
����������
�������

Citation: Li, H.; He, D.; Zhu, X.;

Chan, S. P1OVD: Patch-Based 1-Day

Out-of-Bounds Vulnerabilities

Detection Tool for Downstream

Binaries. Electronics 2022, 11, 260.

https://doi.org/10.3390/

electronics11020260

Academic Editor: Arman Sargolzaei

Received: 13 December 2021

Accepted: 12 January 2022

Published: 14 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

P1OVD: Patch-Based 1-Day Out-of-Bounds Vulnerabilities
Detection Tool for Downstream Binaries

Hongyi Li 1,†, Daojing He 1,2,*,†, Xiaogang Zhu 3 and Sammy Chan 4

1 Software Engineering Institute, East China Normal University, Shanghai 200062, China;
51194501009@stu.ecnu.edu.cn

2 School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen),
Shenzhen 518055, China

3 Department of Computer Science and Software Engineering, School of Software and Electrical Engineering,
Swinburne University of Technology, Melbourne 3122, Australia; xiaogangzhu@swin.edu.au

4 Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China;
eeschan@cityu.edu.hk

* Correspondence: djhe@sei.ecnu.edu.cn or hedaojinghit@163.com; Tel.: +86-21-6223-1233
† These authors contributed equally to this work.

Abstract: In the past decades, due to the popularity of cloning open-source software, 1-day vulnerabil-
ities are prevalent among cyber-physical devices. Detection tools for 1-day vulnerabilities effectively
protect users who fail to adopt 1-day vulnerability patches in time. However, manufacturers can
non-standardly build the binaries from customized source codes to multiple architectures. The code
variants in the downstream binaries decrease the accuracy of 1-day vulnerability detections, especially
when signatures of out-of-bounds vulnerabilities contain incomplete information of vulnerabilities
and patches. Motivated by the above observations, in this paper, we propose P1OVD, an effective
patch-based 1-day out-of-bounds vulnerability detection tool for downstream binaries. P1OVD first
generates signatures containing patch information and vulnerability root cause information. Then,
P1OVD uses an accurate and robust matching algorithm to scan target binaries. We have evaluated
P1OVD on 104 different versions of 30 out-of-bounds vulnerable functions and 620 target binaries
in six different compilation environments. The results show that P1OVD achieved an accuracy of
83.06%. Compared to the widely used patch-level vulnerability detection tool ReDeBug, P1OVD
ignores 4.07 unnecessary lines on average. The experiments on the x86_64 platform and the O0
optimization show that P1OVD increases the accuracy of the state-of-the-art tool, BinXray, by 8.74%.
Besides, it can analyze a single binary in 4 s after a 20-s offline signature extraction on average.

Keywords: out-of-bounds; vulnerable detection; patch

1. Introduction

Vulnerabilities acknowledged by vendors are called 1-day vulnerabilities and are often
fixed by upstream software developers using security patches [1]. In the past decades,
1-day vulnerabilities are widely spread among cyber-physical devices due to the popularity
of open-source software cloning [2]. In the Debian system alone, researchers [3] have
found 145 cloned 1-day vulnerabilities. Over the last few years, various automatical 1-day
vulnerability detection tools for binaries have been proposed [3–18] to protect users who
fail to adopt 1-day vulnerability patches in time.

However, manufacturers usually non-standardly build binaries from customized
source codes for multiple target architectures. Such code variants decrease the accuracy
of 1-day vulnerability detection, especially out-of-bounds vulnerabilities. Moreover, the
inaccuracy can lead to safety risks or extra manual efforts for security analysis. Due to
the prevalence of 1-day out-of-bounds vulnerabilities, in this paper, we propose P1OVD,
a 1-day out-of-bounds vulnerability detection tool, which has higher accuracy when code
variants appear in the downstream binaries.

Electronics 2022, 11, 260. https://doi.org/10.3390/electronics11020260 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11020260
https://doi.org/10.3390/electronics11020260
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8524-229X
https://doi.org/10.3390/electronics11020260
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11020260?type=check_update&version=2

Electronics 2022, 11, 260 2 of 17

Code variants are common and diverse. Research shows that among 6027 counterparts
of 285 Android Kernel functions, over 72% of them contain codes that are different from
their mainstream versions [19]. On the one hand, the code variants that are caused by
target architectures or optimization levels can be large. Although they heavily change
the instructions, function basic blocks, and function CFGs (control flow graph), they
hardly change function logics. On the other hand, code variants can be caused by patching
vulnerabilities or unexpectedly introducing new vulnerable modules. So these code variants
are critical but small. These two kinds of code variants can appear at the same time, causing
two challenges.

The first challenge is that out-of-bounds vulnerability signatures can easily neglect
small but important code variants. Function-level 1-day vulnerability detection tools
such as Asm2Vec [16] generate vulnerability signatures from the whole vulnerable func-
tions [4–16]. Due to their extremely large scope, they fail to capture the precise context of
vulnerabilities. At the same time, patch-level 1-day vulnerability detection tools such as
ReDeBug [3] and BinXray [17] generate vulnerability signatures only from patches and
their signatures contain incomplete vulnerability information [3,17,18]. As a result, when
the small code variants influence the vulnerability root causes, the existing tools give false
predictions.

The second challenge is that large code variants can decrease the accuracy of the
matching methods that depend on AST (abstract syntax tree) shaped out-of-bounds patch
signature. Moreover, many existing works have difficulties in balancing the accuracy and
robustness. The strict operand-based matching [20] is accurate but sensitive to unimpor-
tant code variants, while the graph-similarity-based algorithms [8,9,13,19] improve the
robustness but sacrifice accuracy.

To solve the above two challenges, we propose a patch-based 1-day out-of-bounds
vulnerability detection tool named P1OVD, which can automatically find 1-day out-of-
bounds vulnerabilities in the downstream binaries. It first analyzes patches and outputs
source signatures, which solves the first challenge. Then the signature generator maps
the source signatures to binary signatures. Finally, the matching engine scans the target
binary with the binary signatures. Moreover, when P1OVD matches patch signatures, it
uses the novel matching algorithm to solve the second challenge. To evaluate the efficiency
and effectiveness, we test P1OVD based on a dataset containing 620 binaries, which are
compiled under six compilation environments from 104 different versions of 30 out-of-
bounds vulnerable functions. The result shows that P1OVD has a total accuracy of 83.06%
and achieves an 8.74% higher accuracythan the state-of-the-art tool BinXray. Besides, it can
analyze a single binary in 4 s after a 20-s offline signature extraction on average.

We summarize our contributions as follows:

• We design an out-of-bounds vulnerability signature that mainly contains patch infor-
mation and vulnerability information.

• We propose a matching algorithm that can accurately and robustly find the patch
signatures in downstream binaries.

• We propose a patch-based out-of-bounds vulnerability detection method, P1OVD.
P1OVD can accurately locate 1-day out-of-bounds vulnerabilities in downstream
binaries even if code variants exist. We evaluate its performance on 620 binaries of
30 real-world patches in Linux Kernel [21].

The rest of this paper is organized as follows. We first summarize the challenges in
Section 2. Then we describe the design of P1OVD in Section 3 and evaluate P1OVD in
Section 4. Next, we review related work in Section 5. Finally, we give the conclusion in
Section 6.

2. Motivation

The open-source software can be built with customized codes and non-standard
building configurations to meet the needs of downstream manufacturers [19], causing

Electronics 2022, 11, 260 3 of 17

code variants. We believe that there are two main challenges caused by code variants:
vulnerability signature (Section 2.1) and patch signature matching (Section 2.2).

2.1. Vulnerability Signature

The first challenge is that the code variants can significantly affect the vulnerability
detection results but can be hard to detect if the vulnerability signatures do not contain
enough patch information and vulnerability information. Version differences are parts of
the results of the third-party code customization and cause existing works to have high false
rates in out-of-bounds vulnerability detection. We take the function init_desc of the Linux
Kernel as a motivation example to figure out the severe impacts of code variants. Figure 1
shows three different versions of function init_desc. Red codes are the earliest version,
at that time, the vulnerable statement hash_algo_name[hash_algo] had not existed. Then
a commit removed the red codes and introduced green codes, where the out-of-bounds
vulnerability is located. The parameter hash_algo is possibly tainted and can read the array
hash_algo_name out of the buffer bound. The blue codes are added by the patch, they restrict
the parameter hash_algo, and relieve the panic.

static struct shash_desc *init_desc(char type)

static struct shash_desc *init_desc(char type, uint8_t hash_algo)

{

long rc;

char *algo;

const char *algo;

……

if (type == EVM_XATTR_HMAC) {

……

} else {

if (hash_algo >= HASH_ALGO__LAST)

return ERR_PTR(-EINVAL);

tfm = &hmac_tfm;

algo = evm_hmac;

tfm = &evm_tfm[hash_algo];

algo = hash_algo_name[hash_algo];

}
Figure 1. Function init_desc in three Versions.

These three versions challenge the state-of-the-art tools because their signatures miss
either patch information or vulnerability information. As Figure 2 shows, function-level
vulnerability detection tools [4–15] take the whole 53-line function into concern and fail
to capture the precise context of vulnerabilities. As a result, they think the functions that
are similar to known vulnerable functions are vulnerable. Due to the small differences
between these three versions, they think the three versions are all vulnerable, which
results in high false positives. As Figure 2 shows, some patch-level vulnerability detection
tools [3,17], mistakenly think the patch disappearances are the vulnerabilities and fail to
include vulnerability information into their signatures. So they focus on the blue codes
rather than the green codes. As a result, the red version is labeled vulnerable even if it has
no vulnerable operation at all.

Unpatched Files

Patched Files

Patch

Signature

Generation

?? Target Files

Patch

Presence

Identification

Patch

Signatures

Unpatched Files

Function

Signature

Generation

?? Target Files

Function

Matching

Function

Signatures

Function-Level Tools

Patch-Level Tools

Figure 2. Function-level tools and patch-level tools.

Electronics 2022, 11, 260 4 of 17

By considering both vulnerabilities and patches, MVP [18] outperforms vulnerability
detection tools. Further, researchers manually evaluate MVP’s failures by comparing signa-
tures with vulnerability root causes in case studies. Although MVP can successfully identify
all three versions, its vulnerable line searching algorithm introduces a few vulnerability-
irrelevant codes, e.g., the function call of ERR_PTR, which can be replaced by customized
error handlings and harm the binary-level signatures.

2.2. Patch Signature Matching

As the solution of the first challenge, the binary-level patch information is AST-shaped.
However, code variants caused by optimization levels or target architectures can influence
the structures of ASTs, which is the second challenge. As Figure 3 shows, the patch checks
inputs at 0x401955 (x86_64) and 0x17e4 (aarch64). The AST in x86_64 is [arg + 6] <= 6, while
the AST in aarch64 can be ![arg + 6] > 6 if patched or ![arg + 6] > 8 if unpatched. The arg
represents a function argument and now it stands for the variable cmd.

01 static int stb0899_send_diseqc_msg(struct

 dvb_frontend *fe, struct dvb_diseqc_master_cmd *cmd)

02 {

03 struct stb0899_state *state = fe->demodulator_priv;

04 u8 reg, i;

05

06 - if (cmd->msg_len > 8)

07 + if (cmd->msg_len > sizeof(cmd->msg))

08 return -EINVAL;

09

10 /* enable FIFO precharge */

11 reg = stb0899_read_reg(state, STB0899_DISCNTRL1);

12 STB0899_SETFIELD_VAL(DISPRECHARGE, reg, 1);

13 stb0899_write_reg(state, STB0899_DISCNTRL1, reg);

14 for (i = 0; i < cmd->msg_len; i++) {

15 /* wait for FIFO empty */

16 if (stb0899_wait_diseqc_fifo_empty(state, 100) < 0)

17 return -ETIMEDOUT;

18 stb0899_write_reg(state, STB0899_DISFIFO, cmd->msg[i]);

0x40194b:mov rax, qword ptr [rbp - 0x20]

0x40194f:movzx eax, byte ptr [rax + 6]

0x401953:cmp al, 6

0x401955:jbe 0x401961

;[arg+6]<=6,![arg+6]<=6
......

0x40198e:mov byte ptr [rbp - 0xa], 0

0x401992:jmp 0x4019dc

......

0x4019b0:movzx eax, byte ptr [rbp - 0xa]

0x4019b4:mov rdx, qword ptr [rbp - 0x20]

0x4019b8:cdqe

0x4019ba:movzx eax, byte ptr [rdx + rax]

;mem_read(arg),mem_read(arg+1),......

......

0x4019d9:mov byte ptr [rbp - 0xa], al

0x4019dc:mov rax, qword ptr [rbp - 0x20]

0x4019e0:movzx eax, byte ptr [rax + 6]

0x4019e4:cmp al, byte ptr [rbp - 0xa]

;[arg+6],0,1,2......

0x17dc: ldrb w0, [x1, 6]

0x17e0: cmp w0, 6

0x17e4: b.hi 0x189c

;[arg+6]>6,![arg+6]>6

0x17ec: mov x20, x1

.....

0x17f4: movz w19, 0......

0x1820: ldrb w2, [x20, w19, sxtw]

;mem_read(arg),mem_read(arg+1),…

......

0x1838: ldrb w0, [x20, 6]

0x183c: cmp w0, w19

;[arg+6],1,2......

0x1840: b.ls 0x1868

......

0x184c: tbz w0, 0x1f, 0x1820

Figure 3. Patch for commit b9f62ffe, patched binary in x86_64-O0 and target binary in aarch64-O2.

There are two kinds of matching algorithms. However, neither of them can balance
accuracy and robustness. First, Fiber [20] performs a strict operand-based matching, while
assuming that the same semantic can result in the same ASTs with few changes on the
address-related immediate numbers. However, as Figure 3 shows, the [arg + 6] <= 6 in
x86_64 can be transformed into the ![arg + 6] > 6 in aarch64. A strict matching can falsely
think the patch signatures generated on the x86_64 platform are different from the patch
signatures generated on the aarch64 platform. Second, Pewny et al. [8,9], Feng et al. [13] and
Jiang et al. [19] match ASTs with an inaccurate graph-similarity-based structural matching
to improve the robustness. However, as Figure 3 shows, the patch only changes 8 to
sizeof(cmd->msg), while the latter is an immediate number 6. These tools cannot distinguish
the unpatched versions from the patch versions because the patch does not cause any
structural difference.

3. Design of P1OVD

In this section, we first introduce the architecture of our tool (Section 3.1), and then
we will introduce the three main parts of P1OVD in detail, including patch analysis
(Section 3.2), signature generator (Section 3.3), and matching engine (Section 3.4). The first
challenge (Section 2.1) is solved in patch analysis, and the second challenge (Section 2.2) is
solved in equation matching (Section 3.4.2).

3.1. System Architecture

Figure 4 shows that the P1OVD has four inputs, including unpatched sources, patched
sources, reference binaries that are compiled from patched sources, and target binaries
waiting to be checked. Since a large number of function-level binary similarity tools are
currently available, e.g., Asm2Vec [16], we can obtain the address of the possibly vulnerable
function in the target binary by finding out the function most similar to the vulnerable
function, without requiring a symbol table.

Electronics 2022, 11, 260 5 of 17

Reference Binaries

Step 3. Matching Engine

Structural Matching

Equation Matching

Control Dependency Verifying
Patched Sources

Unpatched Sources

Target Binaries

if(i>0)

A[i]

if(i>0)

A[i]

Step 1. Patch

Analysis

0101

0110

0101

0110Step 2. Signature

Generator

Symbolic Execution

Locating Root

Instructions

Step 2. Signature

Generator

Symbolic Execution

Locating Root

Instructions Binary

Signature

Source

Signature

Compile

Offline Signature Generating Online MatchingInputs

0101
?
01
?

0101

Figure 4. System Architecture.

P1OVD has three parts: patch analysis, signature generator, and matching engine.
Patch analysis is designed for generating source signatures from the patched sources and
unpatched sources. The generated source signatures are accurate and robust enough to
overcome the first challenge. Then the signature generator maps the source signatures
to binary signatures while keeping their accuracy and robustness. Patch analysis and
signature generator are combined to generate binary-level signatures for out-of-bounds
vulnerabilities. Finally, the matching engine searches vulnerabilities in the unknown target
binaries according to the binary signatures. Especially, the novel patch signature matching
algorithm matches the patch signatures accurately and robustly, while solving the second
challenge.

3.2. Patch Analysis

In this step, we generate the signatures to represent vulnerabilities. As mentioned
in Section 2.1, important code variants can be ignored when the vulnerability signatures
incompletely contain vulnerability information or patch information. Inspired by the
fact that both patch information and vulnerability information can increase the signature
accuracy and root causes are widely used to evaluate vulnerability signatures [18], we
define that out-of-bounds vulnerability signatures should mainly contain patch information
and out-of-bounds vulnerability root cause information.

To obtain vulnerability root causes accurately, P1OVD utilizes a patch analysis tool,
SID [22]. Patch analysis tools aim at removing the gap between patches and vulnerabilities.
Especially, SID outperforms the statical approaches at the accurate out-of-bounds root
causes locating. SID defines that the root cause of out-of-bounds vulnerabilities is memory
access without proper bound checks. A branching statement, either an if statement or a
loop statement that exists in the patch is regarded as a bound check. They are what out-of-
bounds patches try to add or correct. Memory access always includes directly indexing
arrays by subscripts or calling certain functions to access memory indirectly, which is the
root cause of out-of-bounds vulnerabilities. P1OVD locates the memory access and the
bound checks according to SID’s security rules.

After obtaining patch information and vulnerability root cause information, P1OVD
constructs a local PDG (program dependency graph), which is a subgraph of the function
PDG starts at bound check and ends at memory access, linking a series of branching
statements that are positioned between memory access and bound. The topology of such a
local PDG reflects the relationship between patches and vulnerabilities. Compared to local
CFG [20], this local PDG is more robust to code variants because compilation environments
e.g., optimization levels can significantly change the CFG structures.

Example 1. As Figure 3 shows, the if statement at line 7 is added by patch. So it is a bound check
and is the start of local PDG. The variable i is used to index cmd->msg[i] at line 18. So line 18
is the memory access and is the end of local PDG. Finally, line 14 where the variable i compares
with cmd->msg_len, which is important because the dissatisfaction of the bound check can make the
function skip line 14 and exit directly. So line 14 is included in the local PDG and is the successor
of the bound check and the predecessor of the memory access. In conclusion, we extract only three
lines as a signature. With little unnecessary information and complete patch information, as well as
vulnerability information, this signature can overcome code variants.

Electronics 2022, 11, 260 6 of 17

3.3. Binary Signature Generator

Although the generated signatures are accurate, they are at the source level. Thus,
in this step, we map the source signatures to the binary signatures by reference binaries,
which are manually generated by compiling the patched sources with the O0 optimization
level to x86_64 architecture while reserving the debugging information. P1OVD keeps
the binary signatures in the form of local PDGs and only maps each node of the local
PDGs from source-level to binary-level because the local PDGs remain the same even if the
compilation environments change.

Theoretically, all instructions that correspond to the local PDG statement nodes can
be part of the binary signature. However, Zhang et al. [20] announced that only a subset
of instructions i.e., root instructions actually summarize the statement key behaviors, and
the unnecessary instructions in the signatures can lead to mismatches. Hence, in this
step, P1OVD accurately locates root instructions and uses the semantic information of root
instruction to represent the statements.

3.3.1. Root Instructions Locating

Due to the significant difference between binary and C source codes, a statement that
originally contains multiple instructions may even be divided into multiple basic blocks,
during the compilation procedure. For example, an if statement with a logical operation,
e.g., && or ||, will be separated into two multiple basic blocks. Hence, for each statement
in the local PDG, P1OVD locates the root instructions accurately by taking line numbers,
data dependency, variable names, and statement types into concern.

P1OVD first narrows the scope of possible root instructions by selecting the instruc-
tions corresponding to statement lines. This can be done with the help of debugging
information from reference binaries.

Next, P1OVD narrows the scope of possible root instructions again by variable-based
data dependency analysis because variables represent the behavior of the statement in
most cases. For example, the vulnerable statement cmd->msg[i] contains two important
variables cmd and i and they are combined to generate an out-of-bounds vulnerability.
The variable names can be easily obtained by parsing source codes. However, when
variables are parameters of operator sizeof they can be turned into a constant and disappear
from binaries due to the preprocessing. For example, sizeof(cmd->msg)) corresponds to
the immediate number six in the binary. So P1OVD excludes all variables that are only
used in the operator sizeof. After extracting variable names, P1OVD uses debugging
information to map variable names to rbp related addresses on the stack because without
optimization, the GCC compiler stores each local variable on the stack. Since each extracted
variables are part of the original statements, the root instructions should data-depend on
all extracted variables. Thus, P1OVD performs a data dependency analysis to exclude
irrelevant instructions. We define an instruction data-depends on a certain variable if
it directly uses the rbp related address or uses the result of another instruction that is
data-dependent on the variable.

Finally, one statement can have multiple behaviors at the same time, while some of
them are less important. For example, line 18 reads the memory and calls a function. But
only reading the memory can cause the exception. Thus, P1OVD locates the root instruc-
tions that represent the key behaviors of the statements among the selected candidates.
Bound checks and extra branching statements control the values of the program counters.
Thus, they are compiled into PSW (program status word) writing instructions and branch-
ing instructions. Generally, they are positioned at the end of the basic blocks. We require
the root instructions of bound checks are branching instructions because they reserve the
important comparison operator information since out-of-bounds patches can only correct
the comparison operators. But we require the root instructions of extra branching state-
ments are PSW writing instructions. As mentioned in Section 4.2.3, the results of branching
instructions can be simplified. Further, extra branching statements do not need comparison
operator information. Finally, there are two kinds of memory access, including function

Electronics 2022, 11, 260 7 of 17

calling and array indexing and they trigger exceptions through load or store instructions in
the current functions or the callees. Hence, such behaviors are stored in the function call
instructions and load or store instructions. In conclusion, Table 1 shows the type of root
instruction we required.

Table 1. Mapping source statement to binary AST.

Statement Root Instruction Type AST

Bound Check Branching Instruction Branching Condition

Memory Access (Call Function) Function Call Instruction Access Expression (Callee and All Function Arguments)

Memory Access (Index Array) Load or Store Instruction Access Expression (Memory Adress)

Extra Branching Satement Branching Instruction PSW Write Arguments

3.3.2. Symbolic Execution

In this section, P1OVD generates sufficient information for root instructions so that
they can represent the vulnerabilities and patches. Researchers [8,9,13,19,20] have demon-
strated that symbolic execution results i.e., ASTs can robustly represent the operands of
instructions. Thus, P1OVD symbolically executes the reference functions from their entries
and extracts ASTs forass root instructions. Besides, as Table 1 shows, since the operands
of different root instructions are different, P1OVD generates different ASTs for them. The
extracted ASTs can represent the vulnerabilities and patches. For example, P1OVD extracts
[arg + 6] <= 6 and ![arg + 6] <= 6 for statement cmd->msg_len>sizeof(cmd->msg). The cmd
is function argument and AST uses arg to represent it. Then it load the member msg _len
with offset six corresponding to [arg + 6]. Finally, it is compared to the constant number six
and forks the basic block, as ASTs indicate. In conclusion, all statements in the source local
PDGs are replaced with ASTs.

Example 2. As Figure 5 shows. The root cause contains two variables, named cmd and i. P1OVD
maps the line to instructions first. Then among these instructions, P1OVD finds that i which is
located at rbp-0x20 is used at 0x409b4, while cmd is used at 0x409b8. Since the memory operation
at 0x409ba uses both variables to read the memory, P1OVD thinks it is a root instruction. Moreover,
by symbolic execution we generate mem_read(arg) etc. to represent the access expression it read.
Similarly other nodes of local PDG can be mapped to binary-level.

0x4019b0:movzx eax, byte ptr [rbp - 0xa]

;eax=i

0x4019b4:mov rdx, qword ptr [rbp - 0x20]

;rdx=cmd

0x4019b8:cdqe

0x4019ba:movzx eax, byte ptr [rdx + rax]

;eax=cmd->msg[i]

i

cmd

rbp

rbp-0x0a

rbp-0x20

rsp

stb0899_write_reg(

state,

STB0899_DISFIFO,

cmd->msg[i]

);

Figure 5. Locating instructions by mapping line to instructions and variable name to stack.

3.4. Matching Engine

The matching engine can judge if an unknown binary is vulnerable or not by using
the binary signatures generated from reference binaries. For one binary it has four kinds
of output: not vulnerable, patched, vulnerable, unable to judge. Before actually starting
to match the vulnerabilities, we use the code similarity to find out the functions that may
contain the vulnerabilities in the binaries and use symbolic execution to extract all ASTs of
the target functions. Then we start the vulnerability matching.

Electronics 2022, 11, 260 8 of 17

We find access expressions and PSW write arguments by structural matching and find
branching conditions by equation matching. Because the structural matching is faster than
the equation matching but dissatisfies the high accuracy required by branching conditions.
Finally, we verify the control dependencies using local PDGs.

3.4.1. Structural Matching

Structural matching finds operations with similar semantics to out-of-bounds access
expressions or PSW write arguments in the target binaries by calculating the graph simi-
larity of two ASTs. Empirically, we have found that ASTs with the same semantics may
have subtle differences when extracted from binary functions of different compilation
environments. For example, both a+((b+1)«1) and a+2+(b«1) can be found in binaries when
statement a[b+1] appears in the source code. Therefore, we do not require the ASTs to be
structurally identical but structurally similar. Thus, the edit-distance-based graph simi-
larity can better reflect the similarity of ASTs and we compare the graph similarity with a
predefined threshold to determine whether two ASTs are similar.

3.4.2. Equation Matching

The main task of equation matching is to find a branching condition the same as the
patched bound check. However, as mentioned in Section 2.2, both structural matching and
strict matching cannot overcome the second challenge.

Fiber [20] matches the same kind of nodes, e.g., immediate numbers with different
algorithms according to their positions in the ASTs. Thus, we infer that different parts of
branching conditions should be matched according to different precisions. We define a
subtree in the AST as a data object if its root node is a memory read operation or it only
contains one node that is a function return value or a parameter. Additionally, a data object
should not be a subtree of another data object. After extracting data objects, remain the
boolean expressions. Empirically, we learn that under different compilation environments,
data objects have similar structures, while boolean expressions preserve fixed semantics.
So P1OVD matches them according to their structures and semantics correspondingly.

After extracting data objects by traversing the branching conditions, P1OVD uses the
structural matching presented in Section 3.4.1 to generate data object pairs, one from the
target branching condition and one from the reference branching condition. The matched
data object pairs in two ASTs are replaced with the same symbol. In the case that two
matched data objects have different sizes, e.g., one is 64-bits long, and the other is 32-bits,
P1OVD defines a symbol in the shorter size and replaces two ASTs with this symbol. To
satisfy the length requirement of the longer tree, P1OVD pads zero to the left of the defined
symbol. P1OVD replaces the data objects to ensure the two bool expressions have identical
symbol sets and can be used for solving.

Next, we accurately solve [23] the boolean expressions. Since the boolean expressions
are semantically identical, only equal or opposite boolean expressions are matched. In
other words, given two boolean expressions Expr1 and Expr2, they are considered matched
if only one of Expr1 = Expr2 or Expr1 =! Expr2 can be solved.

Example 3. As Figure 6 shows, to match the [arg + 6] <= 6 and ![arg + 6] > 6, P1OVD first
extracts data objects from them. The extracted data objects are both [arg + 6] and they are structurally
similar obviously. So P1OVD replaces them with a single symbol x in their original AST. Then
P1OVD checks the solving possibility of conditions (x 6 6) =! (x > 6) and (x 6 6) =!! (x > 6).
Results show x = 0 satisfies the first constrain and the second constrain will never be satisfied, thus
P1OVD finds that the two branching conditions are equal. So, in conclusion, the two ASTs represent
the same branching condition. At the same time, both strict matching and graph-similarity-based
matching cannot distinguish such changes in ASTs.

Electronics 2022, 11, 260 9 of 17

Similar Data Objects

Equal/Opposite Boolean Expressions

+

[]

arg 6

[arg+6]<=6

x<=6

+

[]

arg 6

[arg+6]<=6

x<=6

+

[]

arg 6

![arg+6]>6

!x>6

+

[]

arg 6

![arg+6]>6

!x>6

Figure 6. Two-step matching algorithm.

3.4.3. Verify Control Dependency

In this step, P1OVD matches the local PDG topologies by verifying the edge i.e. control
dependency of their nodes. This step is to ensure that the bound checks actually control the
memory access. Since even if both bound checks and memory access appear in the same
function, vulnerabilities can still appear. For example, in Linux Kernel commit 1fa2337, the
patch only moves the check of d->msg_len forward to secure the d->msg[i] used in function
printk. P1OVD can infer statement A controls statement B from two cases:

• A is a loop statement. The loop structure is often reordered by optimization, and
P1OVD requires every trace that passes the B twice or more to contain an A between
every neighbor B.

• A is an if statement. Since the if statement may be in a loop, P1OVD requires each
trace that reaches the B from the function entry to pass A.

4. Evaluation

We have developed P1OVD with 1200 lines of python code on top of open source
libraries Angr [24], joern [25], and pyelftool [26]. P1OVD supports aarch64, x86_64, and
x86_32 target architectures as well as, O0 and O2 optimization levels. In this section, we
first evaluate P1OVD in terms of accuracy (Section 4.2) and efficiency (Section 4.3), and
then we compare P1OVD with other tools in terms of the overall performance (Section 4.4)
and the effectiveness of signature generation (Section 4.5), and AST matching (Section 4.6).

4.1. Datasets

We evaluate our tool based on Linux Kernel because not only is Linux Kernel widely
used [27], but also the out-of-bounds vulnerabilities in the Linux Kernel are widely an-
alyzed [22]. Our tool has four inputs, including unpatched source code, patched source
code, patched binary, and target binary. Thus, we collect three datasets.

4.1.1. Source Codes

Source codes include the patched and unpatched source codes. To ensure that the patch
analysis can successfully operate, we use 30 out-of-bounds patches listed in the appendix
of SID [22] while two of them are patches of CVE-2017-18379 and CVE-2019-15926. We
exclude some patches that are too old that cannot be successfully compiled.

4.1.2. Reference Binaries

The reference binaries are obtained by compiling the patched source code. Still, most
of the out-of-bounds vulnerabilities are located in the Linux Kernel optional modules,
which are difficult to trigger by the default compilation options. We manually adjust the
compilation options for each out-of-bounds patch to satisfy the constraints and apply GCC
to compile the patched source codes while reserving the debugging information.

Electronics 2022, 11, 260 10 of 17

4.1.3. Target Binaries

The target binaries are used to prove that the P1OVD can fight against binaries built
with non-standard configurations from customized codes on multiple architectures. To
obtain target binaries, we compile source code into 620 different binaries. The collected
binaries vary from three aspects, including versions, optimization levels, and target archi-
tectures.

We think the first way to customize source codes is to compile the source codes of
different versions. When we refer to versions, we do not mean the software release version
e.g., “Linux-5.0-y” because a newer software release version does not change the vulnerable
function sometimes. We define a new version according to the vulnerable functions. For a
vulnerable function, we regard all commits that change this function as versions and divide
these versions into three categories, including not vulnerable versions, vulnerable versions,
and patched versions. A function had no vulnerability at first and we think the functions
in these versions are not vulnerable. And then, at a notable point, the vulnerable memory
access began to appear in the function. We think these functions are vulnerable. After
the vulnerability was discovered, the repository maintainer corrected the bound check
using a patch. We consider these functions are patched. Totally, we obtain 104 different
versions from Linux Kernel “master” branch and we classify these versions manually.
Second, optimization levels are usually customized and O0 and O2 are the most commonly
used optimization. Moreover, the reference binaries are generated based on O0. Thus,
we evaluate P1OVD on O0 and O2 optimization levels. Finally, different manufacturers
can build sources for different target architectures. We also evaluate P1OVD on three
architectures including x86_64, x86_32, and aarch64. The x86_32 uses 32-bit addresses while
aarch64 and x86_64 use 64-bit addresses while aarch64 has an instruction set different from
x86_64 and x86_32. After obtaining 620 binaries, we generate ground truths for them
according to their versions because the changes of compilation environments do not affect
the vulnerability detection results.

4.2. Accuracy

We evaluate the P1OVD based on the multiclass classification problem. Only the
outputs of P1OVD that correctly predict both vulnerability and patch are considered
correct. We use precision, recall, F-1 score, and accuracy to measure the accuracy of P1OVD.
The four evaluation metrics are defined in Equation (1). P1OVD first generates signatures
based on O0 optimization and x86_64 architecture and then scans the target binaries with
the signatures.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 Score =
2 ∗ Precision ∗ Recall

Precision + Recall

Accuracy =
Correct

Total

(1)

Table 2 shows the accuracy of P1OVD. Each row represents the compilation envi-
ronments, and each column stands for the evaluation metrics of three version categories.
P1OVD obtains an accuracy of 83.06%. And we manually analyzed the false predict cases
and summarized the following four reasons, while the first three are common challenges
for symbolic execution-based tools.

Electronics 2022, 11, 260 11 of 17

Table 2. Vulnerability Detection Accuracy Test.

Compilation Environment
Recall Precision F-1 Score

Accuracy
NV V P NV V P NV V P

O0

aarch64 100.00% 84.09% 86.00% 45.45% 100.00% 97.73% 0.62 0.91 0.91 86.54%

x86_64 80.00% 95.45% 100.00% 88.89% 95.45% 98.00% 0.84 0.95 0.99 96.12%

x86_32 80.00% 63.64% 79.59% 80.00% 100.00% 97.50% 0.80 0.78 0.88 72.82%

O2

aarch64 100.00% 84.09% 80.00% 47.62% 90.24% 97.56% 0.65 0.87 0.88 83.65%

x86_64 80.00% 86.36% 95.92% 80.00% 97.44% 97.92% 0.80 0.92 0.97 90.29%

x86_32 80.00% 61.36% 73.47% 66.67% 93.10% 97.30% 0.73 0.74 0.84 68.93%

All 86.67% 79.17% 85.81% 61.90% 95.87% 97.69% 0.72 0.87 0.91 83.06%

NV stands for not vulnerable. V stands for vulnerable. P stands for patched.

4.2.1. Function Inline

Function inline contributes most of the false rates. A function with an inline tag may
not be inline during the compilation procedure. It is influenced by many factors e.g., the
optimization level, and target architecture. For example, function nvmet_fc_getqueueid called
by the function nvmet_fc_find_target_queue is inlined when compiled with aarch64 and O0.
However, function nvmet_fc_getqueueid is not inlined when compiled with x86_64 and O0.
Whether the callee is inline affects the extracted signature through symbolic execution
and function inline is also the key reason why P1OVD has worse performance on aarch64
architecture or O2 optimization level, compared to x86_64 and O0.

4.2.2. Conditional Execution Instructions

Conditional execution instructions are instructions that select whether to perform
operations based on the PSW, e.g., CSEL. When multiple conditional branches occur contin-
uously, aarch64 optimizes the efficiency by replacing branch instructions with conditional ex-
ecution instructions since branch instructions slow the assembly. Function qxl_clientcap_ioctl
in commit 62c8ba7 compares qdev->pdev->revision with 4 and byte with 58 continuously,
and only one branch instruction to deal with the exception for them. Since we used the
AST of branching conditions for boundary check, the inability to find the correct branching
conditions in the binary led to false positives.

4.2.3. Simplified Expression

P1OVD will output a false result when a patch changes the loop bound. For example
commit 43622021d2e2b changes operator <= to < in the statement for(j=0; j<HID_MAX_IDS;
j++). Every time the executor compares the j and HID_MAX_IDS, the value of j is a
constant. As a result, Angr will automatically optimize a boolean expression containing
only constants to True or False. This prevents us from extracting branching conditions
correctly and this is the key reason why the signature cannot ensure all predictions are
correct on x86_64 and O0.

4.2.4. Structure Dissimilar

Function hid_register_report in commit 43622021d, indexes an array through report_enum-
>report_id_hash[id] while report_enum is calculated by device->report_enum+type. However,
all the structs have pointer members, which means that when the system address lengths
change the sizes of structs change. Although the difference between the two integers is
small, optimizing codes by replacing multiplication with an arithmetical left shift is often
used in the addressing process, resulting in structural differences. As a result, x86_32 has
the worst performance. We believe that graph embedding is a feasible solution to this type
of problem.

Electronics 2022, 11, 260 12 of 17

4.3. Performance

Experimented on intel-i7-8700 and 12GB RAM, Table 3 records the time consumption
of P1OVD from three aspects of patch analysis, signature generator, and matching engine.
Patch analysis and signature generator are used to extract binary signatures offline. We
calculate the average time used to generate a signature for one patch. The matching engine
is used to determine whether a target binary is vulnerable or not. To solve the situation that
different vulnerable functions have different numbers of versions and better reflect the time
consumption, we first calculate the average time used for finding a certain vulnerability in
various binaries, then we calculate the overall average vulnerabilities finding times.

Table 3. Vulnerability Detection Performance Test.

Step Total Time Number Average

Offline
Patch Analyze 470.68 s 30 15.69 s

Signature Generate 99.90 s 30 3.33 s

Online Match 108.07 s 30 3.60 s

4.4. Accuracy Comparison with Vulnerability Detection Tools

In this section,we evaluate the accuracy of P1OVD by comparing it with the state-
of-the-art vulnerability detection tools. We choose BinXray [17] and Asm2Vec [16] as
references because they are both open-sourced and BinXray and Asm2Vec are the state-of-
the-art patch-level and function-level vulnerability detection tools. We compare P1OVD,
Asm2Vec, and BinXray from four aspects, including precision, recall, F-1 score, and accuracy.
For one function, Binxray only has two kinds of outputs vulnerable or patched. So we
require P1OVD to predict if the functions are vulnerable or not. Thus, we relabel the
patched binaries as not vulnerable binaries. At the same time, Asm2Vec ranks the possibly
vulnerable functions. So we think the function in the unknown target binary that has the
highest similarity to the vulnerable function in the reference binary is vulnerable.

Table 4 shows the results of the comparison. Asm2Vec, a function-level tool, cannot
distinguish three versions well and consider them are all vulnerable, which result in
high false positive. Meanwhile, BinXray assumes that vulnerabilities exist when patches
disappear. However, bound checks and memory access can both disappear because of
code customization. When BinXray cannot detect the patches, it mistakenly believes that
the vulnerabilities exist. P1OVD achieves the highest precisions due to its vulnerability
signature containing both vulnerability root cause information and patch information.
However, P1OVD cannot ensure that all binaries predicted safe are accurately safe. When
the patch changes the loop boundary, the simplified expressions described in Section 4.2.3
can cause the results of symbolic execution to contain too little information and P1OVD
cannot distinguish the patched version from the unpatched version. However, Binxray
uses the patch codes in the binaries as signatures, which works well when the target binary
and reference binary are under the same compilation environment.

4.5. Effectiveness of Vulnerability Signatures

In this step, we evaluate the effectiveness of our vulnerability signatures by comparing
the source signatures of P1OVD with ReDeBug [3] based on the source dataset. Because
ReDeBug is a widely used open-source source-level unpatched buggy code detection tool.
As Table 5 shows, compared to ReDeBug, P1OVD extracts fewer lines but our signatures
contain more vulnerability root cause information and patch information, which means
P1OVD can generate more accurate vulnerability signatures. This is because ReDeBug
only pays attention to the lines close to the patches. On the contrary, P1OVD focuses more
on the statements that control the function security (vulnerability root cause information
and patch information), by which P1OVD overcomes the first challenge (Section 2.1). For
example, ReDebug always includes the error handling of bound checks because they are

Electronics 2022, 11, 260 13 of 17

added by patches. Meanwhile, P1OVD thinks they are widely customized [19] and excludes
them from signatures.

Table 4. Comparing P1OVD with BinXray and Asm2Vec.

Tool Compilation Environment
Recall Precision F1-score

AccuracyNot
Vulnerable Vulnerable Not

Vulnerable Vulnerable Not
Vulnerable Vulnerable

P1OVD
(Graph Similarity)

O0

aarch64 60.00% 84.09% 83.72% 61.67% 0.70 0.71 70.19%

x86_64 50.85% 95.45% 93.75% 59.15% 0.66 0.73 69.90%

x86_32 52.54% 63.64% 93.94% 62.22% 0.67 0.63 57.28%

O2

aarch64 56.67% 84.09% 85.00% 58.73% 0.68 0.69 68.27%

x86_64 49.15% 86.36% 93.55% 57.58% 0.64 0.69 65.05%

x86_32 50.85% 61.36% 90.91% 60.00% 0.65 0.61 55.34%

P1OVD
(Two Step)

O0

aarch64 98.33% 84.09% 89.39% 100.00% 0.94 0.91 92.31%

x86_64 96.61% 95.45% 96.61% 95.45% 0.97 0.95 96.12%

x86_32 81.36% 63.64% 96.00% 100.00% 0.88 0.78 73.79%

O2

aarch64 93.33% 84.09% 90.32% 90.24% 0.92 0.87 89.42%

x86_64 94.92% 86.36% 96.55% 97.44% 0.96 0.92 91.26%

x86_32 77.97% 61.36% 93.88% 93.10% 0.85 0.74 70.87%

BinXray O0 x86_64 81.36% 95.45% 100.00% 84.00% 0.90 0.89 87.38%

Asm2Vec
O0 x86_64 5.08% 95.45% 60.00% 42.86% 0.09 0.59 43.69%

O2 x86_64 16.95% 79.55% 52.63% 41.67% 0.26 0.55 43.69%

Table 5. Comparing P1OVD with ReDeBug.

P1OVD ReDeBug

Bound Check Coverage 100% 100%
Memory Access Coverage 100% 50.94%

Used Lines 2.80 6.87

4.6. Effectiveness of Two-Step AST Matching Algorithm

In this section, we evaluate the effectiveness of our two-step AST matching algorithm
by comparing it with the graph-similarity-based AST matching algorithm, because the
graph-similarity-based AST matching algorithm is the most widely used AST matching
algorithm among vulnerability detection tools [8,9,13] and is used to enhance the robustness
of Fiber [20]. To compare with it, we generate a new version of P1OVD by replacing our
two-step equation matching component with the graph similarity matching. Table 4 shows
that the modified P1OVD has more false positives, which demonstrates that the two-step
AST matching algorithm can address the second challenge (Section 2.2). This is because the
graph-similarity-based matching can only distinguish action-related nodes and condition-
related nodes [13] and cannot distinguish the in-node changes. Moreover, when only
operands are different, the graph-similarity-based matching algorithm remains unaware.
The two-step matching algorithm splits the AST into two parts. If such changes happen in
the data objects, P1OVD ignores them. On the contrary, if boolean expression semantics are
changed, P1OVD is warned by the solver.

4.7. Limitation

P1OVD analyzes the out-of-bounds patches based on security rules of SID [22], which
leads to one limitation. Although SID outperforms patch analysis tools, it can neither
analyze the patches that involve multiple functions nor understand out-of-bounds patches
that do not correct bound checks e.g., extending the array size. Thus, P1OVD cannot
successfully detect all out-of-bounds vulnerabilities. To address this problem, we are
considering replacing SID with other dynamic patch analysis tools e.g., PatchScope [28].

Electronics 2022, 11, 260 14 of 17

Further, memory access is a common root cause of many kinds of memory-centric
vulnerabilities, e.g., use after free and correcting missing or wrong checks before the
memory access can also be the key behavior of security patches. We can polish bound
checks to generalize the vulnerabilities that P1OVD can detect.

Finally, the performance of P1OVD in 32-bit architecture is not as good as in 64-
bit architecture. This is mainly due to the structural changes related to address length
(Section 4.2.4). Thus, we try to calculate the similarity scores of two ASTs with a more robust
algorithm. Many works [16,29] train neural networks to calculate the graph similarity of
CFG or PDG and we think these approaches can be adapted to AST similarity calculation.

5. Related Work

This article is closely related to four branches of study, function-level 1-day vulnera-
bility detection, patch-level 1-day vulnerability detection, patch presence test, and patch
analysis. In the following four sections, we give a brief review of the works that lead to
our own.

5.1. Function-Level 1-Day Vulnerability Detection

At present, many studies focus on detecting vulnerabilities in source files and binary
files by judging whether the target function is similar to the vulnerable function. Usually,
function-level 1-day vulnerability detection tools extract features from reference sources or
binaries and match them with special algorithms.

Early algorithm using normalized source codes [7], ASTs [5], PDG [4,6], etc. to com-
prehensively represent the whole source vulnerable function. However, they cannot detect
the 1-day vulnerabilities in binaries, due to the lack of binary semantic information.

DiscovRE [10] tries to solve this problem by extracting numerical features from the
basic blocks and CFG structural features. Introduced by Genius [12], neural networks
use vectors to better represent the function feature, e.g., numerical and structural infor-
mation [14,15], assembly codes [16]. Some tools use tree-liked formulas to represent basic
blocks [8], function IO behaviors [9], or even the high-level function semantic informa-
tion [13]. These function-level 1-day vulnerability detection tools take the whole vulnerable
functions as the vulnerability signatures and their extremely large scope of function-level
signatures cause the first challenge (Section 2.1). When small code variants involve patches
or vulnerability root causes, the function-level signatures bring much useless information
and cannot give correct predictions.

5.2. Patch-Level 1-Day Vulnerability Detection

During the last decade, researchers use patches to improve the function-level 1-
day vulnerability detection, which is called patch-level vulnerability detection. Early
tools [3,17,30,31] believe the missing patch-added codes are the root causes of vulnerabili-
ties. By using normalized and tokenized patches [3], patch sensitive matching algorithms [30],
LSTM-embedded code vectors [31], patch modified traces [17], they enhance the patch
searching rather than vulnerability searching.

Li et al. [32] think the patch-removed code is vulnerable and using concolic testing
to verify the clone of vulnerable code. MVP first [18] announced that the patch and the
corresponding vulnerability have different information and it thinks the deleted codes are
vulnerable and the added codes are patches. So it uses CPG (code property graphs) to slice
vulnerability-related codes as vulnerability signatures and patch-related codes as patch
signatures. Further, researchers manually evaluate MVP’s failures by comparing signatures
with vulnerability root causes in case studies. Although the signatures containing both
patch information and vulnerability information improve source-level 1-day vulnerability
detection, they contain too much unnecessary information for binary-level vulnerability
detection, which leads to the first challenge (Section 2.1).

Electronics 2022, 11, 260 15 of 17

5.3. Patch Presence Test

The concept of patch presence tests is first proposed by Zhang et al. [20]. Its main
purpose is to accurately confirm whether a binary contains a particular patch or not, while
we try to find vulnerabilities rather than patches. Other patch presence tests improve the
Fiber [20] in terms of the diversifying source program languages [33] and robustness [19],
or polish it with other dynamic tools [34].

Vulnerabilities detections need high accuracy and robustness, which is similar to patch
present tests. So, we have a deep look into the Fiber and Pidff [19]. They both locate basic
blocks corresponding to the patches in the patched binaries. Later, by symbolic execution,
they extract the AST-shaped results of these basic blocks as signatures. However, they
match their signatures with different methods. While Fiber proposes a strict operand-based
patch matching algorithm with little relaxations (inter-changeable operators, address-
related immediate numbers), PDiff proposed a robust but less accurate graph similarity-
based matching algorithm. Unfortunately, neither of them can accurately and robustly
match branching conditions in downstream binaries, which leads to the second challenge
(Section 2.2). In Section 3.4.2 we benefit from both and propose a novel two-step matching
algorithm.

5.4. Patch Analysis

Patch analyses are used to understand how security patches fix the vulnerabilities. At
first, Corley et al. [35] links between bugs and patches while requiring an issue tracking
system. Later, Spain [36] proposed binary-level patch patterns to detect unexplored vulner-
abilities but limited by lacking high-level semantic information, it cannot fully understand
out-of-bounds patches. SID [22] outperforms other statical tools at the accurate out-of-
bounds root causes locating, by utilizing symbolic execution. PatchScop [28] dynamically
analyzes the patches and gets the highest accuracy although it requires POCs (Proof of
Concepts). In this work, we use the state-of-the-art statical tool, SID to locate the root causes
of out-of-bounds vulnerabilities.

6. Conclusions

In this work, we have had a deep look into the 1-day vulnerability detection and
identified two challenges introduced by code variants, including vulnerability signature
and patch signature matching. To solve the two challenges, we have proposed P1OVD,
an accurate detection method for 1-day out-of-bounds vulnerabilities in downstream
binaries using patches. P1OVD analyzes the patch to get accurate vulnerability signature,
generates binary signatures using debugging information and symbolic execution, and
accurately matches the signatures, especially branching condition. Experiments have
demonstrated that P1OVD can generate accurate and robust vulnerability signatures and
match the signatures accurately. Addressing the above two challenges allows P1OVD to
resist interference from code customization, non-standard building configurations, and to
detect 1-day out-of-bounds vulnerabilities on multiple architectures more accurately than
existing tools.

Author Contributions: Conceptualization, methodology, validation, evaluating, and writing H.L.;
writing—review and editing, funding acquisition, project administration, resources D.H.; writing—
review and editing S.C.; writing-review and editing X.Z. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China, China
(Grant No. U1936120), the University Grants Committee of the Hong Kong Special Administrative
Region of China (City U11201421), and the Basic Research Program of State Grid Shanghai Municipal
Electric Power Company (52094019007F).

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2022, 11, 260 16 of 17

Abbreviations
The following abbreviations are used in this manuscript:

AST Abstract Syntax Tree
PDG Program Dependency Graph
PSW Program Status Word
CFG Control Flow Graph
POC Proof of Concepts

References
1. Peng, J.; Li, F.; Liu, B.; Xu, L.; Liu, B.; Chen, K.; Huo, W. 1dVul: Discovering 1-Day Vulnerabilities through Binary Patches. In

Proceedings of the 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Portland,
OR, USA, 24–27 June 2019; pp. 605–616. [CrossRef]

2. Insights into the 2.3 Billion Android Smartphones in Use Around the World. Available online: https://newzoo.com/insights/
articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/ (accessed on 12 December 2021).

3. Jang, J.; Agrawal, A.; Brumley, D. ReDeBug: Finding unpatched code clones in entire os distributions. In Proceedings of the 2012
IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 20–23 May 2012; pp. 48–62.

4. Pham, N.H.; Nguyen, T.T.; Nguyen, H.A.; Nguyen, T.N. Detection of recurring software vulnerabilities. In Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering, New York, NY, USA, 20–24 September 2010; pp.
447–456.

5. Yamaguchi, F.; Lottmann, M.; Rieck, K. Generalized vulnerability extrapolation using abstract syntax trees. In Proceedings of the
28th Annual Computer Security Applications Conference, Orlando, FL, USA, 3–7 December 2012; pp. 359–368.

6. Zou, D.; Qi, H.; Li, Z.; Wu, S.; Jin, H.; Sun, G.; Wang, S.; Zhong, Y. SCVD: A New Semantics-Based Approach for Cloned
Vulnerable Code Detection. In Proceedings of the International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, Bonn, Germany, 6–7 July 2017; pp. 325–344.

7. Kim, S.; Woo, S.; Lee, H.; Oh, H. Vuddy: A scalable approach for vulnerable code clone discovery. In Proceedings of the 2017
IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 595–614.

8. Pewny, J.; Schuster, F.; Bernhard, L.; Holz, T.; Rossow, C. Leveraging semantic signatures for bug search in binary programs.
In Proceedings of the 30th Annual Computer Security Applications Conference, New Orleans, LA, USA, 8–12 December 2014;
pp. 406–415.

9. Pewny, J.; Garmany, B.; Gawlik, R.; Rossow, C.; Holz, T. Cross-architecture bug search in binary executables. In Proceedings of
the 2015 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 17–21 May 2015; pp. 709–724.

10. Eschweiler, S.; Yakdan, K.; Gerhards-Padilla, E. discovRE: Efficient Cross-Architecture Identification of Bugs in Binary Code. In
Proceedings of the NDSS, San Diego, CA, USA, 21–24 February 2016; pp. 58–79.

11. Feng, Q.; Zhou, R.; Xu, C.; Cheng, Y.; Testa, B.; Yin, H. Scalable graph-based bug search for firmware images. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 480–491.

12. Xu, X.; Liu, C.; Feng, Q.; Yin, H.; Song, L.; Song, D. Neural network-based graph embedding for cross-platform binary code
similarity detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas,
TX, USA, 30 October–3 November 2017; pp. 363–376.

13. Feng, Q.; Wang, M.; Zhang, M.; Zhou, R.; Henderson, A.; Yin, H. Extracting conditional formulas for cross-platform bug search.
In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, Abu Dhabi, United Arab
Emirates, 2–6 April 2017; pp. 346–359.

14. Gao, J.; Yang, X.; Fu, Y.; Jiang, Y.; Sun, J. VulSeeker: A semantic learning based vulnerability seeker for cross-platform binary.
In Proceedings of the 2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE), Montpellier,
France, 3–7 September 2018; pp. 896–899.

15. Liu, B.; Huo, W.; Zhang, C.; Li, W.; Li, F.; Piao, A.; Zou, W. αdiff: Cross-version binary code similarity detection with dnn.
In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, Montpellier France,
3–7 September 2018; pp. 667–678.

16. Ding, S.H.; Fung, B.C.; Charland, P. Asm2vec: Boosting static representation robustness for binary clone search against code
obfuscation and compiler optimization. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco,
CA, USA, 19–23 May 2019; pp. 472–489.

17. Xu, Y.; Xu, Z.; Chen, B.; Song, F.; Liu, Y.; Liu, T. Patch based vulnerability matching for binary programs. In Proceedings
of the 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event, USA, 18–22 July 2020;
pp. 376–387.

18. Xiao, Y.; Chen, B.; Yu, C.; Xu, Z.; Yuan, Z.; Li, F.; Liu, B.; Liu, Y.; Huo, W.; Zou, W.; et al. MVP: Detecting Vulnerabilities Using
Patch-Enhanced Vulnerability Signatures. Available online: https://chenbihuan.github.io/paper/sec20-xiao-mvp.pdf (accessed
on 12 December 2021).

http://doi.org/10.1109/DSN.2019.00066
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://newzoo.com/insights/articles/insights-into-the-2-3-billion-android-smartphones-in-use-around-the-world/
https://chenbihuan.github.io/paper/sec20-xiao-mvp.pdf

Electronics 2022, 11, 260 17 of 17

19. Jiang, Z.; Zhang, Y.; Xu, J.; Wen, Q.; Wang, Z.; Zhang, X.; Xing, X.; Yang, M.; Yang, Z. PDiff: Semantic-based Patch Presence
Testing for Downstream Kernels. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, 9–13 November 2020; pp. 1149–1163.

20. Zhang, H.; Qian, Z. Precise and accurate patch presence test for binaries. In Proceedings of the 27th USENIX Security Symposium
(USENIX Security 18), Baltimore, MD, USA, 15–17 August 2018; pp. 887–902.

21. Linux Kernel. Available online: https://github.com/torvalds/linux (accessed on 12 December 2021).
22. Wu, Q.; He, Y.; McCamant, S.; Lu, K. Precisely characterizing security impact in a flood of patches via symbolic rule comparison.

In Proceedings of the Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 23–26 February 2020.
23. Z3Prover/z3: The Z3 Theorem Prover. Available online: https://github.com/Z3Prover/z3 (accessed on 12 December 2021).
24. Shoshitaishvili, Y.; Wang, R.; Salls, C.; Stephens, N.; Polino, M.; Dutcher, A.; Grosen, J.; Feng, S.; Hauser, C.; Kruegel, C.; et al. SoK:

(State of) The Art of War: Offensive Techniques in Binary Analysis. In Proceedings of the 2016 IEEE Symposium on Security and
Privacy (SP), San Jose, CA, USA, 22–26 May 2016.

25. Yamaguchi, F.; Golde, N.; Arp, D.; Rieck, K. Modeling and discovering vulnerabilities with code property graphs. In Proceedings
of the 2014 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 18–21 May 2014; pp. 590–604.

26. Parsing ELF and DWARF in Python. Available online: https://github.com/eliben/pyelftools (accessed on 12 December 2021).
27. Hall, C. Survey Shows Linux the Top Operating System for Internet of Things Devices. Available online: https://www.itprotoday.

com/iot/survey-shows-linux-top-operating-system-internet-things-devices (accessed on 12 December 2021).
28. Zhao, L.; Zhu, Y.; Ming, J.; Zhang, Y.; Zhang, H.; Yin, H. Patchscope: Memory object centric patch diffing. In Proceedings

of the 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, USA, 9–13 November 2020;
pp. 149–165.

29. Chandramohan, M.; Xue, Y.; Xu, Z.; Liu, Y.; Cho, C.Y.; Tan, H.B.K. Bingo: Cross-architecture cross-os binary search. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, Seattle, WA,
USA, 13–18 November 2016; pp. 678–689.

30. Li, Z.; Zou, D.; Xu, S.; Jin, H.; Qi, H.; Hu, J. VulPecker: An automated vulnerability detection system based on code simi-
larity analysis. In Proceedings of the 32nd Annual Conference on Computer Security Applications, Los Angeles, CA, USA,
5–9 December 2016; pp. 201–213.

31. Li, Z.; Zou, D.; Xu, S.; Ou, X.; Jin, H.; Wang, S.; Deng, Z.; Zhong, Y. Vuldeepecker: A deep learning-based system for vulnerability
detection. arXiv 2018, arXiv:1801.01681.

32. Li, H.; Kwon, H.; Kwon, J.; Lee, H. A scalable approach for vulnerability discovery based on security patches. In Proceedings of the
International Conference on Applications and Techniques in Information Security, Melbourne, Australia, 26–28 November 2014;
pp. 109–122.

33. Dai, J.; Zhang, Y.; Jiang, Z.; Zhou, Y.; Chen, J.; Xing, X.; Zhang, X.; Tan, X.; Yang, M.; Yang, Z. BScout: Direct Whole Patch Presence
Test for Java Executables. In Proceedings of the 29th USENIX Security Symposium (USENIX Security 20), Boston, MA, USA,
12–14 August 2020; pp. 1147–1164.

34. Sun, P.; Garcia, L.; Salles-Loustau, G.; Zonouz, S. Hybrid firmware analysis for known mobile and iot security vulnerabilities. In
Proceedings of the 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Valencia,
Spain, 29 June–2 July 2020; pp. 373–384.

35. Corley, C.S.; Kraft, N.A.; Etzkorn, L.H.; Lukins, S.K. Recovering traceability links between source code and fixed bugs via patch
analysis. In Proceedings of the 6th International Workshop on Traceability in Emerging Forms of Software Engineering, Waikiki,
HI, USA, 23 May 2011; pp. 31–37.

36. Xu, Z.; Chen, B.; Chandramohan, M.; Liu, Y.; Song, F. Spain: Security patch analysis for binaries towards understanding the pain
and pills. In Proceedings of the 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE), Buenos Aires,
Argentina, 20–28 May 2017; pp. 462–472.

https://github.com/torvalds/linux
https://github.com/Z3Prover/z3
https://github.com/eliben/pyelftools
https://www.itprotoday.com/iot/survey-shows-linux-top-operating-system-internet-things-devices
https://www.itprotoday.com/iot/survey-shows-linux-top-operating-system-internet-things-devices

	Introduction
	Motivation
	Vulnerability Signature
	Patch Signature Matching

	Design of P1OVD
	System Architecture
	Patch Analysis
	Binary Signature Generator
	Root Instructions Locating
	Symbolic Execution

	Matching Engine
	Structural Matching
	Equation Matching
	Verify Control Dependency

	Evaluation
	Datasets
	Source Codes
	Reference Binaries
	Target Binaries

	Accuracy
	Function Inline
	Conditional Execution Instructions
	Simplified Expression
	Structure Dissimilar

	Performance
	Accuracy Comparison with Vulnerability Detection Tools
	Effectiveness of Vulnerability Signatures
	Effectiveness of Two-Step AST Matching AlgorithmComparison on AST Matching Algorithm
	Limitation

	Related Work
	Function-Level 1-Day Vulnerability Detection
	Patch-Level 1-Day Vulnerability Detection
	Patch Presence Test
	Patch Analysis

	Conclusions
	References

