation and data fitting. In the Results section, we have successfully
modeled a protein association reaction using AKPE, obtained the kinetic rate constants of the reaction,
and constructed a full concentration versus reaction time curve of the intermediate state during the
reaction. Furthermore, judging from the various validation methods that the method proposed in
this paper has strong robustness and accuracy.

Keywords: reaction-diffusionsystem; artificial neural network (ANN); model-dependent reaction
monitoring; hidden state prediction; particle swarm optimization

1. Introduction

The association of small chemicals or large biological molecules in a rapid, specific
way is an essential step in various chemical or biological processes ranging from enzyme
catalysis to regulation of immune responses [1,2]; extracting key thermodynamic infor-
mation from those reactions will greatly benefit the understanding of those chemical or
biological processes. Two of the most prominent thermodynamic properties that define a
reaction are association rates and reaction intermediate state concentrations [3].

The rate of association spans a range from 102 to 109 M−1s−1; it is limited either by
diffusion or subsequent chemical processes such as conformational rearrangement [1].
Association rates can be categorized as time-dependent and time-independent [2,4]. Time-
dependent reaction rate constants are usually greatly influenced by diffusion, are more
susceptible to disruptions in reaction environment, and can thus be described by non-
equilibrium radial distribution functions [5,6]. Time-independent reactions rates look at
molecule diffusion and interactions on a mass scale that exhibit overall reaction kinetics.
Time-independent reaction rates can be modeled through approximation [7].
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Association reactions between chemical or biological molecules often involve an
intermediate state (also known as transitional state) whose existence greatly expedite the
efficiency of molecule association, thus increasing chemical or biological reaction rates [1].
Intermediate states in the reaction pathway, also sometimes called transition states, refer to
one or a set of configurations that possess rotational or translational correlations between
the interacting species [3,8]. Intermediate states are the most unstable species in the
reaction pathway, whose bonds are in the process of been constantly broken and remade
[8]. They are key to elucidating chemical or biological reaction pathways as their kinetic
and structural characteristics shed light on the reaction process and energy landscape.

In order to reveal the structural or kinetic traits of intermediate states, kinetic experi-
ments such as stop-flow were used in conjunction with fluorescence spectroscopy to capture
this transient species [9–12]. Experimental detection of the transitional states can be done
for some reactions, but for others, especially reactions involving large biological molecules,
experimental detection of transient states might prove to be extremely difficult [1,8]. More
generally, experimental data can only provide the kinetic and structural information of the
more abundant states, which often exist as dominant fractions and are much easier to detect
using regular experimental tools. Even though experimental data were unable to provide
specific kinetic parameters associated with intermediate states, its existence can often be
presumed based on a hyperbolic dependence of reaction time to reactant concentration [8].
We speculate that if experimental evidence confirm the existence of the intermediate state
but were unable extract the kinetic parameters involving the intermediate state turnover,
it is crucial to reveal the information regarding the intermediate states via methods other
than experimental. Therefore, we strive to build an efficient computational framework for
extracting information encoded in experimental data regarding intermediate states [13].

Here, we will present a novel method making use of artificial neural-networks to
gather kinetic and concentration information of a possible transitional state in a biological
or chemical reaction system [14]. The objective of our method is to use computational
methods to extract association/dissociation rate constants and concentration dynamics
of the intermediate state with the aid of experimental datasets. To do so, firstly, we
simulated the reaction systems using differential equations, secondly, we fit the modeled
differential equations to experimental data, using neural networks as an approximator
to differential equations [15]. Finally, we utilized global search algorithm Particle Swarm
Optimization (PSO) to solve the non-linear differential equations derived from reactions.
We chose PSO because it can provides us a global best solution on the parameter space,
other algorithms, such as gradient descent are prone to encounter local optima, are single
based or have unknown search space issues; therefore, they are unable to produce an
optimal solution [16]. In sum, we have developed a simple, but effective model to simulate
the reactions as differential equations using the adaptive strength of neural networks, and
used a rapid global search method (PSO) [17,18] to minimize unsupervised errors combined
from simulating reactions and from the fitting of experimental data to neural networks.

The main contributions of this paper are as follows:

1. Based on chemical reaction kinetics and experimental presumptions, a reaction model
of differential equations involving intermediate states were constructed describing
chemical or biological reactions.

2. Utilizing Artificial Neural Network (ANN) to model differential equations describing
reactions. Adjusting ANN’s weights to best model the chemical reactions while mini-
mizing the difference between the output of the neural network and experimentally
measured data using swarm intelligence algorithms. Based on ANN and predefined
reaction models, a novel model-based parameter extraction method called ANN-
Dependent Kinetic Parameter Extraction method (AKPE) emerges that could obtain
kinetic rate constants associated with lowly-populated species with high efficiency
and low computational cost.

3. Extensive experiments employing the proposed method were carried out upon real-
life examples. Kinetic parameters of biochemical reactions regarding the intermediate
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state were given. The derived parameters were further analyzed and subsequent
in-depth kinetic and structural characterization of the intermediate state were accom-
plished.

4. Validation of our method were carried out by comparing kinetic rate constants pro-
duced by AKPE with corresponding experimental kinetic rates and stochastic sim-
ulation results, consistency is achieved. The agreement between parameter values
produced by AKPE and other methods confirms the validity of AKPE.

The remainder of this paper is organized as follows. Section 2 (Related Works) re-
viewed the area of chemical reaction simulation and introduced some basic ideas in model-
based reaction parameter prediction. Section 3 (Materials and Methods) proposed the
general architecture and the computational details of our method. In Section 4, (Results),
an real-life case study using the C terminal domain of SARS-CoV virus’s main protease was
analyzed using the proposed method, extensive biological characterization was achieved.
Section 5 (Discussion) validated the proposed method by comparing it with other algo-
rithms or experimental data. Finally, Section 6 (Conclusions) and 7 (Future Perspective)
concluded and provided future perspectives of this study.

2. Related Works

This section reviews some reaction simulation approaches and highlights the basic
features of AKPE.

The two most widely used reaction simulation methods are deterministic and stochas-
tic. Deterministic methods make use of reaction models, reaction models describe the rates
of reactions and can demonstrate the concentration fluctuations of reactants. Large scale
reactions that involve large quantities of reactants can be described by deterministic linear
or non-linear ordinary differential equations in homogenous reaction space [19,20]. Small
scale association reactions that can be described by a limited number of molecules, or when
the key steps of the reactions depend on the behavior of a limited number of molecules are
more accurately simulated by stochastic simulation algorithms (SSA), chemical reaction
models can be incorporated into both of the aforementioned simulation categories [21].

2.1. Deterministic Simulation Methods

For macroscopic deterministic reaction systems, differential equations can often de-
scribe reaction system and reactants by:

In the case of single reactant:

G(x, y(x), y(x)(2), ..., y(x− 1)(n−1), y(x)(n)) = 0 (1)

where x is the reaction time and y(x) denotes reactant concentration as a function of time,
G is the differential function based on the chemical properties of the reaction system, (n)
denotes the nth derivative of the term with respect to reaction time and is also the order of
the reaction.

Sets of differential equations involving k reacting species are presented below:

{
G1(x, y1(x), · · · , y1(x)(n), yk(x)(1), · · · , yk(x)(n)) = 0

· · ·

Gk(x, y1(x), · · · , y1(x)(n), yk(x)(1), · · · , yk(x)(n)) = 0

(2)

where x is the reaction time, y1(x) to yk(x) are the concentrations of the k reactants in
the reaction system, the system of differential equations take into account the interaction
between the k species, n is the reaction order.

2.2. Neural Networks as Universal Approximators

Neural networks can be universal approximators [14]; it can be ideal to use neural
networks to simulate reaction-derived differential equations. Methods utilizing feed for-
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ward neural networks was applied to solving differential equations describing gas-phase
or liquid-phase reaction systems in steady states. The capability of neural networks as
approximators of reaction-derived differential equations were exploited, postulating them
as solutions for a given deferential equation with an unsupervised error. Neural networks
can provide an expression for the analytical solution of differential equations over the entire
definition domain. As it can be expressed as a set of compact mathematical expression,
therefore, it can include any number of parameters and variables, making it adequate in
solving optimization problem with an accuracy of around MSE/10−3 to 10−9. Although
other analytical approaches at solving differential equations might arrive at identical so-
lutions, the neural networks approach to solving differential equations is much more
computationally efficient since it allows the evaluation of solutions at any desired number
of input points with much less memory usage and computing time [22,23].

When describing gas-phase or liquid-phase reaction systems in non-equilibrium, the
capability of neural networks to approximate stochastic diffusional systems can be revealed.
A special class of neural networks, named Stochastic Neural Networks(SNN), are capable
of approximating stochastic processes. SNN incorporated statistical randomness into its
mathematical expression, thus are capable of generating random sample functions. SNN
can be canonical solutions to random processes describing reaction systems just as ANN
can represent solutions to ordinary differential equations. SNN is more memory efficient at
representing solutions to random differential equations, since they are capable of generating
a collection of sample functions while normal ANN only generate a single sample function.
Some example studies have demonstrated SNN’s applicability at approximating solutions
of non-linear random differential Equations [24,25].

2.3. Stochastic Simulation Methods

In microscopic systems where only a small number of molecules are present, stochastic
diffusion takes a crucial role, therefore, differential equations describing the behavior of
molecules in such a system will take diffusion and the location of each molecule into
account. In such systems, stochasticity and variability is an perpetual problem to address.
It has been shown experimentally that in some of these reaction systems, stochasticity of
reaction resulted in large variability of reaction rates [1].

Some theoretical work had been done to understand the consequences of stochastic
fluctuations of molecule concentration on molecular interactions [26]. Take two freely
diffusing reacting particles with a center to center distance r as example, p(r, t) will be the
probability density of two particles to remain unbound and separated with a distance r
at time t and reaction dimensionality ω [5,27]. Modeling the reaction of the two particles
gives the reaction-diffusion master equation, which is given below:

∂p(r, t)
∂t

= D
1

rω−1
∂

∂r
(rω ∂p(r, t)

∂r
) (3)

The generalized form of the reaction-diffusion master equation can be derived when
the space is divided into various compartments, the molecule Xij denote a molecule species

I in subvolumn Cj. When describing reactions such as nikXij
ωj−→ nkjXkj, where nx is the

stoichiometry vector, ωj is the probability that the reaction will occur in compartment Cj.
The generalized form of reaction-diffusion master equation can thus be expressed as [28]:

∂p(r, t)
∂t

= Mp(x, t) + D
∂p(r, t)

∂r
(4)
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where t is the reaction time, x is the coordinate position of the molecule, the factor M
governs reaction and D diffusion. The form of M and D can be given below for reactant X
of species i in compartment j:

M =
K

∑
j=1

ωij(xij + nir)p(xi1, · · · , xij − nir, · · · xiK, t) (5)

D =
K

∑
j=1

qi(xij + mir)p(xi1, · · · , xij −mir, · · · xiK, t) (6)

where qi is the chemical reaction propensity function, which is also a measure of reac-
tion rate.

Stochastic simulation algorithms (SSA) are widely used to implement the chemical
master Equation [29], it is a procedure for numerically simulating the time evolution of a
small scale, well-stirred, diffusion influenced reacting system in which the reaction rate is
subjected to stochastic variation [30]. The most well-known and widely applied of which is
developed by Gillespia and thus termed Gillespia’s Algorithm [31], the general principle of
which is described below:

For chemical reactions of the form: α1 A + α2 A− > α3C or α1 A + α2B− > α3D,
Gillespia’s Algorithm will first compute the propensity functions of each reaction with each
reaction’s corresponding probability distribution, and then determine the time when the
next chemical reaction takes place, finally, it provides the choice of which reaction occurs
at which time step and the molecular number of each species in reaction will be updated
accordingly, reporting the state of each reactant and the value of reaction kinetics as the
reaction progress [32].

However, despite recent major improvements in the efficiency of the SSA, its drawback
remains the inaccuracy of simulation results, which is a common occurrence in experimental
data independent computational simulations of reaction, this is a problem due to the
unpredictability of chemical or biological systems. The great amount of computational time
that were often required to simulate a desired system is also one of the disadvantage of
SSA [32]. People often resort to dynamic simulations that take into account the position
and structural traits of every molecule in the reaction system, and it generate linear step
response curves or reaction trajectories that are not necessary when the goal is only to
obtain the thermodynamic parameters of the reaction system [33,34], but require much
more computation power and need much more time [33,35].

Experimental results are valuable because they help to guide the process of reaction
model building and simplify the complicated simulation of molecules in reaction. Estab-
lishing reaction models based on experimental data is beginning to gain more popularity
in the field of chemical or biological computation, because it more accurately model the
biological or chemical reaction process than hypothesized models alone.

Here we proposed an ANN-dependent Kinetic Parameter Extraction Method (AKPE)
as an aid to experimental data to acquire kinetic rate constants from reactions. Features
involved in AKPE include:

1. Presentation of reaction models describing chemical or biological reactions based on
known experimental data.

2. Acquisition of reaction parameters based on reaction models will substantially sim-
plify the simulation procedure and shorten the amount computational time.

3. The stochasticity of molecular reactions can be reflected on time-independent or
time-dependent association rate constants, here, microscopic parameters such as
center-to-center distance between two reacting molecules were also encoded in the
kinetic rate constants, and AKPE will decode and extract these parameters from
experimental data.
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3. Materials and Methods
3.1. Introduction of the Computation Mechanism of ANN-Dependent Kinetic Parameter
Extraction (AKPE)

In this section, a brief introduction of the method will be given. Firstly, a mathematical
model of differential equations is presented describing chemical or biological reactions.
The coefficients of the differential equations correspond to the kinetic parameters of the
reactions. secondly, a neural network will be used to approximate the aforementioned dif-
ferential equations according to experimental data, the coefficients in differential equations
were incorporated into neural networks. Finally, errors from the differential equations
and from the fitting of the experimental data to neural networks were combined to form
a final error that will be evaluated by a global search algorithm that will yield optimum
parameters for subsequent reaction analysis. The outline of the method is presented on a
step-by-step basis below.

3.2. Mathematical Modeling of Reactions

In this section, mathematical models of reactions were presented as differential equa-
tions. For systems where the copy numbers of reactants are large enough that stochastic
fluctuations in solvents have little effect on the macroscopic rate constants, Deterministic
Reaction Rate Equations (RRE) are sufficient to describe the reaction system. Depending on
whether the reactants are partitioned into different spatial compartments, we categorize
RREs into ordinary differential equations and partial differential equations.

3.2.1. Differential Equation Describing Single Reactant Reaction

Ordinary deterministic chemical rate equations when describing reactions with a
single reactant, such as material decay A -> A, can be expressed in the form:

G(x, A(x), A(x)(2), ..., A(x− 1)(n−1), A(x)(n)) = 0, x ∈ D (7)

where x is the reaction time and D designate a certain definition domain of x, A(x) signifies
the concentration of reactant A, A(n) denotes the nth order derivative of A, n is the reaction
order. The boundary conditions were defined such that ti is any predefined points in
domain D:

φ(x, A(x), A(x)(1), A(x)(2), ..., A(x− 1)(n−1), A(x)(n))|x=ti
= 0 (8)

3.2.2. Differential Equations Involving Multiple Reactants

When the chemical reaction system involves multiple reacting species, such as in the
nth order reaction A+B ->C , and the aim is to monitor the status of multiple reactants.
We shall use a set of differential equations:

{
GA(x, A(x), A(x)(1), · · · , A(x)(n), B(x), B(x)(1), · · · , B(x)(n), C(x), C(x)(1), · · · , C(x)(n)) = 0

GB(x, A(x), A(x)(1), · · · , A(x)(n), B(x), B(x)(1), · · · , B(x)(n), C(x), C(x)(1), · · · , C(x)(n)) = 0

GC(x, A(x), A(x)(1), · · · , A(x)(n), B(x), B(x)(1), · · · , B(x)(n), C(x), C(x)(1), · · · , C(x)(n)) = 0

(9)

with initial conditions in the form of:

φ(x, A(x), A(x)(1), · · · , A(x)(n), B(x), B(x)(1), · · · , B(x)(n), C(x), C(x)(1), · · · , C(x)(n))|x=ti
= 0 (10)

where A, B, and C are reacting species, n is the reaction order.

3.2.3. Partial Differential Equations Describing Compartmentalized Reactions

Partial differential equation was also employed when compartmentation or spatial
inhomogeneity is present in the system with regard to a critical reactant [36]. Reactions
or interactions between species only occur when reacting species diffuse across reacting
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boundaries [19]. The form of the partial differential equations that we used in AKPE for a
single reactant y are as follows [22]:

G(x1, x2, y,
∂y
∂x1

,
∂y
∂x2

,
∂2y
∂x2

1
,

∂2y
∂x2

2
) = 0 (11)

where x1 and x2 are time measurements in two distinctive reaction environments; y is the
reactant concentration with regards to the sub-reactions.

Boundary conditions take the form of:

{
y(x1, xti) = y0(x1)

y(xti, x2) = y0(x2)
(12)

3.2.4. Time-Dependent Reaction Rate Constant

In classical chemical kinetics, it assumes a ample supply of reacting pairs in close
proximity, kinetic parameters from reaction-derived differential equations often possess
time-independent association rate constants. However, due to a small number of reacting
molecules and low reaction rates, diffusion cannot effectively provide a continuous supply
of closely reacting pairs [27]. Anomaly in kinetic rate constants will shift the rate parameters
away from a perfectly time-independent one. Therefore, a completely time-independent
reaction rate constant would be misleading as microscopic fluctuations can propagate to
cause a macroscopic effect on reaction rates. As a consequence, stochasticity turns out to be
an important factor in reaction systems described above [37]. To more accurately capture
the variability in reactions, time-dependent rate coefficients were used, the complicated
derivation of time-dependent association rate constants are not the main focus of our study
here, for thorough description, please refer to Supplementary Information (SI) Section S1
and references [7,38,39].

3.3. Constructing Neural Networks Modeling Reaction Differential Equations for Experimental
Data Approximation

The general form of the reaction-derived differential equations are given in the previ-
ous Section [23]. Here, we utilize feedforward multi-layer neural networks for modeling
any given set of experimental data. Any given function y and its n-th order derivative dny

dxn ,
can be mapped continuously by an neural network in the following way:

y(x) =
k

∑
i=1

αi f (wix + βi) (13)

dny
dxn =

k

∑
i=1

αi
dn f (wix + βi)

dxn (14)

where x is the independent variable, αi, wi, βi are bounded real-valued adaptive parameters
from neural networks, k is the total number of hidden nodes and f (.) is the activation
function of neural networks, here it takes the form of a sigmoid function.

Any given experimental data can be formulated with a linear combination of neural
nodes, with an arbitrary number of nodes. The coefficients of the reaction-modeled differ-
ential equations and inherent parameters of neural networks can be trained by a search
algorithm both for the fitting of the experimental data and for solving differential equations.
The general architecture of the neural network is illustrated in Figure 1, the three layers
of neural networks are demonstrated in the figure, The structure of the network can be
represented as [m, HL1,...HLk, n] where HLk is the number of nodes in the kth hidden layer,
we started with one hidden layer and 10 hidden nodes in the first setup, and then gradually
increasing the number of hidden layers for better performance. The network consists of
an input layer of m nodes representing m experimental data points. The second layer is
the hidden layer, where input nodes are transformed by sigmoidal activation function f (x)
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and adjustable parameters wi and bi for hidden layer i, the first order and second order
derivatives of each nodes were also computed in this layer, the specifics of transformations
are slightly different depending on the requirements of each reaction systems; however,
each reaction species in the reaction system can be represented by a certain transforma-
tion of the neural network nodes, which can subsequently be fitted to experimental data.
The third layer is the outputs from the neural network, which are the coefficients of the
reaction-derived differential equations, the parameters of neural networks and the search
method, and errors from all the above-mentioned modules in AKPE.

w1,b1,

x1

x2

xm

f(.)

wm,bn,

f(.)

f(.)

f(.)

!1

!j

Inputs Hidden Layer Outputs

y(.)

f(.)

f(.)

f(.)

f(.)

k j

m

Figure 1. General architecture of the neural network employed by AKPE. The first layer is the input
layers, with m nodes signifying m experimental data points. The second layer is where each nodes
were transformed by activation function ( f (.)) and other reaction model related transformations
(first/second order derivatives or reacting species calculations.). The third layer is the outputs from
the neural network.

3.4. Fitness Evaluation and Training in AKPE

The fitness function contains two errors arising from the fitting of experimental data
and from solving reaction-derived differential equations. The linear combination of errors
from the neural network’s modeling of reaction differential equation and from fitting of
experimental data forms an unsupervised error function. The error to be minimized can be
defined as an weighted error with minimization priority in either sub-errors according to
specific conditions in application. The total error is given as:

e = (1− λ)e1 + λe2 (15)

where λ is the weight in the range of 0–1. The weight factor λ puts emphasis on one error
over the other, and offer more freedom in user coordination, this leads to higher accuracy
and better robustness.

From total error e, e1 is the error that originate from differential equations and can be
expressed as:

e1 =
m

∑
i=1

(G(x, y(x), y(x)(2), ..., y(x− 1)(n−1), y(x)(n)))2 (16)

where function G(.) takes the from of Equation (1) for single reactant reaction or it can
take the form of Equations (2) and (3) for multi-reactants reactions or compartmentalized
reactions, respectively, y(x) is the concentration of reactant, y(x)(n) denotes the nth order
derivative of y(x), m is the total number of points in the definition domain of independent
variable x.

e2 is an error arising from neural network data fitting of experimentally measured
values with an expression in the form of:

e2 =
m

∑
i=1

(D(xi)− N(x, p))2 (17)



Electronics 2022, 11, 216 9 of 25

where N(x, p) is single output neural network with parameter p and m input units fed with
variable vector x. D(xi) contains no adjustable parameters and is the experimental data
vector in time point i. The weight vector p can be adjusted and trained according to the
optimization algorithm used.

In the training process, the parameters to be adjusted in the minimization algorithms
are the parameters from the differential equations, plus weights from the neural networks.
The training data were normalized to be in the binary form to hasten the network training.
About 70% of the data were used in the training and simulation steps and the rest of
the data were used for validation of the network model. We initialize all the weights by
assigning random values in the range (−1,+1), use the training data to learn the weights
and record the value of the Root Mean Square Error(RMSE) in function of the times/cycles
until the RMSE drops to a value below 10−3.

3.5. PSO as an Optimizer

We employed a global search method to find the set of optimum parameters that best
fit the experimental data and solve the reaction-derived differential equations. The method
we used was particle swarm optimization (PSO) [17,18]. PSO is a well-developed, computer
optimization method aimed to find the global optimum by iterative refining a predefined
measure of quality. It was introduced by Eberhart and Kennedy in 1995 as a stochastic
global optimization technique inspired from the behavior of particles or individuals in
a swarm. This algorithm integrated the information gathered by the parallel searching
of individuals to enhance the total efficiency of the swarm. The main advantages of PSO
algorithm are that it is simple in concepts, easy in implementation, stable in convergence
and in global optimum finding, and efficient computationally compared to other heuristic
optimization techniques [40].

In PSO algorithm, each individual of the swarm represents a possible solution in the
non-linear solution space. The problem of finding a global optimum is thus turned into
finding the optimum individual. Each individual searches a problem space and its measure
of quality is its position and velocity. PSO algorithm initializes with each particle placed
randomly within an exploration space, and then each individual searches the space with
its position and velocity updated iteratively according to previous local best Lbestn−1

i and
global best Gbestn−1

i . The updating scheme of PSO is as follows:

vj
i =ωvj−1

i +c1r1(Lbestn−1
i −Xn−1

i )+c2r2(Gbestn−1
i −Xn−1

i ) (18)

X j
i = xj−1

i + vj
i (19)

where i is the number of the particle, j is the number of iteration, ω is the inertia weight, c1
and c2 were defined by the authors as local and global acceleration constant, r1 and r2 are
random vectors in the range of 0 and 1, X and V are positional and velocity vectors.

3.6. Pseudo Code and General Architecture of AKPE

The following is a sample pseudo-code of AKPE, annotations were provided in every
line of the code after the percentage sign, function a(σ, r0) is as defined in SI S1, G(x) is the
reaction-derived differential equations, er f (x) has the expression er f (x) = 2√

π

∫ x
0 e−kdk, D,

MI and M f 0 denote reaction component dimer, intermediate state and starting monomer
concentration, respectively. Executing AKPE module in Algorithm 1 and PSO module in
Algorithm 2 will produce optimal values of all kinetic rate constants and intermediate state
dynamics (concentration vs. reaction time curve) together with errors from every module,
line 13, 17 and line 18, function D_to_MI and MI_to_D in in Algorithm 1 were inferred
from reaction models, thus their expressions depend on the specific chemical or biological
reaction under study.
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Algorithm 1 AKPE

Input: Experimental data Data(n), n is length of experimental data; Hypothesized reaction-
derived differential equations, G(D, D(1), D(2), MI, MI(1), MI(2), · · · ) = 0; The range of
kinetic rate constants, LBn, UBn; Maximum number of function evaluations, FEmax;
Fitness weight, λ; maximum neural network layers, k; Time points, t;

Output: Kinetic rate constants, X1···y, y is the total number of kinetic rate constants to be
evaluated, including ka, kb, kc, kd and reaction orders, n1, n2, n3; Least square error from
neural network, error; Intermediate state concentration at each time points, MI(t);
for each i ∈ [1, k] do

initialize neural network nodes in each layer;
initialize neural network weights wi, αi and offset βi;
initialize kinetic rate constants as X;

end for
function ERROR(X, w, β, α)

for each j ∈ [1, k] do
for each i ∈ [1, length(t)] do

x = wj × t(i) + β j; %layers of neural network
D = αj × sigmoid(x) %value of D (Dimer)
dDdt = wj × 1

1+exp(−x) × αj × (1− 1
1+exp(−x) ) %dy/dx = y(1-y)dDdt is the

first order derivative of D

d2Ddt2 = alphaj ×
−w2

j×exp(−x)

(1+exp(−x))3 ; %d2Ddt2 is the second order derivative of D
MI = D_to_MI(dDdt, D, a(σ, r0)); % MI is the intermediate state
for all MI do

dMIdt = dy
dx MI;

end for;
D2 = MI_to_D(MI, dMIdt, a(σ, r0)); %Back Calculation of D using MI accord-

ing to specific reaction model for validation purpose
error = error + abs(G(x)); %Error from Differential equation solution accord-

ing to Equation (16)
error = error + λ× ((D− Data(i))2 + 1); %Fitting module error, the general

expression of D is ∑k
j=1 wi(∑n

i=1 wi+1ti) + βi)

Drecord = [Drecord, D2]; %record D
MIrecord = [MIrecord, MI]; %record MI

end for;
end for;
return error

end function
function D_TO_MI(dDdt, D, a(σ, r0)) %Expression of function D_to_MI in line 13

MI = ( dDdt+kd×D
ka×a(σ,r0)

)
1

n1 ;
end function
function MI_TO_D(MI, dMIdt, a(σ, r0)) %Expression of function MI_to_D in line 17

Dback = (
dMIdt+ka×a(σ,r0)×MIn1−kc×(M f 0−2D− n1

2 ×MI)n2+kb×MI
kd×n1

)
1

n3

end function
function A(σ, r0); %Expression of a(σ, r0)

a =
√

8×t0×π
2×σ × (er f ( r0√

2×t0×σ
)− er f (0));

end function;
function SIGMOID(x);

sigmoid(x) = 1
1+exp(−x) ; %Expression of sigmoid function

end function;
function dy

dx (x);
end function;
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Algorithm 2 PSO Module

Input: Error function, Error(x); Number of neural network nodes, nodes; Maximum num-
ber of iteration, FEmax; Swarm size, N = f loor(10 + 2× sqrt(k(nodes))); Function relat-
ing swarm size to neural network nodes, k(x);

Output: Optimal kinetic rate constants X∗; Optimal weights w∗, b∗, α∗; Errors;
Initialize all PSO parameters %including N, w, c1, c2, etc;

for each i ∈ [1, N] do
X(i, :) = X(i, :). ∗ (UBi − LBi) + LBi;
f (i) = Error(X, w, β, α);

end for
while FE ≤ FEmax do

PSO evaluation to minimize f (i);
Fe ++;

end while

The main steps of our application of neural networks and PSO in data fitting and
parameter optimization can be summarized as follows and in Figure 2.

step 1: Feedforward neural networks construction for experimental data fitting.

step 2: Constructing differential equations according to the reaction systems.

step 3: Fitness function construction by combining errors from data fitting and solving
differential equations.

step 4: PSO optimization of kinetic parameters.

PSO
Outputs from neural 

network

ℓ(Distij ,dij )="Distij −dij "2

y(w,b,xi)

Experimental 
data

D(xi)

Error from 
data fitting

e2=(D(xi)-y(.))2

Error from solving 
differential 
equations

e1=G(.)2

Reaction model of 
differential equations

Total loss

etotal=e1+e2

G1(x,y1(x),y1(x)(1),…yk(x),yk(x)(1)

Gk(x,y1(x),y1(x)(1),…yk(x),yk(x)(1)

G1(x,…,yk(x))(1)

Gk(x,…,yk(x))(1)

outputs

w,b,P

Figure 2. A flow chart depicting the the main steps and calculation mechanism of AKPE. The mud-
colored box represents outputs from neural networks, which are adjusted according to the results
produced by PSO, the outputs of PSO are parameters from neural networks w, b, and coefficients
from the reaction-derived differential equations.

The novelty and contributions of AKPE method on biological or chemical reaction
systems includes the following points:

• Presentation of a method that integrate differential equation reaction modeling and
neural networks for accurate reaction progress prediction.

• Presentation of a computational method that predict the concentration dynamics
and the reaction coefficients associated with the intermediate state which can not be
measured experimentally due to limitations on experimental means.

• Exploiting existing experimental data to aid de novo computational prediction of
reaction coefficients and concentration dynamics of reactants and lowly-populated
states (intermediate states).



Electronics 2022, 11, 216 12 of 25

• Provided a simple and efficient system for fast reaction prediction, as opposed to
having to describe every minute details of the reaction system in other simulation
methods.

4. Results
4.1. Application Example: Modeling the C terminus of SARS-Cov Virus Main Protease
Protein-Protein Association Reaction

The main protease(MPro) of severe acute respiratory syndrome coronavirus(SARS-
CoV) is indispensable to SARS virus life cycle. MPro of SARS-CoV exist in monomeric and
dimeric forms in solution simultaneously with interconversion between these two forms,
but only the dimeric form is enzymatically active. The C terminal domain (residues 187–306)
of MPro (MPro-C) is crucial to MPro’s dimerization with itself under interconversion between
monomeric and dimeric forms. Therefore, we put the emphasis of our study here on MPro-
C. The mechanism of monomer–dimer interconversion of MPro-C is still not clear, but many
researchers carried out studies on MPro-C monomer–dimer interconversion and found
substantial evidences for the existence of a partially-folded transitional state of MPro-C
which might facilitate the interconversion between monomeric and dimeric forms [41,42].

A hypothetical model of the reaction mechanism involving MPro-C were presented
which proposes that two monomeric protein in solution might associate with each other
to form an monomeric intermediate state, which will further interact with each other and
evolve into a native dimeric complex [41,42]. The schematic diagrams of the association
process are represented in Figure 3. In the figure, two monomers on the left were colored
separately in yellow and green, if two diffusing monomers came within each other in a
distance smaller than R0, then these two monomers will undergo a series of rotational or
thermodynamical transformations to become intermediate states which were monomeric-
like, but possess much higher reaction propensity, if other particles came within its reaction
radius R0, then two intermediate monomers will interact to form a dimer protein. By incor-
porating differential equations in continuous time regime, we arrive at a set of deterministic
rate-based equations describing the model, taking the existence of an intermediate state
into account, the reaction dynamics of different fraction of MPro-C can be described with
mass action kinetics below:

2M f
kb⇐==⇒
kc

2MI
kd⇐==⇒

a(t)ka
D (20)

{

d[MI]
dt

= −a(r0, σ)[MI]n1 + kc[MF]n2 − kb[MI] + n1kd[D]n3

d[D]

dt
= −− a(r0, σ)[MI]n1 − n1kd[D]n3

[MF] = [MF0]− 2[D]− [MI]

(21)

Equation (21) is the set of differential equations describing the reaction in Equation (20),
where n1, n2, n3 ∈ [1, 2], [MF], [MI] and [D] are the concentration of MPro-C monomer,
transitional state, and dimer, respectively, ka, kb, kc, kd are the association coefficients of
the dimerizational process as shown in Figure 3. a(r0, σ) is the association rate constant
of MPro-C through diffusion, a(r0, σ) is diffusional limited because the intermediate state
[MI] exist only in a very small amount. The expression of a(r0, σ) can be found in SI S1,
[MF0] is the starting monomeric concentration of MPro-C .
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(a) (b) (c)

Figure 3. Association pathways of SARS-CoV MPro-C. (a) Two monomers colored separately in
yellow and green. (b) When the interparticle distance between two monomers is smaller than R0,
then two monomers will interact with each other, forming an monomeric-like intermediate state.
(c) The intermediate has a high reaction propensity, easily forming dimers with other intermedi-
ate state within reaction radius R0. This hypothetical reaction model was inferred from research
papers [41,42].

The association process of MPro-C is mediated through a monomeric-like transitional
state, probably generated from partial unfolding of the native MPro-C monomer. The tran-
sitional state is an activated complex that is inclined to react with its partially folded
neighbors for dimer formation. The subsequent step of dimer formation can be seen as a
stochastic diffusional encounter of transitional states [43].

4.2. Application of AKPE for WT MPro-C Association

The monomeric MPro-C and dimeric MPro-C concentration at different time points in
different experimental conditions were obtained. The transitional state as previously stated
can not be directly detected by experimental methods, but the application of AKPE on this
system will effectively assist experimental methods to obtain species concentration and
kinetic rate information of the monomer-dimer interconversion.

The building of AKPE was carried out with Matlab. According to the reaction model
stated in the last section, we setup the neural network module of AKPE, the input layer con-
tains m experimental data points obtained through experiments, the hidden layer contains
ten nodes, the outputs of the neural network represent dimer concentrations, which we
will use to compare with corresponding experimental values, trainable parameters of the
neural network module are all the coefficients from the reaction model, weights and offsets
from neural networks. PSO was implemented in another module of AKPE, minimizing a
combined loss from both the experimental data fitting and the neural network’s approxi-
mation of differential equations. The final parameters of neural networks, the number of
population and iteration of PSO are provided in SI S5 (Tables S2–S4.).

According to the reaction model, the kinetic rates to be calculated include [MI]
(The concentration of the intermediate state at various time points), kb, kc, kd,r0 and σ.
The association constant ka was back calculated from r0 and σ in an diffusion-dependent
manner. n1, n2 and n3 are reaction orders involving the transitional state, the values of
which were usually measured through experiments, if there were no experimental mea-
surements concerning the order of the reaction, the values of which can also be predicted
using our approach.

Table 1 shows a complete list of parameters used in the simulation. The biologically
relevant upper and lower limit fixed the range of the parameter search in PSO, thus yielding
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an optimum value within the predefined range for each parameter. This range of parameters
is narrow enough to provides a guide to AKPE, yet broad enough to see how well it
overcomes possible local minimums while still capturing general trends of each parameters.

Table 1. The upper and lower limits for each of the input parameters of AKPE.

Parameter Upper Limit Lower Limit

Number of nodes 5 5
Number of iterations 30,000 30,000

kb 100 10−9

kc 10−1 10−6

kd 10−3 10−9

r0 10−7 10−8

σ 10−5 10−7

n1 2 1
n2 2 1
n3 2 1
w 1/2log2 1/2log2
c1 0.5 + log2 0.5 + log2
c2 0.5 + log2 0.5 + log2
N 20 20

The results of the optimum parameters yielded by our methods are listed in Table 2.
for both the wildtype MPro-C and its mutants in various conditions. The parameter values
are the average of 10 repetitive runs of AKPE, with Root Mean Square Deviations (RMSD)
in an acceptable range, which are provided in SI Table S1.

Table 2. Kinetic parameters for MPro-C WT and its mutants at different temperatures.

Rates Sequence ka kb kc kd r0 σ

Mutant
WT/303K 187–306 1.68× 109 96.60 3.65× 10−5 1.20× 10−7 1.64× 10−8 9.92× 10−6

WT/306K 187–306 8.50× 109 76.50 1.34× 10−4 2.01× 10−7 5.04× 10−8 8.40× 10−6

WT/308K 187–306 3.89× 1010 62.50 4.22× 10−4 1.60× 10−5 6.21× 10−8 5.87× 10−6

WT/310K 187–306 1.48× 1011 56.80 1.22× 10−3 4.71× 10−4 6.42× 10−8 4.29× 10−6

C301/310K 187–301 2.13× 1011 57.00 2.66× 10−3 5.56× 10−4 4.59× 10−8 3.15× 10−6

C298/310K 187–298 3.37× 1011 63.60 4.75× 10−3 5.85× 10−4 6.57× 10−8 2.66× 10−6

C296/310K 187–296 5.59× 1011 55.20 1.16× 10−2 4.89× 10−4 4.99× 10−8 2.29× 10−6

C295/310K 187–295 7.13× 1011 50.80 6.01× 10−2 5.06× 10−4 5.91× 10−8 2.20× 10−6

R112A/310K R112A 1.63× 1010 75.30 1.21× 10−3 1.62× 10−6 1.35× 10−8 4.36× 10−6

P107A/310K P107A 1.74× 1011 53.60 9.04× 10−4 3.38× 10−4 5.52× 10−8 3.16× 10−6

V110A/310K V110A 1.81× 1011 63.50 5.01× 10−3 3.64× 10−4 5.35× 10−8 3.09× 10−6

D109A/310K D109A 5.15× 1010 50.90 5.69× 10−4 5.03× 10−4 4.82× 10−8 4.54× 10−6

F108A/310K F108A 9.84× 109 64.00 2.69× 10−4 1.33× 10−6 4.90× 10−8 7.92× 10−6

C114A/310K C114A 8.92× 1010 63.70 2.36× 10−3 5.29× 10−4 7.65× 10−8 4.41× 10−6

*2/310K *1 7.14× 1010 63.00 1.37× 10−3 6.30× 10−4 5.92× 10−8 4.36× 10−6

Descriptions of mutants can be found at SI S3. * indicate mutant F108AD109A.

Discussion of the Results Obtained in this Section

Convergence of total error is achieved at around epochs 30,000 (Figure 4). The archi-
tecture of ANN used was one input layer, m input nodes(m is the number of experimental
data points), one hidden layer, 10 hidden nodes, one output layer, this structure yielded
lowest RMSE values. Note that the optimized parameters of the kinetic equations reached
convergence rapidly, without many random variations, meaning that the parameters are
robust and stable in the optimization process undertaken by PSO. In neural network fitting
of experimental data, fewer neural nodes in neural networks simplify the network topology,
reduce the number of unknown parameters that went along with the neural networks,
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thus decreasing the possibility of overfitting. We reduced the number of nodes in the
hidden layer to 10 to prevent overfitting while at the same time maintaining the best fitting
capability of the neural networks.

As shown in Table 2, the values of the kinetic rate constant pertaining to the intermedi-
ate states of both the wild-type and the mutant proteins in various experimental conditions
are somewhat different, but the overall trends are generally the same with kb � kc , ka � kd
, implying the rapid turnover rate of the transitional state, thus accounting for its dramati-
cally low quantity, making its detection very difficult. The micro-scale parameters r0 and
σ report on the relative inter-particle distance under which protein–protein association
occurs and the relative protein radius, respectively.

Each value of the output results in Table 2 were the average value of ten parallel runs
of AKPE with the same upper and lower bounds on the rate constants, but with different
choices of ANN’s initial weights, therefore, the reproducibility of AKPE can be speculated
from the standard errors of kinetic rate constants, which are shown in SI Table S1. Among
the kinetic rate constants of the reaction, the values of ka are generally on the order of
1012 with standard errors much smaller than its values, the values of kb are on the order
of 102, with standard errors on the same order or an order lower, the values of kc span a
range of 10−2 to 10−5 depending on the specific protein system, but has small standard
errors compared to its corresponding value. kd span a value of a range of 10−4 to 10−7 with
small standard errors. σ and r0 are stochastic diffusional parameters, which have physical
meanings and can be interpreted to describe the reaction microenvironment, they were also
used to back calculate the values of ka. The generally consistent values of ka in different
reaction systems can be a side evidence for the reliability of AKPE outputs.

The neural network and experimental data fitting module have negligible errors of
around 10−3 with data values of around 101 to 102; therefore, the accuracy of the fitting
module is very high. The module responsible for the solution of reaction-derived differ-
ential equations generated errors of around 10−6, which were also very small; therefore,
the accuracy aspect of AKPE was well-grounded.

The error of kinetic rate constant ka at higher temperatures were a little higher, but the
output coefficients were generally on the same order, with variabilities in specific numbers,
however, the values of ka were on the order of 1012, predicting the correct order was
valuable enough providing the limited amount of experimental data, on the other hand,
ka was back calculated from the values of σ and r0 through Equation S5, σ and r0 are the
parameters describing stochastic diffusions in the reaction system, therefore, the higher
errors might rose from the combined error from σ, r0 and from the inherent randomness in
the system.

4.3. The Kinetic Parameters of Interconversion in Increasing Temperatures

We used AKPE to simulate the interconversion reaction at various temperatures,
the kinetic parameters are as shown in Figure 5, Blue lines are experimentally measured
dimeric concentration curves and colored lines with markers are simulation outcomes from
ANN, we can observe an perfect overlap of the lines and an minimum systematic fitting
error of around 10−3, indicating the high accuracy of the fitting module in AKPE.
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Figure 4. The minimization of overall absolute error with the number of epochs. Results under
different temperatures are represented by different thin colored lines (as indicated in the legend of
the figure), the progression to final convergence of total error are observed in the figure.
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Figure 5. AKPE fitting of experimental data at various temperatures. The experimental curves are
drawn as blue lines while neural network curve are represented as colored lines interspersed with
markers: 303 K (30 ◦C) as green lines with flower markers, 306 K (33 ◦C) with red lines and circular
marker, 308 K (35 ◦C) with cyan lines with diamond markers and purple lines represents 310 K (37 ◦C)
with star markers, reaction speed at 310 K is faster, which account for the shorter curve.

Discussion of the Results Obtained in This Section

The transitional state concentration of WT MPro-C in various temperatures are shown
in Figure 6, plotted as a function of time. Inspection of the transitional state concentration
curve indicate that transitional state concentration generally increases as temperature rises,
probably due to its faster conversion from monomers and almost for all of the temperatures
investigated, the intermediate concentration is highest at the start of the interconversion
process and slowly reaches a low steady value demonstrating that the interconversion is
approaching equilibrium.
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Figure 6. Curves demonstrating intermediate state concentration calculated from AKPE-derive
kinetic parameters. (a) The change of wildtype intermediate concentration with time at 308 K.
(b) Intermediate state curve at 310 K. (c) intermediate state curve at 303 K (green) and 306 K (pink).
The unit of intermediate state concentrations are Molar.

4.4. Kinetic Parameters as a Function of Temperatures
Discussion of the Results Obtained in This Section

Figure 7 shows how the kinetic parameters change as a function of temperature.
For association rate constant ka, the higher the temperature, the greater its value. Examining
closely at how r0 and σ shifts at raising temperature, the value of r0 increases in value while
the value of σ shifts downwards. An increase in r0 signifies an enlarged reaction radius
and thus higher reactivity in the same intermediate species concentration, relaxing the
reaction criteria. Decreasing σ means larger intermediate state protein radius, it might also
imply a more relaxed protein structure, thus higher reaction possibility. Increase in values
of ka, kb, kc, kd,r0 and a decrease in the the value of σ at increasing temperatures signify an
increase in thermodynamic activity in chemical or biological reactions that come naturally
at an elevation of temperature; this result also confirmed the validity of AKPE at predicting
biologically or chemically correct parameters. Figure 7 might show a higher standard error
at higher temperatures, this might due to the limited number of experimentally measured
data (due to difficulties in experimental techniques in obtaining more data), adding more
data points into the AKPE will surely increase the accuracy of calculations.
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Figure 7. Variation of parameters with changing temperature. The value of each parameters change
directionally with increasing temperature. (a) The value of ka; (b) the value of kb; (c) the value of kc;
(d) the value of kd; (e) the value of r0; (f) the value of σ.

5. Discussion

The reaction system we discussed previously was a model involving MPro-C. It exists
in an equilibrium of monomers and dimers. Previous experimental studies on this system
assumed the existence of a intermediate state. We incorporated this intermediate state to
our proposed three-state model. In our study, the intermediate state was treated as a third
reacting species in reaction model. The fitting of the experimental data was carried out
via the help of neural networks, and subsequent reaction model was optimized through
swarm intelligence algorithm PSO. The outcome of the method yielded corresponding
kinetic parameters involving all reacting species and intermediate state concentrations as
functions of reaction time, these output parameters can unequivocally reflect a reaction’s
precise dynamics.

5.1. The Biological Implication of AKPE

The biological significance of AKPE was also demonstrated through MPro-C WT
protein and its mutants, we showed that AKPE can properly describe intermediate state
dynamics in our system. Change in intermediate state dynamics when mutations are
introduced into protein reflect the importance of the specific residue loci for the reaction
equilibrium, which provide valuable information on the structure of the protein. Change of
reaction conditions (temperature) also brings about changes in intermediate state dynamics,
as indicated in Table 2, an increase in temperature from 303K to 310K increased both the
association rate and the dissociation rate of intermediate state. On the same token, protein
mutants that showed different association/dissociation parameters compared to wild-type
proteins can be used to indicate which specific reaction pathway does the mutation or the
change in condition affects the most, thus demonstrating the mutational site’s significance
to the reaction. These results can be interpreted to provide information on the biological
significance of every residue in the protein under investigation.
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5.2. Validation of AKPE

AKPE is a method that describes reactions involving stochastic diffusional particles, in
this section, we will compare the result of AKPE with other stochastic algorithm. Moreover,
we will also use experimentally obtained overall association rate constant to confirmed the
accuracy of AKPE.

5.2.1. Validation of AKPE Using Gillespia’s Stochastic Algorithm

Stochastic Gillespia Algorithm (SSA) is a fundamental approach to model chemical
reaction and diffusion. The implicating stochastic models of chemical reactions provided
a detailed and precise treatment of reaction diffusion process, especially for biological
systems where there are only a small abundance of a specific reacting species. A limited
copy number of the reacting species makes the deterministic chemical reaction models less
accurate.

Since the intermediate state in MPro-C monomer–dimer interconversion process exist
in a extremely low concentration in solution, we decided to use SSA to verify results
produced by AKPE. The principle idea is that when simulating dimer and monomer
populations by SSA, using kinetic parameters produced by AKPE would recreate the time-
dependent concentration curve of the MPro-C dimers, which are given by experiments.
By comparing the experimentally obtained dimer population (same as AKPE) and SSA
produced dimer concentration, the validity of AKPE will be clearly demonstrated. Using the
same set of kinetic parameters, we compared AKPE with SSA by simulating the transitional
state concentration and WT-MPro-C dimer concentration as a function of time at 310 K.
The simulation parameters are listed in Table 3. and the results of the simulation are given
in Table 4. Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are common
metrics to measure the differences between predicted values and real values, relatively
small MAE and RMSE values indicate that the predicted values of the sample are closer
to the real values, we have also calculated the MAE and RMSE between the two methods
SSA and AKPE, and they are relatively small, meaning that AKPE is just as good as SSA at
simulating diffusion-perturbed reaction systems.

Table 3. Simulation parameter values.

Parameter Value

ka 1.40× 1012

kb 56.80
kc 1.20× 10−3

kd 4.70× 10−4

Table 4. Dimer(D) and monomer(M) percentage(%) prediction by AKPE and SSA

Time(s) AKPE(D) AKPE(M) SSA(D) SSA(M) MAE RMSE

0 0.00 100.00 0.00 100.00

0.93 1.19
1800 1.97 98.03 0.50 99.50
3600 3.20 96.80 1.90 98.10
7200 4.67 95.33 4.60 95.40

10,800 5.41 94.59 7.20 92.80

The results from SSA using kinetic parameters outputted from AKPE are plotted in
Figure 8, we can observe a significant agreement between these two methods. Confirming
the validity of AKPE.
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Figure 8. Simulation result of SSA (red and blue lines signifying monomer and dimer, respectively)
in comparison with that of AKPE (red and blue empty circles). Apparent correspondence between
AKPE and SSA simulation results is observed.

5.2.2. Evaluation of AKPE by Experimental Kinetic Rate Constants

In this subsection, we will provide comparison of kinetic rate constants obtained from
AKPE and from mathematical model of the reaction based on regression method.

The experimental data was divided into two sets: training and validation. The training
dataset was used to adjust the weights of all connecting nodes until the desired error level
is reached. Validation datasets was used to evaluate the efficacy of AKPE at predicting
kinetic rate constants.

Experimentally observed dimerization curve of MPro-C monomers are fitted to a
monomer-dimer two-state interconversion model (SI S2. Equations (7)–(9) [41,42]) pro-
ducing the overall association rate constant ka,all and the overall dissociation rate constant
kd,all . In the model used by AKPE, the existence of the intermediate state introduced rate
constants ka, kb, kc and kd. Bridging rate constant ka,all and the kinetic rate constants in
AKPE, we arrive at the conversion formula Equation (22). The second term in the ex-
pression of ka,all should be around zero, therefore, the kinetic parameter kc generated by
AKPE should equal to the ka,all according to Equation (22), kc calculated from AKPE in
different temperatures and for different mutants are listed in Table 5, it agrees very well
with the experimentally fitted association rate constant ka,all , common metrics measuring
the agreement between these two methods such as MAE and RMSE were also given in the
table, less than 5% of MAE and RMSE are observed between the predicted values and the
experimental data, confirming the accuracy of AKPE at predicting kinetic rate constants
Figure 9.

ka,all = kc −
kbkd[D]

ka[M]
(22)
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Table 5. Comparison of the kinetic constants calculated from AKPE and experiments.

Construct Residues AKPE Expt MAE RMSE

MPro-C-WT at 306 K 187–306 3.65× 10−5 4.00× 10−4

1.59× 10−3 2.64× 10−3

MPro-C-WT/308 K 187–306 1.34× 10−4 1.51× 10−4 - -
MPro-C-WT/310 K 187–306 4.22× 10−4 4.60× 10−3 - -
MPro-C301/310 K 187–301 1.22× 10−3 1.11× 10−3 - -
MPro-C298/310 K 187–298 2.66× 10−3 2.62× 10−3 - -
MPro-C296/310 K 187–296 4.75× 10−3 5.24× 10−3 - -
MPro-C295/310 K 187–295 1.16× 10−2 1.51× 10−2

MPro-CC114A/310 K C114A 2.36× 10−3 2.39× 10−3

MPro-CR112A/310 K R112A 1.21× 10−3 1.88× 10−3 - -
MPro-CV110A/310 K V110A 5.01× 10−3 4.71× 10−3 - -
MPro-CF108A/310 K F108A 2.69× 10−4 1.70× 10−3 - -
MPro-CP107A/310 K P107A 9.04× 10−4 4.42× 10−3 - -
MPro-CD109A/310 K D109A 5.69× 10−4 7.30× 10−3 - -

MPro-CF108AD109A/310 K F108AD109A 1.37× 10−3 5.30× 10−4

Ka overall pred
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Figure 9. Comparison between the predicted association constant kc produced by AKPE and experi-
mentally measured association constant kaa ll , agreement between the two can be observed.

5.2.3. Comparison of AKPE with Other Reaction Dynamics Prediction Methods

In other research works, kinetic rate constants of Carbon Fiber Phenolic Resin (CFPR)
Composites from pyrolysis reactions were predicted from thermogravimetric analysis.
The thermogravimetric curves were modeled by neural networks using the Levenberg–
Marquardt back propagation algorithm as the search algorithm. Similar to AKPE, their
method also made use of an reaction model involving kinetic rate constants as the fitting
equation. To predict reaction rate constants, the ANN they used had two hidden layers,
one output layer. Their results yielded an RMSE value of 15%, comparable with the
performance of AKPE (5%) [44].

Another research study employed ANN successfully predicted the dissolution kinetics
of colemanite mineral. The input of ANN are experimental setup such as total pressure,
reaction temperature, particle size, solid/liquid ratio, and stirring speed parameters while
the output is dissolution rate. The ANN was trained by experimental data using Levenberg–
Marquardt backpropagation algorithm. ANN structure is comprised of 6 input neurons,
7 first hidden, 4 second hidden, and one output layer. Their study had an lowest RMSE of
0.0073 and a highest R2 of 0.9975, also comparable to that of AKPE [45].
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The similarity of AKPE compared to these kinetic rate prediction methods is that
they all used ANN to model experimental data, employed a search method of Levenberg–
Marquardt backpropagation or PSO to find the optimum values of these parameters.
However, AKPE is inherently more flexible by integrating user-defined reaction models;
therefore, it can not only predict the kinetic rate constants, it also has the capability of
predicting the reaction dynamics of a intermediate state based on a predefined reaction
model. In sum, AKPE can cater to the needs of different experimental datasets or reaction
systems given a predefined reaction model.

6. Conclusions

Simulation and prediction of chemical reactions can be an indispensable tool for un-
derstanding the mechanism of chemical or biological reactions [37,46,47]. Many reactions
call for the participation of an intermediate state which prompts the reactions to proceed
in an energetically favorable way. Unfortunately, for some reactions, experimental mea-
surement failed to capture the intermediate state dynamics because of its low abundance;
however, computational simulations can show its excellency in aiding experimental data at
measuring intermediate state dynamics.

In this paper, we have presented a new method AKPE for predicting kinetic rate con-
stants and reacting species concentration. AKPE employs neural networks to approximate
experimental data and solve reaction model-derived differential equations, it also imple-
ments swarm intelligence algorithm such as PSO to optimize parameters and coefficients.
AKPE couples neural network data fitting and equation-based swarm intelligence algo-
rithm error minimization for kinetic rates and lowly-populated state dynamics prediction.
As an extension of experimental data fitting, it is aimed to extract more information from
experimental data and defined chemical reaction models, It obtains more information than a
simple two-state fitting, and outputs previously undetected kinetic rates and undiscovered
transitional state concentrations.

The applicability of AKPE at predicting chemical reaction dynamics was illustrated
using two case studies, which yielded corresponding kinetic rate constants and the concen-
tration curve of the intermediate state as a function of time. The computational accuracy
of AKPE was quantified in standard variation of kinetic parameters, and it is well within
tolerable ranges. As one of the most illustrious points of our work, we have also demon-
strated that AKPE properly describes intermediate state dynamics in reaction systems
where experimental or other methods failed. AKPE produced the intermediate state con-
centration curve with respect to time, which describes in detail how the concentration of
the intermediate changes as the reaction progress, providing us a peek into the mechanism
of reactions.

Another point worth noticing is that even though we used a primarily deterministic
model, we also incorporated stochasticity into our system since a particular reacting
species(intermediate state) exist only in a very low concentration. The stochasticity was
incorporated into a time dependent reaction rate constantα. This stochasticity helped us in
producing the correct intermediate state dynamics.

To evaluate the validity of AKPE, we used SSA simulations, which produced similar
results as AKPE, with standard errors (MSE, RMSE) within acceptable ranges, demonstrat-
ing the validity of AKPE. Moreover, by mathematical modeling, we arrive at a equation
linking experimentally measured kinetic rate constants and all the rate constants used in
our model, thereby, making up another method for validating AKPE, the result showed
that experimental association rate constant also confirmed the validity of the predictions
produced by AKPE.

The method AKPE proposed in this article is a robust predictor of lowly-populated
reacting species, it also greatly improves the accuracy of kinetic rate prediction. It helps to
identify the intermediate state that was previously invisible to experimental detections.

The novelty of AKPE lies in the fact that it is a roust and generally accurate predictor
of the reaction dynamics associated with scantly-populated reacting species, which were
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unable to detect by experimental methods alone. AKPE utilized existing experimental data
on chemical or biological reaction systems, greatly improved the accuracy of kinetic rate
prediction compared with de novo computational methods. In the method architecture,
AKPE combines the flexibility of neural networks, the generalizability of differential equa-
tions in modeling reaction systems and the global optimizing properties of PSO to obtain
an accurate simulation of reaction systems.

7. Future Prospects

However, AKPE is strongly model dependent and did not include effects that might
play roles in molecule–molecule association such as the electrostatic interactions, or more
structurally relevant geometric constraints; therefore, incorporating more model dependent
factors in AKPE will help in more clearly elucidating the chemical or biological reaction
mechanisms.

One of the major problems of AKPE is its accuracy, the lower accuracy of some of our
output data might be due to the limited amount of experimental data available, or it might
arise from the variability of neural networks. However, more experimental datasets had
been made public in recent years and deep neural networks have emerged. Due to our
limited amount of experimental data available, only three layers of the neural network
were explored; however, by incorporating deeper neural network architecture on larger
datasets, the performance and robustness of AKPE will definitely be improved [48,49].

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.339
0/electronics11020216/s1, Figure S1: Schematic representation of the stochastic association model
of monomeric Mpro − C, Figure S2: The 3D graph of a(r0, σ) as a function of r0 and σ. Table S1: The
resulting kinetic parameters for Mpro − C proteins at different temperature. Table S2: The parameters
of the neural network in AKPE. Table S3: Best solution given by PSO. Table S4: Personal best fitness
given by PSO.
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