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Abstract: STT-RAM (Spin-Transfer Torque Random Access Memory) appears to be a viable alternative
to SRAM-based on-chip caches. Due to its high density and low leakage power, STT-RAM can be
used to build massive capacity last-level caches (LLC). Unfortunately, STT-RAM has a much longer
write latency and a much greater write energy than SRAM. Researchers developed hybrid caches
made up of SRAM and STT-RAM regions to cope with these challenges. In order to store as many
write-intensive blocks in the SRAM region as possible in hybrid caches, an intelligent block placement
policy is essential. This paper proposes an adaptive block placement framework for hybrid caches
that incorporates metadata embedding (ADAM). When a cache block is evicted from the LLC, ADAM
embeds metadata (i.e., write intensity) into the block. Metadata embedded in the cache block are then
extracted and used to determine the block’s write intensity when it is fetched from main memory. Our
research demonstrates that ADAM can enhance performance by 26% (on average) when compared to
a baseline block placement scheme.

Keywords: last-level cache; hybrid cache; non-volatile memory; STT-RAM

1. Introduction

Modern processors use on-chip multi-level caches to compensate for main memory
systems’ restricted latency and bandwidth. Unfortunately, on-chip caches take up a sig-
nificant amount of space. To make matters worse, the ever-expanding working set of
modern applications, as well as their bandwidth demands, necessitates industry manufac-
turers in providing larger on-chip last-level caches (LLC). However, during the last few
decades, LLC capacity per core has remained constant. Due to its high power consump-
tion and low density, Static Random Access Memory (SRAM), the traditional memory
technology for LLCs, does not scale well. As a result, numerous researchers are looking
into non-volatile memory technologies such as Spin-Transfer Torque RAM (STT-RAM) as
a potential replacement for SRAM. STT-RAM is appealing because it has a higher density
and lower leakage power consumption than SRAM, allowing it to scale more efficiently.
However, STT-RAM has a significant write latency and consumes a lot of power during
write operations, which can negate the benefits of the STT-RAM. By using a combination of
STT-RAM and SRAM technologies, this research intends to provide a system that enables
performance-efficient LLCs.

As both SRAM and STT-RAM have advantages and disadvantages, researchers have
developed hybrid caches that combine the best of both worlds [1–5]. The data array
in hybrid caches is divided into two regions: SRAM and STT-RAM. Hybrid caches utilize
an adaptive block placement policy to allocate write-intensive blocks to the SRAM area,
which helps to offset the STT-RAM’s long write latency and high write power consumption.
Hybrid caches strive to insert read-intensive blocks in the STT-RAM area ahead of time due
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to its low read latency and low read power consumption. As a result, for efficient hybrid
caches, an optimal block placement policy is critical.

Prior proposals on the block placement policy predict the write-intensity of the cache
blocks each time they are installed in the LLC. The exact write intensity is learned during
program execution once the cache block is implemented. The block is migrated from
the STT-RAM region to the SRAM region if the predicted write intensity is inaccurate and
vice versa. The hybrid cache faces a significant issue in predicting write intensity. Due to
the fact that all information about a block is discarded when it is evicted from the LLC,
the reference history for a cache block is not available when it is brought from the main
memory. As a result, the prediction is highly likely to be incorrect, resulting in significant
performance degradation. Figure 1 shows the percentage of writes to the STT-RAM region
in the hybrid-caches for high memory-intensive SPEC CPU2006 workloads. Even after
employing an intelligent baseline policy that predicts write intensity based on whether LLC
misses are reads or writes, nearly 81% of writes are directed to STT-RAM. This paper aims
to reduce the number of writes into STT-RAM (by nearly 20%) while achieving near-ideal
performance benefits.
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Figure 1. Ratio of writes on STT-RAM and SRAM regions. A baseline hybrid cache with intelligent
block placement can have up to 81% of the writes into an STT-RAM bank (according to our exper-
imental results that will be discussed in detail in Section 5.1). The goal of this paper is to reduce
the number of STT-RAM writes to nearly 20% and obtain near-ideal performance.

In order to address this problem, we introduce ADAM, a new adaptive block place-
ment framework with metadata embedding. ADAM is based upon two significant observa-
tions. First, the write-intensity of cache blocks is nearly constant during program execution.
Second, after being evicted from LLCs, the majority of cache blocks are re-fetched. ADAM
utilizes data compression techniques to embed write-intensity metadata within the cache
block based on these two observations. When a block is read from the main memory,
embedded metadata is retrieved and used to indicate the region (STT-RAM or SRAM)
the block should be placed in. By using the metadata embedding technique, ADAM can
track the write intensity of a single block without the use of additional storage components.
The following includes the highlights of this paper’s contributions:

• We make two key observations about write intensity and re-fetch rate of cache blocks;
• We propose a new adaptive block placement framework for hybrid caches based on

a metadata embedding technique. This allows the write intensity of cache blocks to be
determined precisely without the need for additional storage.

• We evaluate the performance of the proposed block placement framework for memory-
intensive SPEC CPU2006 benchmark running on a simulated multicore processor.
In comparison to a baseline block placement scheme, the proposed framework pro-
vides a speedup of 26% on average.
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2. Background and Motivation
2.1. STT-RAM/SRAM-Based Hybrid Caches
2.1.1. STT-RAM

Spin-Transfer Torque Random Access Memory (STT-RAM) is a dense non-volatile memory
technology [1,2]. STT-RAM has a read access time that is similar to SRAM, and its static power
consumption is much lower than the SRAM. Therefore, it is expected that STT-RAM can be used
to build large-capacity on-chip caches, such as the last-level cache for the multicore processors.
STT-RAM uses a magnetic tunnel junction (MTJ), which is composed of two ferromagnetic
layers and an oxide barrier (MgO). One of the two ferromagnetic layers is called a reference
layer, and the other ferromagnetic layer is called a free layer. The magnetic orientations of
the layers within the MTJ determine the resistance of the STT-RAM cell. When the magnetic
directions of the free layer and the reference layer are in the same direction (i.e., parallel state),
the resistance of MTJ is low, and when the magnetic directions of the two layers are in different
directions (i.e., anti-parallel state), the resistance of MTJ is high. We can use one of two states of
the MTJ to represent logic ‘0’ or ‘1’.

The advantages of STT-RAM are obtained at the cost of a high-latency write operation.
This is because updating the state of the STT-RAM cell involves updating the states of its
physical material. An STT-RAM write requires the injection of a high write current into
MTJ for a long time. These long-latency operations update the magnetic orientation of
a layer within the MTJ, essentially changing the contents of the STT-RAM cell. Therefore,
STT-RAM suffers from higher write latency and higher write energy consumption com-
pared to the SRAM. Table 1 compares area, latency, dynamic energy, and leakage power
of the SRAM-based and STT-RAM-based caches. These parameters are obtained using
NVsim [1]. As shown, the STT-RAM-based cache has significantly higher write latency and
write dynamic energy consumption than the SRAM-based cache. In contrast, SRAM-based
cache consumes much more leakage power than STT-RAM-based cache.

Table 1. Area, latency, and energy consumption of SRAM-based and STT-RAM-based caches.

SRAM-Based Cache (16 MB) STT-RAM-Based Cache
(16 MB)

Area (mm2) 11.448 5.024

Read Latency (ns) 6.589 6.904

Write Latency (ns) 3.274 11.898

Read Dynamic Energy (nJ) 0.191 0.361

Write Dynamic Energy (nJ) 0.182 1.127

Leakage Power (mW) 462.891 64.824

2.1.2. Hybrid Caches

As a solution to these problems, researchers have proposed hybrid caches that use
the SRAM as well as STT-RAM as their memory cells [3–7]. In hybrid caches, a data array is
partitioned into SRAM and STT-RAM regions, as shown in Figure 2, and frequently written
cache blocks, which we call write-intensive blocks, are allocated to the SRAM region to
reduce write activity in the STT-RAM region. Since write latency and write energy of
the SRAM are much smaller than those of typical STT-RAM, it is necessary to reduce write
activities in the STT-RAM, thereby improving overall system performance and reducing
dynamic energy consumption.

In order to minimize the required modification in the cache design, a tag array of
the hybrid caches has a structure similar to that of conventional SRAM-based caches.
The cache ways in both the SRAM and STT-RAM regions are treated similarly when
cache access occurs, even though the number of ways in the SRAM region is physically
smaller than that in the STT-RAM region. In addition, a tag array is implemented by only
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using the SRAM. This is because the write latency of the tag array is critical in terms of
the performance since it contains several metadata such as dirty bits and replacement
information as well as tags, which are frequently updated when a cache is accessed. In
particular, the last-level caches usually have a higher cache miss rate than the level-1 or
level-2 caches, which results in frequent updates on the tag. Since the size of the tag
array is much smaller than the data array, its contribution to the chip area and the energy
consumption is small, even if it is implemented only with SRAMs.

Tag Array Data Array

=
Tag

SRAM STT-RAM

SRAM Region STT-RAM Region

W0 W1 W2 W3 W4 W5 W0 W1 W2 W3 W4 W5

Hit or Miss Data

V Tag …. W-CNT

Figure 2. Baseline hybrid cache architecture. The data array is partitioned into SRAM and STT-
MRAM regions. The tag arrays have a write counter (W-CNT). The method for SRAM and STT-RAM
regions is treated the same manner when cache access occurs.

2.2. Hurdle: Adaptive Block Placement in Hybrid Cache

In hybrid caches, it is essential to store write-intensive blocks in the SRAM region as
much as possible in order to minimize write operations on the STT-RAM region. To this end,
several block placement policies have been proposed to intelligently place write-intensive
blocks in SRAM regions [3–7]. On a cache miss, the write-intensity of the incoming block is
predicted to determine an appropriate region (i.e., SRAM or STT-RAM) for the block.

After installing the block in the hybrid cache, the number of write operations on each
block needs to be tracked continuously to determine its actual write-intensity. To this end,
a write-counter (W-CNT) can be used for each tag entry, as shown in Figure 2. The counter
is increased for every write operation on the corresponding block, and if the counter
value is greater than a write intensity threshold value, the block is considered as write
intensive. On a misprediction, a write-intensive block can be installed in the STT-RAM
region. In such a situation, the write-intensive block is migrated from the STT-RAM to
the SRAM region. While block migration can reduce the impact of misprediction, frequent
migrations can increase dynamic energy consumption and degrade the overall performance
of hybrid caches.

Due to the importance of the write-intensity prediction, many researchers have pro-
posed write-intensity prediction schemes [3,4,8]. In [3,4], a simple heuristic is used for
the prediction. On a cache miss, if the miss is triggered by a store instruction, the incoming
block is predicted as a write-intensive block; therefore, the block is installed in the SRAM
region. On top of this, the memory address of load instructions is used to determine
the write-intensity of cache blocks when they are loaded due to read misses [8].

2.3. Limitation of Prior Work: Loss of the Metadata on Eviction

Prior techniques predicted the write intensity of the blocks when placing them into
caches, then the amount of writes on each block is tracked to ascertain its actual write
intensity. If the prediction turns out to be inaccurate, the associated block is relocated
to the correct region. These methods can only be effective if the target applications have
increased data locality or if the write-intensity prediction is very accurate. When a block
is evicted from the cache, metadata (e.g., the write-counter value) used to determine
the block’s write-intensity are also discarded from the cache. As a result, whenever a cache
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block is loaded from main memory again, it must relearn the block’s real write-intensity.
This can result in inaccurate write-intensity predictions and lower LLC performance.

The performance of three LLC caches can be observed in Figure 3: a 16 MB STT-RAM-
based cache (denoted by STT-RAM), a 12 MB hybrid cache with a baseline block placement
(denoted by HYBRID), and a 12 MB hybrid cache with an ideal block placement (denoted by
IDEAL). These designs are chosen because they are estimated to consume a equivalent on-
chip area in our simulation with NVSim [1]. As shown in [4], the baseline block placement
policy only uses a certain kind of instruction that induce cache misses. In this section,
we adopt the same experimental environment as in Section 5. We employed memory-
intensive benchmarks with high MPKI (Miss per kilo instruction) in this experiment.
The hybrid cache with an optimum block location, where all write-intensive blocks are
placed in the SRAM region, provides a speedup of 41% (on average), as shown in Figure 3.
The hybrid cache with naive block placement, on the other hand, produces very minor
performance enhancements. Using a hybrid cache instead of the STT-RAM-based cache
degrades performance for some benchmarks, such as omnetpp and sphinx3.

0

0.5

1

1.5

2

2.5

mc
f
lbm

sop
lex mi

lc

lib
qu
an
tum

om
ne
tpp gcc

sph
inx
3

Ge
ms
FD
TD

les
lie
3d

cac
tus
AD
M
zeu
sm
p
bz
ip2 ast

ar

h2
64
ref

Av
era
ge

Sp
ee
du
p

STT-RAM(16MB) HYBRID(12MB) IDEAL(12MB)

Figure 3. Performance of hybrid cache using a baseline block placement technique. Overall, using
a large 16 MB STT-RAM cache (with the same on-chip area) provides the same performance as
a 12 MB hybrid cache. This is because write-intensity mispredictions of the baseline block placement
technique offset the write-latency savings on the SRAM region. Ideally, we can obtain 41% speedup
using a 12MB hybrid cache with oracle predictions.

The main cause of the limited performance improvement of the hybrid cache for some
benchmarks is frequent block eviction on the LLC due to the limited data locality in those
benchmarks. The write-intensity of a cache block is determined while the block resides
in the LLC. However, when the eviction of the block occurs in the LLC, write-intensity
information associated with the victim block is also eliminated from the LLC. We can store
information about the write intensity of each block in main memory and utilize a metadata
cache to store metadata of frequently or recently referenced blocks to maintain the write
intensity of each block. However, as studied in [9], this strategy cannot overcome this
problem for memory-intensive applications with irregular memory access patterns. It also
requires supplementary storage, which can be costly in terms of both space and overhead.

2.4. Key Observations

In order to design a novel data placement scheme for the hybrid caches, we make
two key observations about the write intensity and re-fetch rate of the cache blocks. This
subsection summarizes the key observations we made from our experiment.

2.4.1. Observation 1: Write Intensity Is Almost Constant

We observe that a cache block’s write intensity (WI) is almost constant during the ex-
ecution across several workloads. Figure 4 shows the distribution of cache blocks with
constant write intensity. On average, write intensity remains constant for 98% of the cache
blocks fetched from the main memory. Even though some benchmarks, such as soplex
and leslie3d, have cache blocks with varying write intensity, the percentage of those blocks
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is less than 12%. This motivational result indicates that the write intensity of a block can
be used to predict the future write intensity of the block multiple times once it is learned
during workload execution.
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Figure 4. Ratio of cache blocks with constant write intensity (WI). On average, 98% of the cache
blocks have the same write intensity during the execution of the workload.

2.4.2. Observation 2: Most Blocks Are Re-fetched after Eviction

Aside from the fact that the write intensity (WI) of a cache block remains constant
during workload execution, we observe another characteristic of workloads on the reuse
rate of the cache blocks. According to our experimental results, most cache blocks are
re-fetched to LLC after being evicted from LLC. Figure 5 shows the distribution of the cache
blocks that are re-fetched after an eviction. On average, 96% of the cache blocks are re-
fetched from the main memory. This result implies that if we keep information about
the write intensity of cache blocks in a specific storage element, we can use that information
in the future to determine the write intensity of re-fetched blocks.
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Figure 5. Ratio of cache blocks re-fetched from the main memory. On average, 96% of the cache
blocks are fetched again from the main memory after they are evicted from the LLC cache.

3. ADAM: Adaptive Block Placement with Metadata Embedding
3.1. Overview

We propose ADAM, an adaptive block placement framework with metadata embed-
ding in order to fully exploit the benefits of hybrid caches. Figure 6 shows an overall
architecture of the hybrid cache with the ADAM framework. The ADAM framework con-
sists of four components: per-block write counter, write-intensity detection unit, metadata
embedding unit, and block placement unit. First, the tag array’s write counter is used
to keep track of the number of write operations performed on each cache block. Second,
when cache blocks are evicted from the cache, the write-intensity detection unit determines
their write intensity. Third, the metadata embedding unit stores or extracts the metadata of
the cache blocks when writing or reading the blocks to/from the main memory. Finally,
the block placement unit places the block appropriately in either the SRAM or STT-RAM
based on the write intensity acquired by the metadata embedding unit when fetching
the block from the main memory and storing it in the cache.
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Figure 6. The ADAM framework consists of four components: write counters, write-intensity
detection unit, metadata embedding unit, and block placement unit.

When a cache block is modified within the LLC, it is marked dirty, and the write
counter for the block is increased. When a dirty cache block is evicted from the LLC,
the write-intensity detection unit uses the write counter to generate the cache block’s
metadata. The cache block is then transferred into the metadata embedding unit, along with
the metadata. Before writing the cache block into main memory, the metadata embedding
unit compresses it and places the metadata alongside it.

The metadata embedding unit attempts to extract metadata from the cache block
during a read. If the cache block contains the metadata, the extracted metadata is passed
to a block placement unit, which determines the best region for the block. If the extracted
metadata indicates that the block is write-intensive, the block placement unit moves it to
the SRAM region. If not, the block is placed in the SRAM region.

3.2. Per-Block Write Counter

A write counter, which comprises a 3-bit saturated counter, is used to track the write
intensity of a cache block. The write counters are stored in the tag array, as shown in Figure 6.
On a write hit, the write counter for a block increases by one. On the other hand, a read hit
decrements the counter by one. By using a 3-bit saturated write counter per block, we can
track down the write intensity (i.e., frequency of write operations) in its seven most recent
accesses. Since the write intensity of a block is almost constant, as discussed in Section 2.4.1,
tracking the recent access history is sufficient to determine the write intensity of the block.

3.3. Write-Intensity Detection Unit

The write-intensity detection unit probes the tags’ 3-bit write counters. The write-intensity
detection unit compares the victim block’s write-counter value to a write-intensity threshold.
If the value of the write-counter exceeds the threshold, the write-intensity detection unit gen-
erates 1-bit metadata indicating a high write-intensity. If the write-counter value is less than
the threshold, it generates 1-bit metadata indicating a low write intensity.

3.4. Metadata Embedding Unit

The metadata embedding unit attempts to insert the 1-bit metadata into the cache block.
Unfortunately, cache blocks are typically 64 bytes in size, and when placed in memory, there
is no extra space to store metadata. As a result, in order to fit the metadata into a 64-byte
block, the metadata embedding unit compresses 64-byte data to 61 bytes. Metadata is then
stored in the 64-byte block’s unused 3-byte space. Due to the fact that metadata is stored
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within the data, this approach saves memory space and bandwidth. It does not necessitate
additional memory space or memory bandwidth to transfer metadata between the main
memory and on-chip caches.

The efficiency of metadata embedding is highly related to the ratio of blocks that can be
compressed to a specific size. Fortunately, most blocks can be compressed to the target size
because on-chip cache data has a high degree of redundancy as also demonstrated in nu-
merous previous works [9–17], and the compression ratio required for metadata embedding
is low. Figure 7 shows the percentage of the blocks (64 bytes) that can be compressed to
less than 61 bytes for memory-intensive SPEC CPU2006 benchmarks. On average, 82%
of the blocks can be compressed to less than 61 bytes. In this study, the metadata embed-
ding unit compresses a cache block to at least 61 bytes using the Base-Delta-Immediate
(BDI) [10] and Frequent-Pattern-Compression (FPC) [11] techniques and selects the best
of the two techniques. BDI and FPC both compress a block to at least 61 bytes; BDI is the
default choice.

0

20

40

60

80

100

120

m
cf

lb
m

so
pl

ex
m

ilc
lib

qu
an

tu
m

om
ne

tp
p

gc
c

sp
hi

nx
3

G
em

sF
D

T
D

le
sl

ie
3d

ca
ct

us
A

D
M

ze
us

m
p

bz
ip

2
as

ta
r

h2
64

re
f

m
ix

1
m

ix
2

m
ix

3
m

ix
4

m
ix

5
m

ix
6

m
ix

7
m

ix
8

m
ix

9
m

ix
10

R
A

T
E

M
IX

A
L

L

Pe
rc

en
ta

ge
 (

%
)

Figure 7. The Percentage of cache blocks (64 B) compressible to 61 B. On average, 82% of the blocks
are compressible to 61 bytes.

As shown in Figure 8, the metadata embedding unit stores a 2-byte signature alongside
the 61-byte compressed cache block. Similar to the Attach framework [9], the 2-byte
signature consists of a 15-bit Compression ID (CID) and a 1-bit Exclusive ID (XID). CID
helps to identify compressed cache blocks in the main memory. If CID matches a predefined
15-bit value, the corresponding block is identified as a compressed block. CID collision
can occur if the high-order 15 bits of the uncompressed block are equal to the CID. XID
helps to detect CID collisions and eliminates false positives. The high-order 16th bit of
the uncompressed blocks for which their high-order 15 bits are identical to CID is replaced
by XID (i.e., ‘0’). The original 16th bit is then stored in a separate memory region (around
0.2% of main memory space). On a CID match, the XID (i.e., 16th bit) is checked to
detect a CID collision. If XID is 0, it is determined that a CID collision has occurred on
an uncompressed block. Thus, each CID collision requires additional memory access to
recover the original 16th data-bit that XID replaced. Fortunately, however, the probability
of collisions is only 1

215 because we use a 15-bit CID.

64B

61B

Block

Block w/ metadata

Compressed

Metadata 
(Write-intensity)

Signature
{CID[15:1] , XID[0]}

Compressed Block
2B 1B

Figure 8. Embedding metadata into the cache block. The compressed block is 61 B in size, with a 2 B
signature to indicate it is compressed and 1 B of metadata to indicate the compression technique and
write intensity.

The metadata embedding unit then stores 1-byte of metadata alongside the signature,
as shown in Figure 8. In our implementation, one bit of the 1-byte metadata is used to
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specify the write intensity of the block, and another one bit is used to identify a compression
technique (BDI or FPC) used to compress the block. The remaining six bits can be used
to specify some other characteristics, such as the reuse distance or the latest hit count, of
the corresponding cache block.

If the cache block is compressible, the metadata embedding unit stores the signature
(2-bytes), metadata (1-byte), and compressed data (61-bytes) tuple into the memory system.
If data are not compressible, then data are stored as it is. However, as we described, if
the first 15-bit of uncompressed data collide with CID, then the 16th bit (XID) is set to 0,
and then the original 16th bit replaced by the XID is placed in a separate region within
the main memory. As the CID collision rarely happens (only 0.003%), the additional
accesses involved in obtaining the original 16th bit from the main memory have a negligible
impact on performance and energy.

3.5. Block Placement Unit

On a read operation, the metadata embedding unit decompresses the cache block and
extracts write-intensity metadata. The metadata embedding unit then forwards the write-
intensity information to the block placement unit. If the cache block is deemed write
intensive, the block placement unit places the block into the SRAM region. If the block is
deemed non-write intensive, the block placement unit places it into the STT-RAM region.

3.6. ADAM Operations: Tying It Together

The flowchart in Figure 9 shows the set of operations that occur on a cache miss while
using the ADAM framework. We discuss these operations in detail.

LLC Miss

Select a victim 
block

Embed a metadata 
in the block

Compress the block

Compressible?

Write back the 
block to

 main memory

Yes

Read a requested block 
from main memory

Metadata is 
embedded?

Extract metadata and 
decompress the block

Write-
intensive?

Allocate the block 
to SRAM region

Allocate the block to 
STT-RAM region

Write miss?

Yes

Yes

No

No

Yes

No

Dirty?

Yes

No

Yes

WI
changed? No

No ɠ

ɡ
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Figure 9. The flowchart detailing the high-level operations of the ADAM framework. These opera-
tions occur on an LLC miss. Overall, there are five key operations.

3.6.1. Embedding Metadata in Evicted Blocks

On a cache miss, the metadata embedding unit attempts to embed write-intensity
metadata within the evicted block by compressing it to at least 61 bytes. This operation
is denoted by 1© in Figure 9. If the block cannot be compressed to less than 61 bytes, we
cannot embed the metadata in the victim block. In that case, the block is written back to
the main memory as it is without compression.

3.6.2. Selectively Writing Back Clean Blocks

An evicted block is deemed clean if it is not updated during its lifetime in the cache.
The clean evicted blocks are not written back into the main memory in the conventional
caches in order to save memory bandwidth. However, in the ADAM framework, the clean
blocks will be written back to the main memory if their write intensity (WI) is updated.
For instance, suppose a block with a high write intensity is read into the cache. When
the block is installed in the cache, its 3-bit write counter is set to the maximum value (e.g.,
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0 × 7). After that, the block may only be subjected to read operations during its time
in the cache. Thus, the write-intensity counter is decremented to zero. Since the block
remains clean throughout its lifetime in the cache, it is unnecessary to write back the block
to memory during an eviction. However, as there is a change in the write intensity, from
high write intensity to low write intensity, the ADAM framework will write back these
clean evicted blocks with the updated metadata to the main memory.

We call the write requests for the clean evicted blocks as Clean Writes (CW) in this
paper. If all clean evicted blocks are written back to the main memory, it will significantly
increase the number of write requests to the main memory and can reduce performance.
Therefore, in order to minimize the performance impact of the clean writes, ADAM writes
back the clean block only if the write intensity of the block changes after it is installed
in the LLC. This enables ADAM to keep track of the changes in write-intensity for cache
blocks (as denoted by 2©).

Fortunately, the write intensity of the cache blocks changes infrequently, as we dis-
cussed in Section 2.4.1. Thus, the impact of clean writes on the memory bandwidth is low.
Figure 10 shows the breakdown of memory accesses on a memory system with ADAM
framework. As shown in the figure, read requests account for 71% of the total memory
accesses. Dirty writes, which are the write requests for dirty blocks, account for 25%, and
the clean writes consume only 4% of the total memory accesses. Clean writes account
for around 20% of total memory accesses in some benchmarks, such as omnetpp and
cactusADM. For such workloads, ADAM is configured to disable the clean write. We will
discuss the impact of clean writes on performance in Section 5.2.
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Figure 10. Breakdown of memory accesses with ADAM framework. Reads consume 71% of the ac-
cesses. Dirty writes consume 25% of the accesses. Clean writes consume only 4% of the accesses.

3.6.3. Extracting Metadata from Re-Fetched Blocks

As discussed in Section 2.4.2, most blocks that are fetched from the main memory are
re-fetched blocks that are reloaded after they are evicted from the LLC. A re-fetched block
might contain metadata if it was compressed at the time it was previously evicted from
the LLC. As described in Section 3.4, a compressed block contains a 2-byte signature and
1-byte metadata as well as the actual data block compressed to 61 bytes. The metadata
embedding unit compares the leftmost 2 bytes of the fetched block with a predefined
signature to determine whether the block is compressed or not. If the block is compressed,
the metadata embedding unit extracts 1-byte metadata, as shown in Figure 11. This scenario
is called metadata hit. It then sends write intensity and compression algorithm information
included in the metadata to the block placement unit and the decompressor, respectively.
If the block is not compressed, the metadata embedding unit does not obtain any write-
intensity information from the block. This scenario is called a metadata miss. The entire
operation is denoted by 3© in Figure 9.
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2B 1B
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Extracting
Metadata

Write-intensity (to block placement unit)
Compression algorithm  (to decompressor)

Block (64B)

Compressed block (to decompressor)

61B

Compressed?  (to decompressor)

Figure 11. Extracting write-intensity metadata from a block. The metadata embedding unit decom-
presses the block and uses 1-byte (1B) metadata to identify the write intensity of the block.

3.6.4. Block Placement on Metadata Hit

When write-intensity metadata is found in a cache block (i.e., a metadata hit), the block
placement unit allocates the block to either the SRAM region or the STT-RAM region.
This allocation depends on the write-intensity information of the block (denoted by 4©
in Figure 9). The write-intensity information for a block is learned when the corresponding
block previously resided within the LLC. We observed that, even though the block place-
ment decision is made based on the previous reference pattern of the block, the decision
is mostly correct. This is because, as shown in Section 2.4.1, the write intensity of a block
tends to remain almost constant. In the case where the write intensity of a block frequently
changes, we can force the block to be allocated to the SRAM region or the STT-RAM re-
gion by storing preferable region information in the metadata when embedding metadata
in the block.

3.6.5. Block Placement on Metadata Miss

The metadata embedding unit cannot extract any metadata from a cache block if it is
not compressible. Moreover, if a cache block is loaded from the main memory for the first
time, the block will not have any metadata. In the case where the fetched block does
not have metadata (i.e., metadata miss), the block placement unit checks if the memory
request was a read miss or a write miss. If the block is fetched from the main memory
due to a read miss, the block is allocated to the STT-RAM region by assuming the block as
a non-write-intensive block. Otherwise, the block is allocated to the SRAM region. We note
that this simple block placement policy is also used in prior work [4]. The block placement
on metadata miss is denoted by 5© in Figure 9.

4. Evaluation Methodology

In order to evaluate the performance benefits of ADAM, we developed a hybrid-cache
simulator based on USIMM [18]. The simulator models the out-of-order processor core,
a detailed cache hierarchy including the hybrid LLC and main memory. Table 2 lists
the simulated system configuration. The LLC is configured to have multiple banks to
service multiple requests in parallel. STT-RAM and SRAM parameters are obtained using
NVSim [1]. Since ADAM employs low-latency compression techniques (i.e., BDI and FPC)
specifically designed for the on-chip caches, we assume that decompression takes a single
clock cycle, as performed in many prior studies [9–11,15–17].



Electronics 2022, 11, 240 12 of 18

Table 2. Baseline System Configuration.

Processor 3.2 GHz, 4 cores, out of order
8-width issue/decode, 160 entry reorder buffer

L1 Cache 32 KB, 8-Way, 64 B lines, shared, 4 cycles
L2 Cache 256 KB, 8-Way, 64 B lines, shared, 12 cycles

12 MB (SRAM: 4 MB, STT-RAM: 8 MB), 16-Way
64 B lines, shared, 16 banks, SRRIP

Tag access latency: 5 cyclesLLC
Data access latency (SRAM): 30 cycles(Hybrid Cache)

Data access latency (STT-RAM Read): 30 cycles
Data access latency (STT-RAM Write): 90 cycles

1600 MHz (DDR4 3200 MHz)
Channels: 2, Ranks per a channel: 1Main Memory Bank groups per a rank: 4

Banks per a bank group: 4

For evaluations, we chose memory-intensive benchmarks, which have greater than
1 MPKI (LLC Misses Per Kilo instructions), from SPEC CPU2006. We warm up LLC for
2 billion instructions and execute 1 billion instructions. We execute all benchmarks in rate
mode where all cores run the same benchmark. As shown in Table 3, we also made ten
4-threaded mixed workloads by randomly selecting one benchmark from three categories
(low MPKI, medium MPKI, and high MPKI).

Table 3. Workload Mixes.

mix1 bzip2, libquantum, astar, cactusADM
mix2 lbm, omnetpp, mcf, GemsFDTD
mix3 h264ref, milc, bwaves, gcc
mix4 sphinx3, astar, soplex, zeusmp
mix5 bzip2, mcf, dealII, gcc
mix6 omnetpp, bwaves, GemsFDTD, cactusADM
mix7 libquantum, milc, sphinx3, lbm
mix8 leslie3d, xalancbmk, h264ref, astar
mix9 soplex, GemsFDTD, cactusADM, dealII

mix10 lbm, sphinx3, leslie3d, h264ref

The efficiency of ADAM is compared to a baseline and an ideal block placement.
The baseline block placement scheme predicts the write intensity of a cache block only with
the type of operation (i.e., load or store), triggering a cache miss. In the ideal scheme, we
assume that all write-intensive blocks are allocated to the SRAM region.

5. Simulation Results
5.1. Write Hits on SRAM and STT-RAM Banks

Figure 12 shows the distribution of write hits on the LLC. The primary goal of the block
placement scheme for the hybrid cache is to reduce write hits on the STT-RAM region
in order to mitigate long write latency and high write energy of the STT-RAM. As shown
in Figure 12, ADAM yields low write hits on the STT-RAM region across all benchmarks
compared to the baseline scheme. The simulation results show that ADAM reduces almost
all of write hits on the STT-RAM region for libquantum. On average, the percentage of
write hits on the STT-RAM region is reduced from 81% to 25%. This is close to our initial
goal to reduce write hits on the STT-RAM region to nearly 20%.
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Figure 12. Distribution of write hits on hybrid caches. The ADAM framework reduces the percentage
of write hits on the STT-RAM region from 81% (baseline hybrid cache) to 25% (hybrid cache with
ADAM). (a) Baseline hybrid cache; (b) Hybrid cache with ADAM.

5.2. Performance

Figure 13 shows the speedup of ADAM when compared to a baseline block placement
and ideal block placement. ADAM improves performance by 24% on average. Ideally, if
we allocate all write-intensive blocks to the SRAM region, we obtain a speedup of 40%
on average. Performance results show that libquantum and astar benefit the most from
ADAM due to dramatic reductions in the write hits on STT-RAM. They achieved a 44%
and 65% of performance improvement, respectively.
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Figure 13. The performance improvement of ADAM over baseline block placement. On average,
ADAM and ADAM-CW provide 24% and 26% speedup as compared to the baseline. The ideal block
placement provides a speedup of 40%.

Our analysis shows that the Clean Write (CW) scheme can improve performance
further for some benchmarks such as omnetpp by writing back the clean blocks to the main
memory to maintain the write-intensity information. For omnetpp benchmark, ADAM
delivers a speedup of 4% without the CW scheme. With the CW scheme, ADAM achieves
a speedup of 46% for the omnetpp benchmark, which is comparable to the speedup with
ideal block placement. On average, ADAM achieves a speedup of 26% when the CW
scheme is applied.

Most benchmarks can benefit from accurate block placement with ADAM. However,
ADAM performs worse than the baseline scheme for some benchmarks, such as cactusADM
and h264ref. The increased misses on LLC cause performance degradation for these
benchmarks. In hybrid caches, the SRAM region is smaller than the STT-RAM region;
therefore, when many cache blocks are allocated to the SRAM region, the LLC miss rate
will increase. In order to address this problem, we can extend ADAM to take into account
the pressure on the SRAM region as well as the write intensity of the block.

5.3. Energy Consumption

Figure 14 compares the energy consumption of the hybrid cache with and without
ADAM. When compared to the baseline block placement, ADAM reduces the energy
consumption of the hybrid cache by 35% on average. This significant saving in energy
consumption is mainly due to reduced write energy. As shown in Table 1, the write
operation consumes significantly more power than the read operation. Thus, frequent
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write hits on the STT-RAM region increase the total energy consumption of the hybrid
cache. As we discussed in Section 5.1, ADAM yields significantly fewer write hits on
the STT-RAM region than the baseline placement policy, resulting in much lower dynamic
energy consumption. The energy consumption results show that lbm and libquantum
benefit the most from ADAM because the baseline placement policy results in frequent
write hits on the STT-RAM region for these benchmarks. They achieve 56% and 59% of
reductions in the total energy consumption of the hybrid cache, respectively.
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Figure 14. Energy consumption of ADAM over baseline block placement. On average, ADAM
and ADAM-CW reduce energy consumption of the hybrid cache by 35% and 39%, as compared to
the baseline.

The energy results also show that the Clean Write (CW) scheme further reduces energy
consumption, especially for the benchmarks such as gcc, sphinx3, and omnetpp, where
preserving write-intensity information for clean victim blocks is necessary. On average,
ADAM saves 4% more energy with the CW scheme.

5.4. Sensitivity Analysis
5.4.1. Sensitivity to LLC Replacement Policy

Figure 15a shows the speedup of ADAM over the baseline for four different cache re-
placement policies. Overall, ADAM achieves higher performance compared to the baseline
regardless of the replacement policy. The performance gain with ADAM is high, especially
for replacement policies that yield a higher LLC miss rate. Such policies (such as LRU)
enable frequent block installations and thereby enable these blocks to be placed efficiently.
On average, ADAM achieves the speedup of 31%, 25%, 24%, and 25% over the baseline
while using LRU, SRRIP, DRRIP, and DIP policies, respectively.
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Figure 15. Sensitivity to various parameters of a hybrid cache. (a) For ADAM, the LRU policy
provides the most speedup as it evicts most of the blocks and enables them to learn about write
intensity. (b) As the number of banks increases, speedup is reduced due to bank-level parallelism.
(c) Speedup increases as the write latency of STT-RAM increases.

5.4.2. Sensitivity to LLC Bank Count

Figure 15b shows the speedup of ADAM for different numbers of banks. ADAM
delivers higher speedup for the LLC with smaller bank counts; it achieves a speedup of
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12% and 37% for 64-bank and 8-bank configurations, respectively. Even if increasing bank
counts helps mitigate the long write latency of the STT-RAM, it will increase the chip
area and dynamic power consumption of LLC. ADAM shows better performance than
the baseline for all bank counts.

5.4.3. Sensitivity to Write Latency of STT-RAM

Figure 15c shows the impact of write latency of the STT-RAM on the effectiveness of
ADAM. As the write latency of STT-RAM increases, ADAM achieves a higher speedup
over the baseline. Regardless of the write latency of STT-RAM, ADAM provides better
performance over the baseline scheme.

5.5. Hardware Overhead Analysis

The majority of hardware overhead of ADAM comes from the metadata embedding
unit and the per-block write counter. The metadata embedding unit comprises compressor
and decompressor, which take roughly 290K NAND2 gates (according to [19]) and only
consumes 0.016 mm2 die area with 22 nm technology (0.2% of the hybrid cache). Employing
a write counter per a block in the tag array increases the die area of the hybrid cache by
7.6%. The die area of the hybrid cache with the per-block write counter is calculated by
using the NVSim. The total area overhead of the ADAM is less than 8% of the hybrid LLC
size. This area overhead of ADAM would be trivial when considering its significant gains
in performance and energy consumption.

6. Related Work

Many prior works have proposed adaptive block placement schemes for hybrid
caches [3–7,20]. In [6], memory access patterns are exploited for block placement and
migration in a hybrid LLC. Chen et al. [7] proposed combining static and dynamic schemes
in order to optimize block placement in the hybrid cache. In [3], a counter-based approach
was proposed for predicting write-intensive blocks. Jadidi et al. [5] proposed a technique
to reduce write variance between STT-RAM lines by migrating frequently written cache
blocks to other STT-RAM or SRAM lines. None of the prior studies have considered storing
the write-intensity of individual blocks as performed in ADAM.

Dynamic LLC Bypassing can be a good solution for mitigating the long write latency
of STT-RAM [21–28]. Wang et al. [21] defined an interesting characteristic called LLC-
obstruction, which can occur by a write-intensive process, and used it for dynamic LLC
bypassing. In [22], an LLC congestion-aware bypassing technique is proposed to eliminate
a large fraction of writes. Cheng et al. [23] introduced the concept of loop-block and
proposed a loop-block-aware replacement policy to keep the loop-block in the LLC. Ahn
et al. [24] defined dead write, which is the data written on LLC and not re-referenced during
the lifetime of the corresponding cache block. By detecting dead writes and bypassing them
from LLC, system performance and energy efficiency can be improved. Moreover, there are
bypassing methods for different inclusion techniques, exclusive [26,27] and inclusive [25,29].
Gupta et al. [25] proposed a bypass buffer, which helps maintain the inclusive property
when bypassing LLC in an inclusive cache system. When a decision is made to bypass
the cache block, it is allocated to the bypass buffer instead of LLC. If the memory request
misses LLC and hits the bypass buffer, the bypass buffer provides the requested block
to the LLC, and the block is de-allocated from the bypass buffer and migrated to LLC.
They also suggested a dataless bypass buffer, which only installs the tag of bypassed
cache block into the bypass buffer to reduce hardware overhead. ADAM is orthogonal to
these LLC bypassing techniques; therefore, they can be synergistically combined to unlock
the performance of hybrid caches.

Several prior studies tried to enhance the performance of STT-RAM in order to use
it for building a large cache [2,30–37]. In [30–32], and the retention time of STT-RAM is
reduced to mitigate the long write latency of STT-RAM. Clinton et al. [30] and Adwait
et al. [31] proposed hybrid architecture, which includes SRAM-based L1 cache with volatile
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STT-RAM-based L2 cache or L3 cache. Zhenyu et al. [32] suggested STT-RAM-based L1
cache by exploiting STT-RAM cells with various data retention time. Hameed et al. [33]
proposed a selective read policy for STT-RAM to reduce energy consumption. Chi et al. [2]
introduced state-of-the-art architectural approaches to adopt STT-RAM in the cache. Kuan
et al. [34,35] proposed an STT-RAM-based cache that allows LLC configurations and
retention time to be adapted to applications’ runtime execution requirements.

Several prior works have proposed low-cost compression techniques [10,11,38]. As these
compression techniques have low decompression latency and low implementation cost, they
have been used to improve the effective capacity, energy efficiency, and bandwidth of
the memory systems [9,12–17]. ADAM employs BDI [10] and FPC [11] as compression
techniques and to obtain the idea of metadata embedding from [9]. To our best knowledge,
this study is first to exploit the compression technique for adaptive block placement in the
hybrid caches.

7. Conclusions

Static Random Access Memory (SRAM), the conventional memory technology for
the last-level caches, has difficulty in scaling due to its high power consumption and low
density. Spin-Transfer Torque RAM (STT-RAM) has emerged as a substitute for SRAM.
It offers higher density and lower leakage power consumption over SRAM. However,
STT-RAM has long latency and high power consumption on write operations. Therefore, a
hybrid cache, which integrates both SRAM and STT-RAM, has been proposed to employ
the strengths of two different memory technologies. Since the long write latency of STT-
RAM can significantly reduce system performance, we need an accurate block placement
scheme to allocate write-intensive cache blocks on the STT-RAM region.

This paper proposed ADAM, a new adaptive block placement framework with meta-
data embedding for hybrid caches. ADAM maintains write-intensity information of an in-
dividual block by embedding it within the cache block. When evicting a cache block from
the LLC, ADAM embeds the block’s metadata (i.e., write-intensity information) within
a block by compressing it to make room for metadata. When a cache block is brought
from the main memory into the hybrid cache, ADAM extracts the embedded metadata
and utilizes it to determine the write intensity of the block. With extracted write-intensity
information, ADAM allocates a cache block into the appropriate data region. ADAM
provides an efficient framework for hybrid cache management by maintaining metadata
without additional storage elements.
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