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Abstract: Advancement in smart sensing and computing technologies has provided a dynamic
opportunity to develop intelligent systems for human activity monitoring and thus assisted living.
Consequently, many researchers have put their efforts into implementing sensor-based activity recog-
nition systems. However, recognizing people’s natural behavior and physical activities with diverse
contexts is still a challenging problem because human physical activities are often distracted by
changes in their surroundings/environments. Therefore, in addition to physical activity recognition,
it is also vital to model and infer the user’s context information to realize human-environment inter-
actions in a better way. Therefore, this research paper proposes a new idea for activity recognition
in-the-wild, which entails modeling and identifying detailed human contexts (such as human activi-
ties, behavioral environments, and phone states) using portable accelerometer sensors. The proposed
scheme offers a detailed/fine-grained representation of natural human activities with contexts, which
is crucial for modeling human-environment interactions in context-aware applications/systems
effectively. The proposed idea is validated using a series of experiments, and it achieved an average
balanced accuracy of 89.43%, which proves its effectiveness.

Keywords: activity recognition; context recognition; human-centric computing; in-the-wild; smart
sensor; supervised learning

1. Introduction

Human beings are the most integral part of an environment and ecological units
that collaborate and make up the urban landscape. Generally, human behavior reflects
their surroundings, and varying environments adversely affect human psychology and,
thus, their behavior. It is crucial to understand how human beings (as the occupants of
an environment) react and acclimate to their surroundings. Naturally, human behavior
and activity patterns are chaotic and inconsistent, primarily affected by the variability
of environment and contexts. Diverse human contexts may lead a person to behave
irrationally, thus giving rise to abnormal user behavior, because of which human physical
activity patterns may also get distracted. Therefore, it is crucial to efficiently model and
learn human physical activities and interactions in varying contexts for enabling context-
dependent systems and applications. Recent advancements in sensing and networking
technologies, such as the internet of things (IoT), have provided a ubiquitous platform to
develop intelligent systems for context-aware human-centric computing. The accessibility
of real-time data through ubiquitous devices (such as smartphones and smartwatches) has
resulted in the proliferation of research work in the field of sensor-based activity recognition
(AR) [1–3]. The goal of AR is to provide a suitable analysis of human activities from the
data acquired from wide-ranging sensors, including video cameras and depth sensors,
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infrared (IR) sensors, ambient sensors, and three-dimensional (3D) inertial sensors [4].
In this regard, lots of AR methodologies have been developed and implemented in the
past few years using different sensing modalities. Various researchers developed camera-
based activity detection/recognition systems for identifying the activities of interest [5–8].
However, camera-based AR approaches are subjected to privacy constraints. They are
poorly affected by certain issues, such as camera viewpoint variation and camera motion,
light sensitivity, occlusion, and background activities of the people. With the advancement
in sensing technologies, the anomalies associated with the camera-based AR methods
are addressed using miniaturized sensors that are independent of illumination changes
and offer ubiquitous activity monitoring. These sensors are computationally efficient and
provide 3D motion representation. Hence, sensor-based AR has now become indispensable
for human-centric computing [9,10].

Different sensing modalities have been employed individually as well as in combi-
nation for AR tasks. Ambient sensors (including a pressure sensor, infra-red sensor, light
sensor, temperature sensor, etc.) are generally adopted for indoor activity monitoring in
smart homes and buildings [11–13]. In contrast, wearable and smartphone-embedded
sensors enable pervasive and continuous monitoring of human activities in diverse envi-
ronments [14]. The authors in [15–18] provide a review of the wearable sensing systems
and technologies for human activity and health monitoring. Wearable or on-body sen-
sors are mainly advantageous because they can be fitted at multiple body positions to
monitor human activities robustly [19–22]. However, these sensors may turn into a cause
of disruption for the people during activity execution. As a consequence, the motive of
identifying the participants’ rational behavior is often disregarded. The authors in [23]
proposed “smart garments” for classification of human physical activities as well. The
continuous growth in smartphone developing technologies has offered numerous applica-
tions for smartphone-embedded sensors in AR studies [24–28]. However, the variations
in smartphone position or orientation may poorly affect AR performance. In addition,
smartphone-based sensors are not sufficiently adept at tracking the user’s activities relating
to hand movements or gestures, for example, eating, smoking, drinking, tooth brushing,
etc. Henceforth, the researchers emphasized using heterogeneous and multimodal sensors
for AR [29–32], which has enhanced AR system performance in most cases. Most of the
existing AR methods are generally developed and implemented in restricted environments
and settings to learn and identify a particular set of human activities [33]. When collecting
data, the subjects are prepared to execute the activities of interest in a predefined manner
(following a set of protocols) for training the AR model. As a result, natural user behavior
gets disregarded, which poorly affects the performance of such AR models in-the-wild.
A few research studies [34–39] have emphasized utilizing either smartphone sensors or
heterogeneous sensors for identifying human contexts, e.g., “indoor” vs. “outdoor”, “in
a car” vs. “in a bus”, “sitting” vs. “driving”, etc. However, these schemes fail to model
human-environment interactions in-the-wild to infer the natural users’ context in combina-
tion with their primary physical activity. Consequently, the notion of context-aware AR
cannot be fulfilled, which is essential to aid context-dependent systems that acclimate to
the subject’s activities and the associated environments.

This paper presents a novel method for sensor-based activity recognition in-the-wild
(ARW) to address the above-discussed challenges and discrepancies. The proposed method
incorporates the recognition of human contexts (such as social/behavioral contexts and
phone contexts) with the AR task to provide a fine-grained representation of human daily
living activities in their natural surroundings. Thus, it enables answering the questions
related to human activities and contexts in-the-wild, for example, “what is the person
doing?”, “where is the person situated/located?”, and “why the person is here?”. The
proposed idea is conceived based on the fact that diverse contexts and surroundings greatly
influence human physical activity and behavior patterns. For example, sitting postures
in a car and in a meeting are generally quite different. Likewise, walking alone is usually
different from walking with a group of friends. Thus, any significant change in the human
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behavioral context or environment may lead to ample variations in human physical activity
patterns. Likewise, the phone context (i.e., phone position on the human body) during a
particular activity execution in-the-wild is also affected as a result of diversity in human
behavioral environments. The changes in phone position significantly alter the activity
patterns recorded by the device-embedded inertial sensors that are sensitive to phone
orientation and placement. These vital differences in the activity patterns (occurring in
response to change in human contexts or phone positions) can be effectively modeled based
on a supervised machine learning approach to infer the detailed user’s contexts associated
with different activities. Following this, the proposed ARW model works based on a two-
stage supervised classification approach. The first stage identifies the primary physical
activities of daily living (PADLs) based on smartphone and smartwatch accelerometers.
The second stage entails inferring knowledge about activity-related contexts based on the
activity recognized in the first stage, thus providing the notion of activity-aware context
recognition. The second stage further consists of two building blocks, i.e., behavioral
context recognition (BCR) and phone context recognition (PCR), which independently learn
and recognize the specified set of contexts using accelerometer sensors. The outputs from
both stages are finally aggregated to form a triplet of information, i.e., {primary physical
activity, behavioral context, and phone context}. In this manner, our proposed ARW scheme
offers a multi-label and fine-grained/context-aware representation of human daily living
activities in-the-wild. The coinciding recognition of the participant’s physical activity,
behavioral/social context, and phone position is essential for human behavior modeling
and cognition in their living environments [40]. Inferring phone positions with activity
can be effective for inferring the habitual behavior of a person in different contexts. Thus,
the proposed scheme can be extended to detect and recognize normal/abnormal human
behavior, which can further be advantageous in predicting/avoiding health-related risks,
as discussed in the existing studies [41–43]. In addition, the proposed scheme can serve as
a building block for recommender systems and context-aware computing applications.

The experiments for the proposed scheme are conducted using a public domain “Ex-
traSensory” dataset [38] that involves daily living human activities and the associated
contexts in-the-wild. For the AR task in the proposed scheme, six (06) PADLs, including
sitting, walking, lying, standing, running, and bicycling, are chosen from the dataset,
whereas for context recognition, the fourteen (14) most frequent context labels are selected
for identification purpose. These labels provide information regarding the phone positions
(such as phone on table or phone in bag/hand/pocket) and the participants’ environmen-
tal/behavioral aspects (such as participant’s location, social context, and secondary activity)
during the primary activity execution in-the-wild. Figure 1 shows how different contexts
are associated with the selected PADLs for enabling ARW. The relationship between the
particular PADLs and the equivalent contexts is established by systematically analyzing
the co-occurrences of different activity and context pairs available in the “ExtraSensory”
dataset. A boosted decision tree (BDT) is used for evaluating the performance of the pro-
posed ARW model, and the obtained results are compared against those obtained with a
neural network (NN) classifier.

This research paper provides the following significant contributions.

• A two-stage model is proposed for ARW, which first identifies the primary physical
activity and then uses this label to infer activity-related context information, thus
providing a detailed activity representation in-the-wild.

• A methodical approach is conceived and followed to analyze the co-occurrences of
different activity-context pairs in the “ExtraSensory” dataset. As a result, a set of ten
(10) most frequent human behavioral contexts and four (04) phone contexts/positions
are incorporated with six (06) primary PADLs, respectively, for ARW. The approach
used to analyze and select activity-context pairs for the proposed ARW scheme is
reproducible and can be applied to any multi-label dataset.

• An in-depth exploration of the proposed ARW scheme is conducted for feature selec-
tion, model selection (i.e., classifier selection), and classifier hyperparameter optimiza-
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tion to attain state-of-the-art recognition performance. Finally, based on the best-case
experimental observations and parameters, the performance of boosted decision tree
and neural network classifiers is further evaluated in detail for the proposed scheme
using smartphone and watch accelerometers.

Figure 1. Primary physical activities with corresponding human behavioral contexts and phone
positions, which are used for ARW. Here, PB, PH, PP, and PT represent phone in bag, phone in hand,
phone in pocket, and phone on table, respectively.

The remaining paper portion is arranged as follows. Section 2 presents the related
works for the proposed scheme. Section 3 provides the stepwise explanation of the proposed
methodology in detail. Section 4 investigates and discusses the experimental results for our
proposed ARW method in detail. Finally, Section 5 summarizes the research outcomes and
provides future recommendations for the proposed scheme.

2. Related Works

The upsurge in smart systems with evolving sensing capabilities has made sensor-
based AR a significant area of interest for researchers in the field of pervasive computing.
Considering this, numerous schemes have been proposed for sensor-based AR, which
can be classified as ambient AR, wearable AR, smartphone-based AR, and heterogeneous
sensor-based AR approaches. Ambient AR systems aim to collect and process continuous
data from various sensors installed in the environments for ambient assisted living (AAL).
Numerous research studies have used ambient sensors to recognize PADLs and home
tasks [11,12,44–46]. Vanus et al. [13] performed the fusion of gas (i.e., carbon dioxide) and
audio sensors with humidity and temperature sensors to detect any person in the smart
room. The authors employed a neural network for human detection and achieved accuracy
greater than 95%. Ni et al. [47] proposed an ontology-based method for smart home
activity monitoring, utilizing a three-layered approach for context-aware activity modeling.
Ghayvat et al. [48] proposed an anomaly prediction model for detecting abnormal activity
patterns of elderly people in the smart home environment. Likewise, Muheidat et al. [49]
proposed a real-time fall detection scheme based on walking activity pattern monitoring
using a sensor pad installed under a carpet. The primary advantage of using ambient
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AR systems is their high accuracy rate and reliability. However, installing and setting
up ambient sensors is a complex and expensive task, and the sensors are restricted to a
particular area of monitoring. Hence, it is not possible to monitor natural human activities
and behaviors in diverse contexts.

Wearable AR systems entail on-body sensors for recording and monitoring the par-
ticipant’s data. They are advantageous owing to their portability; thus; they can be taken
to any place for continuous activity monitoring, including indoor and outdoor environ-
ments. The authors in [50–53] utilized the Inertial Measurement Units (IMUs) and other
wearable sensors for activity monitoring. In [54], the authors proposed a probabilistic
method using Bayesian formulation to recognize transition activities, such as stand-to-sit
and sit-to-stand, using wearable sensors. They achieved 100% recognition accuracy for
two activities. Mehrang et al. [55] utilized random forests for recognizing a number of
daily living activities (including household activities) using wearable sensor data from a
wrist-mounted accelerometer. In addition, they also used an optical heart rate sensor for
the AR task and achieved an accuracy of 89.6 ± 3.9%. The research work in [56] presented
“HuMAn”, a wearable AR system for the classification of 21 indoor human activities. In this
aspect, the authors recorded data from ten subjects in a home environment using wearable
sensors and extracted statistical signal attributes to train their proposed AR system. They
used the conditional random field (CRF) classifier for AR task and acquired the best average
accuracy around 95%. Anwary et al. [57] utilized wearable sensors (i.e., accelerometer and
gyroscope) for monitoring and detecting abnormalities in the gait pattern of the participants.
Moreover, wearable sensors have also been utilized for detecting and preventing abrupt
human actions, such as falls [20]. The authors in [58] proposed a deep learning model for
AR in the mountains using an accelerometer sensor. Nevertheless, wearable sensors often
turn out to be a source of disturbance for the subjects in their activity execution, which
hinders effective AR performance.

The increasing development in smartphone sensing technologies has offered a ubiq-
uitous platform for sensor-based AR. Consequently, smartphone-based AR systems have
been proposed by numerous research studies. The research studies in [59–64] proposed
smartphone-based position-dependent and position-independent AR systems, respectively.
Moreover, position-aware AR systems [34,65,66] have also been proposed, which employ
a two-level or multi-level classification approach to identify a physical activity based on
phone position recognition. In [67], Esfahani and Malazi presented “PAMS”, a position-
aware multi-sensor dataset for an AR task, where they achieved an average precision of
approximately 88% in recognizing everyday physical activities in the dataset. Smartphones
have also been employed for crowdsourcing and context recognition (such as indoor vs.
outdoor, moving vs. stationary, etc.) [35,68–71]. However, smartphone-based AR systems
are not sufficiently accomplished to detect or recognize activities involving hand gestures
and arm movements. As a result, heterogeneous sensors have been used for AR tasks,
which combine multimodal sensors (such as smartphones and wearable sensors) to im-
prove AR performance [29–31,72,73], which is the case for our proposed scheme. With the
evolvement of deep learning algorithms in recent years, some authors have made use of
these algorithms for the automatic extraction of high-level features from the sensor data to
achieve promising AR results [74–78]. The survey work in [79,80] investigated the latest
trends in sensor-based AR studies based on deep learning models and explained their
pros and cons along with the future recommendations/implications. The high compu-
tational complexity of deep learning algorithms is a crucial challenge to be addressed in
the case of sensor-based AR studies, which makes them ineffective for instant processing
on battery-constrained devices, e.g., smartphones and smartwatches. Hence, there is a
need for developing such schemes that are computationally efficient and can recognize
natural user behavior in varying contexts with high accuracy, which is the main aim of our
proposed ARW scheme.
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3. Proposed Methodology

Figure 2 provides a block diagram of the proposed methodology for ARW that entails
a two-stage classification model, consisting of four crucial steps as follows: (1) data acquisi-
tion and preprocessing, (2) feature extraction and feature selection, (3) primary physical
activity recognition, (4) activity-aware context recognition. The subsequent sections present
the necessary details for each step of the proposed ARW method.

Figure 2. Block diagram of the proposed method for activity recognition in-the-wild (ARW).

3.1. Data Acquisition and Preprocessing

For the implementation and testing of any AR model, the first step is to acquire
data concerning the activities of interest. Many researchers have utilized their efforts in
collecting sensor-based datasets for AR, which entail data from different sensing modalities,
including on-body wearable sensors, smartphone-embedded sensors, and multimodal
heterogeneous sensors [81–85]. Generally, these datasets have been recorded in some
constrained environments following a specific set of protocols for executing the scripted
tasks. Therefore, there is a void of natural user behavior and any information regarding
the participant’s context. The “ExtraSensory” dataset [38], presented by Yonatan and Ellis,
contains in-the-wild human activity data from 60 subjects. Smartphone and smartwatch-
based heterogeneous sensors are used to record natural user behavior regarding six (06)
primary PADLs in diverse contexts. As the proposed scheme focuses on recognizing daily
living human activities and their context details in-the-wild, the “ExtraSensory” dataset
fits well into the proposed pipeline. As a result, we opted to utilize this dataset for the
implementation and validation of the proposed ARW model. For the computational efficacy
of the proposed method, only smartphone and smartwatch accelerometer data (collected
with a sampling rate of 40 Hz and 25 Hz, respectively) are used for ARW. The existing AR
studies [61,73] validate the efficient recognition performance of these sensors as compared
to other inertial sensors, such as a gyroscope or a magnetometer.

3.1.1. Activity-Context Pairs for ARW: Systematic Analysis and Selection

The “ExtraSensory” dataset contains multiple secondary labels for each activity in-
stance, which demonstrate detail regarding the participant’s context (for example, sec-
ondary activity, location, social and/or behavioral context, and phone state/position)
during the primary activity execution. However, the context labels for each activity in-
stance are not consistent as the data collection is conducted in-the-wild. To implement
ARW, we systematically analyzed the PADLs and corresponding context labels to find
out the most frequent activity-context pairs in the “ExtraSensory” dataset. In this regard,
for all participants’ data, we counted the frequency of different context labels (including
human behavioral contexts and phone positions) that occur in a pair with each of the six
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selected daily living activities. In the end, we selected ten (10) and four (04) different human
behavioral contexts and phone positions for context recognition, respectively, which had
maximum frequencies of co-occurrence with the primary PADLs. Further, we tended to
discard the activity instances having secondary labels with very few instances (i.e., less than
100), as they are not sufficient to be trained and tested for context recognition. Neglecting
these instances has no adverse effect on the overall system training, due to the remaining
instances still being very huge in number, i.e., 51,001.

Algorithm 1 shows the steps followed in extracting the activity-context pairs and their
frequencies in the “ExtraSensory” dataset. These steps are reproducible and can be adopted
for any multi-label dataset. Table 1 presents the list of primary PADLs and activity-context
pairs along with their frequencies, which are finally chosen to validate the proposed ARW
method. Two activities, including bicycling and running, are linked to only one behavioral
context (i.e., exercise) and phone position (i.e., phone in pocket) as no more context labels
exist with these activities in the “ExtraSensory” dataset. Likewise, for lying activity, only
two phone positions (i.e., phone in hand and phone on table) are available, which are used
in further analysis.

Algorithm 1. Extraction of activity-context pairs and their frequencies per user for ARW

Input: userID
Output: prActCtxLabels and f reqPrActCtxLabels
% prActCtxLabels and f reqPrActCtxLabels show the labels and counts for all activity-context
pairs per user, respectively.

1: Begin % Algorithm starts here
2: userData = readUserData(userID)
3: IN = countInstances(userData)
4: for rowID = 1 : IN % Iterate through all data

instances per user
5: rowData = readDataChunk(rowID) % Read a data chunk with labels
6: prActLabel(rowID) = extractPrActLabel(rowData) % Extract primary activity

label
7: ctxLabels(rowID, :) = extractCtxLabels(rowData) % Extract context labels
8: prActCtxLabels = [prActLabel(rowID), ctxLabels(rowID)] % Primary activity and

context pairs
9: end for
10: prActCount = length(unique(prActLabel)) % Primary activities per user (which

are generally fixed, i.e., 06)
11: ctxCount = length(unique(ctxLabels)) % Total number of secondary context labels

for per user
12: f reqPrAct = count(unique(prActLabel)) % Frequencies of all primary activities

per user
13: f reqCtxs = count(unique(ctxLabels)) % Frequencies of all secondary context

labels per user
14: f reqPrActCtxLabels = count((prActCtxPairs)) % Frequencies of all activity-context

pairs per user
15: end

3.1.2. Signal De-Noising and Segmentation

The raw signals acquired from the accelerometer sensor of the smartphone/smartwatch
are exposed to unwanted noise, for example, equipment noise or the noise produced by the
subject’s unconscious movements. It is vital to de-noise the acquired signals before any
further processing and computation. A lot of signal de-noising techniques have been used
in AR literature, including time-domain and frequency-domain filtering methods. In this
study, we employed a time-domain averaging filter (with size 1 × 3) for signal de-noising,
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which is computationally cheap and capable of eliminating sudden noise, such as spikes,
from the acquired signals.

Table 1. List of primary physical activities and different activity-context pairs utilized for ARW.

Primary Physical Activities Physical Activities and Behavioral Contexts Physical Activities and Phone Contexts

Code Activity Count Code (Activity, Behavioral Context) Count (Activity, Phone Context) Count

A1 Lying 20,348 A1C1 (Lying, Sleeping) 19,001 (Lying, Phone in Hand) 134

A2 Sitting 15,647 A1C2 (Lying, Surfing the Internet) 1069 (Lying, Phone on Table) 20,214

A3 Standing 7115 A1C3 (Lying, Watching TV) 278 (Sitting, Phone in Bag) 992

A4 Walking 2790 A2C1 (Sitting, Surfing the Internet) 7501 (Sitting, Phone in Hand) 1214

A5 Running 3488 A2C2 (Sitting, In a Car) 1427 (Sitting, Phone in Pocket) 618

A6 Bicycling 713 A2C3 (Sitting, In a Meeting) 1084 (Sitting, Phone on Table) 12,823

- - - A2C4 (Sitting, Watching TV) 5635 (Walking, Phone in Bag) 383

- - - A3C1 (Walking, Indoor) 534 (Walking, Phone in Hand) 768

- - - A3C2 (Walking, Outdoor) 1715 (Walking, Phone in Pocket) 1406

- - - A3C3 (Walking, Shopping) 145 (Walking, Phone on Table) 233

- - - A3C4 (Walking, Talking) 396 (Standing, Phone in Bag) 426

- - - A4C1 (Standing, Indoor) 6477 (Standing, Phone in Hand) 587

- - - A4C2 (Standing, Outdoor) 638 (Standing, Phone in Pocket) 2013

- - - A5C1 (Running, Exercise) 3488 (Standing, Phone on Table) 4089

- - - A6C1 (Bicycling, Exercise) 713 (Running, Phone in Pocket) 3488

- - - - - - (Bicycling, Phone in Pocket) 713

Note: Each count represents a single data instance of 20-s duration in time.

The “ExtraSensory” dataset entails activity instances that are pre-segmented and
labeled based on a 20-s time window with mutually exclusive samples. Generally, a fixed-
size window of 2 s to 5 s is considered sufficient for simple AR, while complex AR deals
with a larger window size having a time duration from 15 s to 30 s or more [28,30,86].
The proposed scheme aims to recognize the natural physical PADLs and in-the-wild
activity-aware contexts, thus giving rise to complex AR. Hence, in accordance with the
“ExtraSensory” dataset, a segmentation window of 20 s is used for feature extraction and
classification in the proposed scheme.

3.2. Feature Extraction

After signal de-noising, features are extracted from the segmented data for further
processing. Features are summarized representations of the essential signal attributes,
which are fed as input into machine learning algorithms to classify a given chunk of data
into one of the selected classes. Based on the existing AR studies [30,87–89], the proposed
ARW model involves the extraction of twenty (20) time-domain features corresponding
to each segmented data chunk. The extracted features include entropy, maximum signal
amplitude, minimum amplitude, mean value, standard deviation of the signal, skewness,
kurtosis, peak-to-peak value, peak-to-peak-time, median of the signal, maximum latency,
minimum latency, latency-amplitude ratio, energy, signal variance, third moment of the
signal, fourth moment of the signal, signal peak-to-peak slope, mean of first difference,
and mean of second difference. The features are extracted for 3D data from the phone and
watch accelerometer, thus resulting in a feature vector of size 1 × 60 per sensor.

Feature extraction is followed by feature selection to choose the most discriminating
features from the whole set of extracted features. In this regard, we used a filter-based
approach for supervised feature selection, which is known as “Correlation-based Feature
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Subset Selection” (CfsSubetSel) [90]. This approach assesses the predictive power of each
feature individually and finds redundancy between different features to produce the final
set of most predictive features. After applying CfsSubetSel, the final subset of obtained
features is used for classification in the next stage.

3.3. Primary Physical Activity Recognition

As discussed earlier, the proposed ARW model is based on a two-stage classification
approach, where the first stage involves primary physical activity recognition (PPAR), i.e.,
the classification of six (06) primary PADLs in-the-wild. These activities include lying,
sitting, walking, standing, running, and bicycling. Two machine learning classification
algorithms, i.e., BDT and NN, are utilized for PPAR in a supervised manner.

A BDT [91] is an ensemble classifier that utilizes a combination of multiple decision
trees (instead of using a single decision tree) to boost the output prediction performance.
The main objective of the BDT algorithm is to sequentially combine a group of weak
learners to create a strong learner. Each subsequent tree performs corrections for the errors
in the preceding tree, and the final prediction is made based on the entire set of trees. In
general, once aptly configured, a BDT is the easiest method for getting top recognition
performances on wide-ranging machine learning tasks.

A NN [92] entails a set of interconnected layers, where the input layer is connected
to the output layer using a feed-forward connection based on an acyclic graph consisting
of weighted edges and nodes (i.e., neurons). A number of hidden layers can be inserted
between the input and output layer; however, usually, one hidden layer is sufficient for
most of the predictive tasks. Each node in a layer is connected to all the nodes in the
subsequent layer using weighted edges. Each node in the hidden layers participates in
generating the output of the network based on a non-linear activation function. This whole
process is envisaged as an inspiration from the learning mechanisms of the human brain.

3.4. Activity-Aware Context Recognition

Human physical activity patterns alter with respect to change in their behavioral
environments. These variations in the physical activity patterns can be monitored and
tracked easily using the 3D accelerometer data from a smartphone/smartwatch to learn
and identify the detailed activity contexts, such as human behavioral contexts and phone
contexts. As follows, the second stage of the proposed ARW model entails activity-aware
context recognition (AACR). The primary objective of AACR is modeling and detect-
ing/recognizing the varying patterns of primary PADLs in diverse contexts to infer details
about human behavioral contexts and phone positions in-the-wild. In this manner, the
proposed ARW scheme enables activity-related contexts to be inferred based on activity
pattern identification. An AACR module comprises two central units, including BCR and
PCR. These units individually infer human behavioral context and phone context (i.e.,
phone position) labels, respectively, based on the activity recognized in the first stage (i.e.,
PPAR). In this aspect, for each selected primary activity, BDT and NN classifiers are trained
to identify the relevant activity contexts (as given in Table 1). These classifiers are fed
with the physical activity label (recognized in the first stage) and the final feature vector to
train the proposed ARW system context recognition. Both smartphone and smartwatch
accelerometers are used for BCR, while in the case of PCR, only a smartphone accelerometer
is employed. Overall, for each classifier, four (04) different models are trained for BCR and
PCR corresponding to four PADLs (including lying, sitting, walking, and standing). The
activities of running and bicycling, which only involve one behavioral context and phone
position, are ignored when training the proposed ARW model for AACR.

In the end, the outputs from both BCR and PCR units are aggregated with the output
from the first stage (i.e., PPAR) of the model to provide a detailed and in-the-wild represen-
tation of daily living human activities. As follows, the proposed ARW scheme is capable
of differentiating a large number of context-aware and fine-grained activities produced
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as a result of different combinations of primary PADLs, human behavioral contexts, and
phone positions.

4. Experimental Results, Performance Analysis, and Discussions

This section discusses the methods of validation and analysis used for assessing the
performance of the proposed scheme. In addition, it evaluates and discusses the achieved
experimental results in detail, as given in the following sections.

4.1. Method of Validation and Analysis
4.1.1. Model Selection and Hyperparameters Tuning

The proposed ARW scheme is implemented and validated using the Microsoft Azure
machine learning tool [93]. The “AutoML” package of Microsoft Azure is used for model
selection based on the “ExtraSensory” dataset, where a set of standard machine learn-
ing classifiers (including BDT, NN, k-nearest neighbours (K-NN), naïve Bayes (NB), and
support vector machine (SVM)) are investigated for the proposed ARW scheme. In this
aspect, the finally selected features set (obtained using CfsSubetSel) is fed as input into
machine learning classifiers to assess their performance for PPAR, BCR, and PCR exper-
iments. Table 2 provides the list of finally selected features from each sensor, which are
used for experimentation purposes. These features are simply concatenated in the case of
sensor fusion.

Table 2. List of finally selected features for different recognition experiments in the proposed scheme.

Experiment
Type

Based on
(Activity) Selected Features for Each Sensor Axis Feature Vector

Length per Sensor

PPAR
-

Ax → {F2, F5, F8, F15, F12, F13, F16}; Ay → {F2, F5, F8, F10, F13, F14, F15, F16};
Az → {F3, F4, F5, F8, F9, F10, F12, F13, F14, F15, F16, F17}; 27

Wx → {F1, F4, F5, F10, F14, F15, F16, F17, F18}; Wy → {F4, F5, F8, F10, F15, F16,
F17, F18, F20}; Wz → {F2, F5, F8, F10, F12, F15, F16, F17, F19, F20} 28

BCR

Lying
Ax → {F1, F2, F4, F6, F8, F10, F11, F20}; Ay → {F1, F2, F6, F10, F15, F18, F20};
Az → {F2, F6, F10, F11, F12, F19, F20}; 22

Wx → {F1, F2, F4, F6, F10, F11, F15, F23}; Wy → {F1, F2, F6, F10, F15, F16, F20};
Wz → {F1, F6, F10, F11, F12, F19, F20} 22

Sitting
Ax → {F2, F4, F6, F10, F11, F20}; Ay → {F1, F2, F6, F10, F15, F20};
Az → {F1, F2, F6, F10, F11, F12, F14, F20}; 19

Wx → {F1, F2, F4, F6, F10, F11, F20}; Wy → {F1, F2, F4, F10, F15, F16, F20};
Wz → {F2, F6, F10, F11, F12, F14, F20}; 21

Walking
Ax → {F2, F4, F5, F15, F10, F20}; Ay → {F1, F2, F6, F10, F15, F20};
Az → {F2, F6, F10, F11, F12, F20}; 19

Wx → {F2, F4, F6, F10, F11, F15, F20}; Wy → {F1, F2, F6, F10, F15, F20};
Wz → {F1, F2, F6, F10, F11, F12, F14, F20}; 21

Standing
Ax → {F2, F4, F6, F8, F10, F11, F14, F20}; Ay → {F1, F2, F4, F6, F10, F15, F19};
Az → {F1, F2, F4, F6, F10, F11, F12, F19, F20}; 24

Wx → {F2, F4, F6, F10, F11, F19}; Wy → {F2, F4, F10, F15, F19};
Wz → {F1, F2, F6, F8, F10, F11, F12, F19, F20}; 20

PCR

Lying Ax → {F2, F4, F10, F19}; Ay → {F2, F6, F10, F19, F20}; Az → {F2, F4, F20} 12
Sitting Ax → {F2, F4, F10, F11}; Ay → {F4, F10, F20}; Az → {F4, F10, F19} 10

Walking Ax → {F2, F4, F10, F19, F20}; Ay → {F2, F6, F10, F15}; Az → {F2, F4, F10, F11} 13
Standing Ax → {F2, F10, F20}; Ay → {F6, F10, F19}; Az → {F2, F10, F15} 09

Note: F1: entropy; F2: maximum amplitude; F3: minimum amplitude; F4: signal mean; F5: standard deviation; F6:
kurtosis; F7: skewness; F8: peak-to-peak value; F9: peak-to-peak-time; F10: signal median; F11: maximum latency;
F12: minimum latency; F13: latency-amplitude ratio; F14: energy; F15: signal variance; F16: 3rd moment of the
signal; F17: 4th moment of the signal; F18: signal peak-to-peak slope; F19: mean of 1st difference of the signal;
F20: mean of 2nd difference of the signal. 2 Ax , Ay, and Az represent the x-, y-, and z-axis of the smartphone
accelerometer, whereas Wx , Wy, and Wz represent x-, y-, and z-axis of the watch accelerometer, respectively. In the
case of sensor fusion for PPAR and BCR, the finally selected features from each sensor are combined accordingly.
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Following the model selection, BDT is chosen as the first choice for the proposed
method implementation. Additionally, the NN classifier is employed to assess its per-
formance for the proposed scheme in comparison to BDT, which has been successfully
adopted for numerous sensor-based AR studies [60,87,94]. A one-vs.-all (OVA) classifica-
tion approach is used for both classifiers, which utilizes an ensemble of C binary classifiers
to solve a multiclass problem with C number of classes. The existing research work has
demonstrated the effectiveness of using the OVA approach for multiclass classification,
provided that the underlying binary classifiers are fine-tuned [95]. Following this, a random
parameter sweep is performed on the data using five-fold cross-validation to explicitly
learn the optimal hyperparameters of the selected classifiers for different recognition exper-
iments. The maximum number of runs for the parameter sweep is set as 10. Finally, the
best-tuned model hyperparameters are chosen for all recognition experiments, providing
the best performance for the proposed scheme.

Table 3 presents the optimal hyperparameter values obtained for the selected classifiers
regarding PPAR, BCR, and PCR experiments. In the case of BDT, multiple additive regres-
sion trees (MART) [91] is used as a decision tree algorithm, whereas gradient descent is
used for error estimation. A fully connected (FC) hidden layer is used for the NN classifier
with a sigmoid function as the output function. The number of nodes in the hidden layer is
set equivalent to the average size of the input and output layer. The size of the input layer
for different experiments is equal to the number of input features, which is given in Table 2.
The output size represents the number of classes for each NN, which is six (06) and four
(04) for PPAR and PCR, respectively. In the case of BCR, the size of the output layer is equal
to the number of contexts corresponding to lying, sitting, walking, and standing activities.
To evaluate the classification performance, an m-fold cross-validation method (with m = 5)
is utilized. This validation scheme allows a model to train on multiple splits and uses all
the data for training and testing in different iterations, thus ensuring fairness.

Table 3. Classifier hyperparameters for the best-case recognition results using the proposed scheme.

Experiment
Type

Based on
(Activity) Sensor(s)

BDT Hyperparameters NN Hyperparameters

No. of
Leaves

Minimum
Leaf Instances

Learning
Rate (α)

No. of
Trees

No. of
Iterations

Learning
Rate (α)

PPAR -
A 61 17 0.2699 178 114 0.0368
W 32 06 0.2520 270 88 0.0387

A + W 26 02 0.2993 358 128 0.0287

BCR

Lying
A 08 50 0.1000 500 82 0.0320
W 04 06 0.1120 57 40 0.0109

A + W 86 22 0.0636 87 23 0.0306

Sitting
A 128 10 0.4000 100 131 0.0135
W 54 19 0.3364 51 131 0.0135

A + W 62 02 0.4000 94 51 0.3380

Walking
A 28 10 0.4000 100 96 0.0396
W 32 05 0.2520 270 46 0.0144

A + W 61 17 0.2699 178 97 0.3960

Standing
A 32 50 0.2000 100 111 0.0158
W 17 13 0.0629 50 55 0.0315

A + W 30 16 0.2358 27 135 0.0135

PCR

Lying A 06 47 0.1400 233 58 0.0101
Sitting A 59 27 0.3911 22 109 0.3030

Standing A 128 01 0.4000 20 23 0.0309
Walking A 36 07 0.3331 182 121 0.0301

Note: Here, A and W denote the smartphone and smartwatch accelerometer, respectively.

4.1.2. Performance Evaluation Metrics for Classification

The performance of BDT and NN classifiers is assessed independently for PPAR, BCR,
and PCR experiments, based on accuracy, precision, sensitivity, F1-score, balanced accuracy,
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and log loss. The mean value of true positive rate (i.e., sensitivity) and true negative rate
(i.e., specificity) is termed as balanced accuracy (BALACC). It is the most crucial measure for
assessing the classification performance of a system that entails imbalanced class data [38].
In addition, micro-averaging and macro-averaging metrics (i.e., micro-F1 and macro-F1)
are computed for average performance comparison, where micro-precision and micro-
sensitivity values are equal to micro-F1 scores. To estimate the classification error, log loss
or logarithmic loss is used, which assesses the uncertainty of a model by comparing the
output probabilities with ground truths. It expresses the penalty for misclassifications and
is measured as a difference of two probability distributions, i.e., the true one and the one
enclosed by the proposed model.

4.2. Performance Analysis of Primary Physical Activity Recognition (PPAR)

The first stage of the proposed ARW model incorporates PPAR, where six (06) in-the-
wild PADLs are classified based on smartphone and watch accelerometer data, using BDT
and NN classifiers. For this purpose, twenty time-domain features are extracted from each
sensor channel, which are further subjected to feature selection and reduction using the
CfsSubetSel method. As a result, a set of twenty-nine (29) and twenty-eight (28) features (as
shown in Table 2) is obtained related to the phone and watch accelerometer, respectively,
which is used for classifier training and testing based on a five-fold cross-validation scheme.

Table 4 provides the average numerical results for PPAR, where the BDT classifier
achieves the best results in classifying six selected PADLs. Using the phone and watch
accelerometer alone, BDT achieves a macro-F1 score of 82.9% and 75.2%, respectively,
for PPAR, which is 20.1% and 19.9% greater than the corresponding scores attained with
the NN classifier. Similarly, the values of micro-F1 scores are also improved for the BDT
classifier. These results also depict that the phone accelerometer performance is better than
the watch accelerometer. With sensor fusion, the macro-F1 score is improved with a 6.4%
and 14.1% rate in comparison to that achieved with the individual phone and watch sensor,
respectively. Likewise, in the case of the NN classifier, the macro-F1 value is increased
to 71.8% with sensor fusion, which is still 17.5% less than the best-case value obtained
with BDT. The best error rate (i.e., average log loss of 0.787) for PPAR is also obtained
with the BDT classifier using the combination of both sensors. Likewise, the values of
other performance measures (i.e., precision and sensitivity) are also better for the BDT as
compared to the NN classifier, where the best results are attained with sensor fusion.

Table 4. Average results for primary physical activity recognition (PPAR).

Classifier Sensor(s) Accuracy Precision Sensitivity Micro-F1 Macro-F1 Log Loss

BDT
Acc. 0.959 0.856 0.807 0.877 0.829 1.215

W. Acc. 0.941 0.825 0.708 0.822 0.752 1.414
Acc. + W. Acc. 0.974 0.907 0.881 0.920 0.893 0.787

NN
Acc. 0.900 0.744 0.579 0.700 0.628 1.284

W. Acc. 0.861 0.691 0.503 0.583 0.553 1.748
Acc. + W. Acc. 0.921 0.789 0.677 0.763 0.718 1.018

Note: Acc. and W. Acc. symbolize the smartphone and smartwatch accelerometer, respectively.

Figure 3a compares the BALACC values obtained for PPAR using BDT and NN
classifiers. It is evident from the figure that NN underperforms as compared to the BDT
classifier in terms of the BALACC value as well. The best BALACC rate of 93.1% is
achieved with the BDT classifier using sensor fusion, which is 10.8% more than the best
value (BALACC = 82.3%) achieved with the NN. Likewise, using individual sensors for
PPAR, the BALACC values achieved with the NN are worse than those obtained with the
BDT classifier. These results validate the efficacy of utilizing a BDT classifier to recognize
primary PADLs in-the-wild. Furthermore, adding the watch accelerometer with the phone
accelerometer tends to achieve the best accuracy rate for PPAR. Generally, natural user
behavior involves diverse behavioral contexts and phone positions, which may poorly
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affect the activity pattern being recorded by smartphone sensors. For example, in the case
of phone on table, it becomes quite impossible to recognize the participant’s activity based
on a smartphone accelerometer. In such cases, the use of a smartwatch accelerometer may
help in learning and identifying the user’s activities as the watch is supposed to be worn
by the user most of the time.

Figure 3. (a) Average results attained for PPAR using BDT and NN classifiers; (b) Confusion matrix
(in percentage form) for the best-case PPAR performance accomplished with BDT using the phone
and watch accelerometer combination. The labels A1-A6 represent six activities, i.e., lying, sitting,
walking, standing, running, and bicycling, respectively.

To demonstrate the per-class recognition performance of the selected PADLs, Figure 3b
displays the confusion matrix concerning the best-case PPAR performance (obtained with
BDT using sensor fusion). The matrix rows and columns denote the ground truths and
predicted outputs, respectively. The labels represent the codes for six (06) primary PADLs as
follows: A1: lying, A2: sitting, A3: walking, A4: standing, A5: running, and A6: bicycling.
It can be analyzed from the confusion matrix that most of the PADLs are truly classified
with a high percentage. Notably, static activities (such as lying/sitting/standing) are truly
recognized with a rate of more than 90%. The percentage of truly classified samples for
walking, running, and bicycling activities is 78.2, 84.3, and 83, respectively, which shows
that identification of the static activities in-the-wild is more comfortable than dynamic
activities. This is due to the inconsistency of dynamic activity patterns with respect to
diverse behavioral contexts, which gives rise to misclassifications of different dynamic
activities in-the-wild. As a result, their recognition accuracies are reduced.

4.3. Performance Evaluation of Activity-Aware Context Recognition (AACR)

The proposed ARW scheme entails the recognition of activity-aware contexts in its
second stage, where BDT and NN classifiers are trained explicitly for all PADLs to infer
the associated human behavioral contexts and phone contexts (i.e., phone positions). The
second stage consists of two parallel units, i.e., BCR and PCR, which take as input features
from the sensor(s) data as well as the primary activity label (recognized in the first stage)
to identify the corresponding behavioral contexts and phone positions independent of
each other. As context labels for the primary activities are not the same, it is vital first to
recognize the primary activity and then infer the context information being aware of the
primary activity. BCR is performed based on the data from smartphone and smartwatch
accelerometers, whereas in the case of PCR, only the smartphone accelerometer sensor is
utilized. In this regard, the final subset of features selected for each accelerometer sensor
(as shown in Table 2) is used to train and test the chosen classifiers for BCR and PCR using
a five-fold cross-validation method. The results are evaluated separately for BCR and PCR
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based on four different PADLs, while running and bicycling activities are ignored as they
only involve one behavioral context and phone position that requires no classification. The
following sections discuss the individual experimental results achieved for BCR and PCR.

4.3.1. Behavioral Context Recognition (BCR) Results and Investigation

The average numerical results obtained for BCR, based on four different PADLs, are
presented in Table 5. By investigating these results, it can be stated that the BDT classifier
performs significantly better than the NN classifier in recognizing activity-aware behavioral
contexts. Furthermore, it can be analyzed that the phone accelerometer better recognizes
most of the human behavioral contexts associated with four different physical activities,
as compared to the other accelerometer sensor (i.e., watch accelerometer). In the case of
BCR based on sitting, walking, and standing activities, the BDT classifier achieved macro-
F1 scores of 97.0%, 74.1%, and 98.6%, respectively, using a phone accelerometer. These
numerical results are 3.5%, 20.6%, and 1.5% better than the corresponding scores obtained
for BCR based on the watch accelerometer, respectively. In contrast, for BCR based on lying
activity, the macro-F1 score (i.e., 80.3%) obtained using the watch accelerometer is 4.8%
more than the phone accelerometer. The same performance trend is observed in the case of
average micro-F1 scores also. However, the fusion of both sensors provides the best-case
BCR performance, where the best average macro-F1 scores of 86.8%, 97.8%, 76.4%, and
98.8%, respectively, are achieved for BCR based on lying, sitting, walking, and standing
activity, using the BDT classifier. These values are 19.4%, 6.5%, 22.3%, and 2.8% more than
the corresponding macro-F1 scores obtained with the NN classifier, respectively, using
sensor fusion. The average numerical values of accuracy, precision, sensitivity, and log
loss are also better for a BDT as compared to a NN, which proves the efficiency of a BDT
classifier over an NN classifier for BCR experiments.

Table 5. Average results for behavioral context recognition (BCR) based on four physical activities.

Activity Classifier Sensor(s) Accuracy Precision Sensitivity Micro-F1 Macro-F1 Log Loss

Lying

BDT
Acc. 0.997 0.794 0.698 0.944 0.755 3.640

W. Acc. 0.997 0.945 0.719 0.973 0.803 1.502
Acc. + W. Acc. 0.985 0.940 0.812 0.976 0.868 1.287

NN
Acc. 0.963 0.716 0.461 0.934 0.514 2.019

W. Acc. 0.991 0.722 0.514 0.945 0.601 1.650
Acc. + W. Acc. 0.969 0.813 0.602 0.953 0.674 1.867

Sitting

BDT
Acc. 0.986 0.956 0.960 0.975 0.958 0.178

W. Acc. 0.970 0.953 0.920 0.939 0.935 0.435
Acc. + W. Acc. 0.991 0.984 0.971 0.982 0.978 0.147

NN
Acc. 0.928 0.824 0.869 0.856 0.844 0.465

W. Acc. 0.911 0.850 0.747 0.821 0.785 0.877
Acc. + W. Acc. 0.961 0.924 0.902 0.922 0.913 0.321

Walking

BDT
Acc. 0.918 0.854 0.683 0.835 0.741 1.560

W. Acc. 0.859 0.703 0.485 0.717 0.535 1.980
Acc. + W. Acc. 0.926 0.847 0.715 0.852 0.764 1.437

NN
Acc. 0.823 0.441 0.324 0.646 0.318 1.857

W. Acc. 0.818 0.433 0.316 0.626 0.310 2.296
Acc. + W. Acc. 0.861 0.688 0.492 0.721 0.536 1.680

Standing

BDT
Acc. 0.996 0.987 0.986 0.996 0.986 0.057

W. Acc. 0.988 0.973 0.966 0.988 0.970 0.111
Acc. + W. Acc. 0.996 0.991 0.986 0.996 0.988 0.049

NN
Acc. 0.983 0.988 0.907 0.983 0.943 0.241

W. Acc. 0.987 0.880 0.974 0.987 0.920 1.118
Acc. + W. Acc. 0.971 0.957 0.963 0.971 0.960 0.090

Note: Acc. and W. Acc. denotes the smartphone and smartwatch accelerometer, respectively.
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Figure 4 compares the performance of different sensors for activity-aware BCR in
terms of BALACC. The average BALACC rate achieved for BCR using the smartphone
accelerometer is 71.9%, 92.9%, 78.2%, and 82.3% based on lying, sitting, walking, and standing
activity, respectively, using the BDT classifier. In the case of BCR based on lying activity,
the BALACC value achieved with the watch accelerometer is 7.2% and 6.2% better than
that achieved with the phone accelerometer using the BDT and NN classifier, respectively.
The combination of phone and watch accelerometers results in an increase in the BALACC
values for BCR, particularly for lying and walking activities. The overall average BALACC
value achieved for BCR (with sensor fusion) using the BDT classifier is 11% more than the
NN classifier. Therefore, based on all these analyses and discussions, it is eminent that
the combination of both accelerometers is the best choice for activity-aware BCR using a
BDT classifier.

Figure 4. Average balanced accuracies achieved for BCR based on lying, sitting, walking, and standing
activities using BDT and NN classifiers.

Table 6 provides the confusion matrices for the best-case BCR results obtained with
the smartphone and smartwatch combination using the BDT classifier. It can be analyzed
from the table that in the case of sitting and standing activities, the corresponding human
behavioral contexts are truly classified with an accuracy of more than 90%. However, the
individual recognition rates achieved for behavioral contexts associated with lying and
walking activities are lower. In particular, the percentage of truly classified samples for
A1C2 (surfing the internet based on lying), A1C3 (watching TV based on lying), A3C3
(shopping based on walking), and A4C4 (talking based on walking) is 68.8, 75.2, 46.6, and
61.9, respectively. These results depict the difficulty of accurately identifying these human
behavioral contexts based on the recognition of associated physical activity patterns.

In general, the sitting and standing activity patterns of human beings show variations
pertaining to different behavioral contexts. For instance, the sitting posture for most persons
is altered when working on a personal computer/laptop or watching TV. Likewise, the pattern
of standing indoors somewhat differs from standing at some outdoor place. These differences
are realized by the 3D motion sensor (i.e., accelerometer) of smartphone/smartwatch to
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efficiently model and recognize different behavioral contexts linked with these activities. As
a result, the performance of BCR based on sitting and standing activity patterns is enhanced.
In contrast, the lying activity typically attributes to the state of relaxing; thus, it does not
often entail explicit body movements. Therefore, the recognition of associated human
behavioral contexts becomes challenging. In addition, the phone position associated with
lying is often on table, which yields unpredictable and inaccurate results for BCR. Therefore,
it is very crucial to use the smartwatch in combination with a smartphone for BCR. In the
case of walking activity, the recognition of associated human behavioral contexts becomes
hard owing to the dynamic motion patterns of an individual in the same or different
physical environment. These changes are often triggered as a result of chaotic human
behavior and an emotional state that may instinctively alter the gait pattern of a subject. In
addition, human behavior varies from one person to another, which makes it impractical to
create a general model for BCR based on walking activity in-the-wild.

Table 6. Confusion matrices obtained for BCR with respect to four physical activities using BDT
classifier.

Predicted Output Predicted Output

Lying
(A1) A1C1 A1C2 A1C3 Sitting

(A2) A2C1 A2C2 A2C3 A2C4

G
ro

un
d

Tr
ut

h A1C1 99.63% 0.33% 0.04%

G
ro

un
d

Tr
ut

h

A2C1 99.5% 0.1% 0.0% 0.4%
A2C2 2.6% 96.6% 0.4% 0.4%

A1C2 31.1% 68.8% 0.1% A2C3 2.3% 0.3% 94.5% 3.0%
A1C3 10.8% 14.0% 75.2% A2C4 1.9% 0.0% 0.3% 97.8%

Predicted Output Predicted Output

Walking
(A3) A3C1 A3C2 A3C3 A3C4 Standing

(A4) A4C1 A4C2

G
ro

un
d

Tr
ut

h

A3C1 82.2% 15.2% 0.4% 2.2%

G
ro

un
d

Tr
ut

h A4C1 99.8% 0.2%A3C2 2.4% 94.9% 0.5% 2.3%
A3C3 0.0% 47.6% 46.9% 5.5%

A4C2 2.7% 97.3%A3C4 1.5% 35.6% 1.0% 61.9%

Note: The row and column labels for each confusion matrix represent different behavioral contexts associated
with the specific physical activity, which are listed in Table 1.

4.3.2. Phone Context Recognition (PCR) Results and Investigation

Table 7 provides the average numerical results for PCR based on lying, sitting, walking,
and standing activity patterns. Only the phone accelerometer sensor is used in this regard,
which provided the macro-F1 scores of 83.1%, 91.1%, 71.1%, and 97.4% in recognizing
different phone positions based on lying, sitting, walking, and standing activities, respectively,
using the BDT classifier. For the same set of activities, the NN achieved corresponding
scores of 49.8%, 34.5%, 31.3%, and 69.8%, respectively, which are quite low as compared to
the BDT results. The values of other performance parameters (including accuracy, precision,
sensitivity, micro-F1, and log loss) are also better for the BDT classifier. In addition, Figure 5
compares the PCR results in terms of BALACC, where the best recognition performance is
also obtained using the BDT classifier. The overall average BALACC value for PCR based
on a BDT is 13.5% more than the NN classifier. Moreover, it can be investigated from the
figure that the average performance of PCR based on sitting and standing activities is better
as compared to other activities.

Table 8 provides the confusion matrices for PCR based on four PADLs using the BDT
classifier. The individual accuracies of different phone positions based on each physical
activity can be computed from these confusion matrices. The row and column labels of
the confusion matrices represent different phone positions (i.e., phone in bag (PB), phone
in hand (PH), phone in pocket (PP), and phone on table (PT). There are only two phone
positions (i.e., PH and PT) associated with the lying activity, which are classified with a
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true positive rate of 54.5% and 99.9%, respectively. In the case of sitting and standing
activities, PB and PT positions obtained a very high true positive rate of more than 95%,
which depicts their easier recognition as compared to other phone positions. Likewise, PP
is truly recognized with a more than 95% rate based on standing activity. The recognition
of PB and PT positions based on walking activity attained a true positive rate of less than
60%, which shows inferring these phone positions based on in-the-wild gait patterns is
very challenging. On the other hand, the recognition of PP based on walking activity is
more comfortable, which achieved a true positive rate of 89.4%. In general, the proposed
scheme achieves satisfactory performance for activity-aware PCR.

Table 7. Average results for phone context recognition (PCR) based on four physical activities using
smartphone accelerometer.

Classifier Activity Accuracy Precision Sensitivity Micro-F1 Macro-F1 Log Loss

BDT

Lying 0.996 0.923 0.772 0.996 0.831 1.420
Sitting 0.982 0.917 0.904 0.964 0.911 0.426

Walking 0.889 0.753 0.684 0.777 0.711 1.731
Standing 0.991 0.975 0.974 0.982 0.974 0.076

NN

Lying 0.993 0.497 0.500 0.993 0.498 2.505
Sitting 0.916 0.473 0.338 0.831 0.345 1.578

Walking 0.776 0.427 0.336 0.552 0.313 1.356
Standing 0.861 0.697 0.720 0.721 0.698 1.352

Figure 5. Comparison of balanced accuracy obtained for PCR based on four individual physical
activities using BDT and NN classifiers.

4.4. Analysis of BDT vs. NN for Proposed ARW Scheme

As indicated by the results presented and discussed in the previous sections, the
performance of the BDT is better for all types of recognition experiments (i.e., PPAR, BCR,
and PCR). In contrast, the NN fails to provide satisfactory results for the proposed scheme.
The best-case average results (i.e., BALACC values) achieved for PPAR, BCR, and PCR
experiments using the BDT classifier are 10.8%, 11%, and 13.5% more than NN results.
Generally, the NN classifier fits well for AR tasks, and numerous research studies have
successfully utilized different variants of NNs (i.e., deep NN, convolutional NN, and re-
current NN) for AR [96–98]. However, based on the underlying data distribution, there
can be certain bottlenecks in achieving effective performance for sensor-based AR-related
tasks using a NN. For instance, a massive bulk of data is required for efficient training
of NNs to avoid any underfitting/overfitting or regularization issue. When dealing with
imbalanced class data (such as the case with our proposed scheme), where the number
of samples for certain individual classes is very small, the NN classifier performs below
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par due to a lack of training samples. In addition, training or labeling noise, data stan-
dardization/normalization, cross-validation strategy, poor hyperparameter optimization
strategies, and poor selection of the number of hidden layers and number of nodes in each
hidden layer also degrade the performance of the NN. These factors consequently lead to
performance degradation of the NN classifier for the proposed scheme. In contrast to the
NN, the BDT classifier works well with the smaller datasets by utilizing a combination
of multiple decision trees to minimize the prediction error. The trees are connected in a
sequential order, where each tree makes up for the prediction error of the preceding trees
to boost the overall recognition performance. The final result is based on an ensemble of all
decision trees, which may lead to overfitting problems in some cases. However, the final
(i.e., best-case) recognition performance of our proposed scheme determines the efficacy of
the BDT classifier for ARW, thus making it an optimal choice for such types of experiments.
For handling imbalanced class data, resampling techniques, such as the synthetic minority
oversampling technique (SMOTE) [99], can be used to achieve good results with classifiers
that require a large amount of training data for each class (e.g., NN).

Table 8. Confusion matrices obtained for PCR based on four individual physical activities using BDT
classifier.

Predicted Output Predicted Output

Lying
(A1) PH PT Sitting

(A2) PB PH PP PT

G
ro

un
d

Tr
ut

h PH 54.5% 45.5%

G
ro

un
d

Tr
ut

h

PB 96.1% 1.5% 0.1% 2.3%
PH 1.2% 80.6% 1.6% 16.5%

PT 0.1% 99.9%
PP 1.3% 5.5% 86.6% 6.6%
PT 0.1% 1.0% 0.4% 98.5%

Predicted Output Predicted Output

Walking
(A3) PB PH PP PT Standing

(A4) PB PH PP PT

G
ro

un
d

Tr
ut

h

PB 59.3% 16.2% 22.7% 1.8%

G
ro

un
d

Tr
ut

h

PB 99.1% 0.5% 0.0% 0.5%
PH 7.6% 73.6% 17.7% 1.2% PH 0.7% 93.2% 1.4% 4.8%
PP 2.8% 6.5% 89.4% 1.4% PP 0.0% 0.4% 98.6% 1.0%
PT 5.6% 14.6% 28.3% 51.5% PT 0.0% 0.7% 0.6% 98.8%

Note: PB: phone in bag; PH: phone in hand; PP: phone in pocket; PT: phone on table.

4.5. Performance Comparison with Existing AR Schemes

Table 9 demonstrates the primary characteristics of some well-known state-of-the-art
AR studies and compares them with our proposed ARW method. The comparison is
made in terms of activity type, the number of activities recognized, activity occupancy
and environment/context, sensing modalities for data acquisition, and machine learning
classifiers for AR. It can be investigated from the table that most of the existing AR studies
(such as [100–103]) emphasize the recognition of simple (or atomic) daily living activities in
certain restricted settings or environments. The occupancy for collecting participants’ data
during activity execution generally follows a single location, such as a laboratory or home,
where the sensing equipment is installed or carried out to record the participant’s data. The
activities to be recognized by the system are performed in a predefined way as scripted tasks.
Moreover, there is a lack of diversity in activity-related contexts. As a result, it becomes
easier for existing studies to achieve efficient AR performance. However, these schemes
fail to adapt to natural user behavior, which is indispensable for real-time applications
in diverse environments. Only a few AR schemes (such as [37,104]) worked on learning
and identifying natural user activities in indoor and outdoor environments. The authors
in [38] recognized diverse single-label human contexts in-the-wild using heterogeneous
sensor data from smartphones and smartwatches. However, single-label activity/context
information is not adequate for fine-grained AR. Our proposed ARW scheme offers multi-
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label activity and context recognition by aggregating outputs from different stages, such
as PPAR, BCR, and PCR, and achieves state-of-the-art results in terms of BALACC. In
comparison to most of the existing AR studies presented in Table 9, the proposed method
demonstrates efficient recognition of six PADLs, ten behavioral contexts, and four phone
contexts in-the-wild. Furthermore, the proposed scheme is computationally beneficial
and low-cost as it simply depends on the smartphone and smartwatch accelerometer data
for recognition. Henceforth, the efficacy of the proposed ARW scheme is justified over
state-of-the-art AR schemes.

Table 9. Comparison of the proposed ARW scheme with previous studies.

Study Activity/
Context Type

No. of
Activities/
Contexts

Occupancy/
Environment

Sensing Device/
Sensors Classifier(s) Achieved Results

[100] Daily Living 06 Single/
Controlled Lab Smartphone (Acc.)

MLP, LR, DT
(Decision-level

Fusion)
F1-Score = 91.8%

[104]
Daily Living 06 Single/

Controlled Lab Smartphone (Acc.)
CNN

F1-Score = 97.4%

Daily Living 07 Multiple/
Indoor and Outdoor Smartphone (Acc., Gyro.) F1-Score = 93.1%

[101] Daily Living 12 Single/- Smartphone (Acc., Gyro.) NN, SVM, DBN Accuracy = 89.61%
(DBN)

[102] Home Task 07 Single/Indoor Smartphone (Acc., Mic.);
Wearable (Acc.) RF Accuracy = 94.1%

[37] Daily Living 09 Multiple/
Indoor and Outdoor

Smartphone (Acc., Gyro.,
Mag.,); Pressure Sensor

DT, NB, SVM,
MLP

Accuracy = 92.8%
(MLP)

[38]
Human

Behavioral
Contexts

25 Multiple/In-the-Wild
Smartphone (Acc., Gyro.,

Mag., GPS);
Wearable (Acc.)

LR BALACC = 80%

[103]

Home Tasks 10 Single/Smart Home Motion Sensor;
Ambient (Temp. Sensor)

NN, HMM, CRF,
SVM, CE (using

Genetic
Algorithm)

F1-Score = 90.1% (CE)

Home Tasks 11 Single/Smart Home
Motion Sensor; Item; EU;

Ambient (Door Sensor, Temp.
Sensor, Light Sensor);

F1-Score = 81.9% (CE)

Home Tasks 15 Single/Smart Home
Motion Sensor;

Ambient (Door Sensor,
Temp. Sensor);

F1-Score = 85.7% (CE)

[105] Daily Living
and Home Tasks 12 Single/- Wearable (Acc.)

DT, SVM
(Two-level

Fusion)
F1-Score = 93.0% (CE)

[106] Elderly
Activities 17 Single/Smart Home Wearable (Bar., Temp., Acc.,

Gyro., Mag.); Ambient (PIR) SVM Accuracy = 98.32%

Proposed
ARW

Daily Living 06 Multiple/In-the-Wild Smartphone (Acc.);
Wearable (Acc.) BDT, NN BALACC = 93.1%

(BDT)
Behavioral
Contexts 10 Multiple/In-the-Wild Smartphone (Acc.);

Wearable (Acc.) BDT, NN BALACC = 91% (BDT)

Phone Contexts 04 Multiple/In-the-Wild Smartphone (Acc.); BDT, NN BALACC = 84.2%
(BDT)

Note: Acc.: accelerometer, BALACC: balanced accuracy, Bar.: barometer, BDT: boosted decision tree, CE: classifier
ensemble, CNN: convolutional neural network, CRF: conditional random fields; DBN: deep belief network, DT: de-
cision tree, EU: electricity usage, GPS: global positioning system, Gyro.: gyroscope, HMM: hidden Markov model,
LR: logistic regression, Mag.: magnetometer, Mic.: microphone, MLP: multilayer perceptron, NB: naïve Bayes,
NN: neural network, PIR: passive infrared sensor, SVM: support vector machine, Temp.: temperature sensor.

5. Conclusions

This research paper demonstrates a novel two-stage model for sensor-based activity
recognition in-the-wild. In the first stage, the proposed scheme classifies six (06) primary
physical activities, whereas in the second stage, the proposed scheme infers fourteen (14)
activity-aware contexts using the “ExtraSensory” dataset. The outputs from both stages are
combined for better cognition and understanding of natural human activities in diverse
contexts. Three types of experiments are conducted in this paper, including primary
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physical activity recognition, behavioral context/environment recognition, and phone
context recognition. Smartphone and smartwatch accelerometers are utilized to identify
daily living human activities and the associated behavioral contexts. In contrast, phone
context recognition only entails a smartphone accelerometer sensor. A boosted decision tree
achieves the best experimental results for the proposed scheme. Although the proposed
method achieves a reasonable accuracy rate, there are some limitations associated with
it. For example, the activities and behavioral contexts considered for experimentation
cannot generalize to all use cases in the real world. The proposed scheme thus cannot
handle unforeseen activities and contexts. There are some privacy issues with continuous
activity/context monitoring of a human being, particularly if an impostor gets access to the
device data/output. The continuous monitoring of human beings using smart devices has
memory and battery constraints as well.

The limitations of this paper can be improved in future works. In this aspect, our
proposed method can be extended to incorporate more sensing modalities for robust de-
tection/recognition of a large number of human activities and contexts, which can be
helpful for human-environment interaction modeling. Resampling and data augmen-
tation techniques can be applied to cope with imbalanced class data, particularly for
activities/contexts that exist less in-the-wild daily. Likewise, the proposed scheme can
be modified to handle unforeseen activities and contexts. The coinciding recognition of a
person’s physical activity and behavioral/social context can be crucial for human behavior
modeling and cognition in their living environments. Thus, the proposed scheme can also
be extended to detect/recognize normal and abnormal human behavior for predicting
health-related risks. Knowledge-based systems, focusing on human-centered computing,
can utilize the proposed method for improved decision-making and recommendations. The
correlation between human daily living activities and their social/behavioral contexts can
be examined in diverse environments to realize the factors giving rise to abnormal behavior.
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