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Abstract: Diffuse optical tomography using deep learning is an emerging technology that has
found impressive medical diagnostic applications. However, creating an optical imaging system
that uses visible and near-infrared (NIR) light is not straightforward due to photon absorption
and multi-scattering by tissues. The high distortion levels caused due to these effects make the
image reconstruction incredibly challenging. To overcome these challenges, various techniques
have been proposed in the past, with varying success. One of the most successful techniques is
the application of deep learning algorithms in diffuse optical tomography. This article discusses
the current state-of-the-art diffuse optical tomography systems and comprehensively reviews the
deep learning algorithms used in image reconstruction. This article attempts to provide researchers
with the necessary background and tools to implement deep learning methods to solve diffuse
optical tomography.

Keywords: diffuse optical tomography; inverse problems; deep learning

1. Introduction

Diffuse optical tomography (DOT) using near-infrared (NIR) light is rapidly emerging
as a viable way to image through mammalian tissues. Compared to other classical imaging
techniques like X-ray mammography [1] and ultrasound imaging, DOT is noninvasive,
has deep penetration, and causes no harm to the patients during screening. It is also
much cheaper compared to conventional techniques like magnetic resonance imaging
(MRI) imaging [2]. Due to these facts, DOT has found many applications in the biomedical
imaging field [3–7]. However, DOT using NIR light suffers from severe drawbacks. The
most important of them all is the complexity of the inverse-problems used to reconstruct
the tomographic image from the obtained data [6]. These drawbacks severely affect the
implementation of this technology in a large-scale medical environment. Recent studies
have suggested that data processing, image segmentation, and image reconstruction are
faster, more reliable, and more accurate when deep learning algorithms are used instead of
conventional inverse problems [6,8–14]. Research in this field is snowballing as developing
a robust, inexpensive, and noninvasive system is necessary for high-resolution imaging of
mammalian tissues to detect any abnormalities present in them [10,15–19].

In this article, we review the recent developments in diffuse optical tomography, and
we provide a tutorial on the use of deep learning algorithms in diffuse optical tomography.
The motivation for this article is that the traditional and available methods for the solution
of inverse problems in diffuse optical tomography are ill-posed and ill-conditioned, which
severely restricts the amount of information obtained from the sample. These methods also
suffer from minimal resolution and high noise. Therefore, there is a need for an alternate
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solution to provide a faster and more accurate diagnosis when diffuse optical tomography
is employed to image human breast tissue. Hence, we discuss and review the various deep
learning methods to solve inverse problems in diffuse optical tomography.

We first start with photon propagation in tissue in Section 2. Section 3 contains a brief
overview of the various diffuse optical tomography techniques. Section 4 deals with the
inverse problems used in tomographic image reconstruction. In Section 5, we introduce the
concept of deep learning. Sections 6 and 7 discuss deep learning diffuse optical tomography
and the various architectures used to achieve it. Sections 8 and 9 provide a brief tutorial
on the use of deep learning diffuse optical tomography and, we end with the conclusions
in Section 10.

2. Photon Propagation through Tissue

When light interacts with diffusive matter such as tissue, it is scattered and attenuated.
Propagation of the light through tissue is mainly determined by two parameters, an
absorption parameter µa and a scattering parameter µs. The absorption parameter describes
reduced photon survival rate through the medium and is defined as the probability of
absorption per unit length. Absorption events are random processes and are caused by
spontaneous quantum interactions between the biological molecules and the light photons.
On absorption of a photon, the electron in the absorbing molecule is elevated from the
ground state to an excited state, and after a characteristic time called the lifetime, the
electron returns to the ground state. While returning to the ground state, the electron can
produce heat or generate another photon in a randomized direction. This is referred to as
fluorescence, where the initial and final photons can have the same or different wavelengths.
The scattering parameter describes alteration of the photon paths in the medium and is
defined as the probability of photon scattering event per unit length. A scattering event is
an interaction between the photon and the surrounding molecules, resulting in a photon’s
direction change without an absorption-emission cycle. The scattering coefficient has a
characteristic value of about 10 cm−1, and it is considerably more significant than the
absorption coefficient for most biological tissues. Consequently, a photon experiences
many scattering events until it is absorbed. Since photons scatter in random directions, the
photon trajectory resembles a random walk, resulting in a diffusion-like behavior. This
behavior is illustrated in Figure 1.
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For biological tissues, the scattering of each photon is in the forward direction with
high probability, but a random direction is obtained due to the diversity of scattering
events. The effect of multiple scattering is expressed with the aid of an anisotropy fac-
tor g, which defines the degree of forward-scattering, and gives the reduced scattering
coefficient µs

′ = µs (1 − g). The anisotropy factor g is known for different types of tissues.
It varies from −1 to +1, where g = 1 corresponds to forward scattering, g = −1 corresponds
to backward, and g = 0 stands for isotropic scattering. Typical values of g for soft tissues lie
between 0.80 and 0.95 [4]. This anisotropy factor is the mean cosine of all scattering angles
and is defined as

g = 〈cos θ〉 =
∫ π

0
cos θp(θ)2π sin θdθ (1)

where p(θ) is the probability density function describing the anisotropy of the medium.
Biological tissues are complex since scattering is caused by a mixture of particles of

different sizes and characteristics. A valuable approximation for considering the anisotropy
in tissue is the Henyey–Greenstein phase function [20].

p(θ) =
1− g2

(1 + g2 − 2g cos θ)
3
2

(2)

Photons passing through tissue are classified into three types, as shown in Figure 2:
ballistic photons, whose original direction is unchanged; snake photons that are slightly
scattered from the propagation axis but maintain some coherence; and diffusive photons
where all coherence is lost. A medium of thickness L is considered highly diffusive when the
transport mean free path l = 1/µs

′ << L. For biological tissues, the mean free path is about
0.1 cm. Photon propagation through the tissue can be described either by analytical theory
or transport theory [21]. The analytical theory uses Maxwell’s equation and considers the
wave nature of light. The complexity of biological tissue makes it extremely difficult to
use Maxwell’s equation for computation. Therefore, transport theory is used to study the
propagation of photons in thick biological tissues. Transport theory is based on photon
particle flow within the medium and is governed by the radiative transport equation (RTE).
The RTE is derived using the conservation law for the light intensity or energy radiance,
defined as the energy flow at position r and time t per unit time per unit area through the
unit solid angle. The complete RTE is an accurate description of light propagation through
tissue but has an analytical solution only in a limited number of scenarios. Therefore, an
approximation is used, called the diffusion approximation, an expansion of the RTE in
first-order spherical harmonics. The assumption is that the reduced scattering coefficient is
much larger than the absorption coefficient. In this approximation, the radiance is expressed
as a weighted sum of the photon fluence rate, which is the integral of the radiance over the
entire solid angle, and the current density, defined as the net energy flow per unit area per
unit time. After several mathematical manipulations [22], the RTE can be simplified and
rewritten in the diffusion form:

∂φ(r, t)
c∂t

+ µaφ(r, t)−∇.[D∇φ(r, t)] = S(r, t) (3)

where D is the diffusion term defined as D = 1/3(µ′s + µa) and S(r, t) is the source term
assumed to be isotropic.

Another approach uses Monte-Carlo (MC) methods. Monte-Carlo methods, like most
other light transport methods, simulate the scattering and absorption of photons in any
given medium. At this moment, MC methods are the only type of algorithms for simulation
light propagation in tissues that are able to accommodate a wide range of light sources
and geometries. MC methods provide a virtual, near-realistic picture of real-world light
propagation processes [23]. The MC method for light propagation starts with a pencil
beam which is perpendicularly incident on a multi-layered medium. Since pencil beams
have infinitely small widths, the MC method calculates the medium’s impulse response or
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Green’s function. First, a photon packet with an assigned initial weight is launched into the
sample. Then, the current step size of the packet is calculated. If the photon packet is about
to hit a boundary, a fraction of the packet weight will be transmitted and reflected according
to Snell’s law and Fresnel’s equations [24]. Following this, the photon packet is moved,
absorbed, and scattered, propagating through the sample until it reaches either the upper
or lower boundary and its properties are registered. Once enough photon trajectories are
computed, the collective distribution of all photons will provide a reasonable estimate of the
proper solution to the transport equation, and many physical properties can be estimated.
The MC method has many improvements that incorporate other interaction types such as
fluorescence and Raman scattering [25], time and frequency-resolved setups, and extensions
to 3D samples [26–28]. More recently, MC methods have also found applications in the
food industry [29], deep learning [30], to study chemical processes [31], and mainly in
biomedicine. Many available Monte-Carlo-based tools are online [11,31,32], customized for
light propagation in biological tissues to help the biomedical community access efficient
and accurate modeling of light transport.

Figure 2. Photon propagation within the tissue.

The human body has four basic types of tissue: connective tissue, epithelial tissue
(skin, linings of various passages inside the body), muscle tissue, and nervous tissue,
with these containing subcategories, for example, skeletal muscle, smooth muscle, and
cardiac muscle. Their optical properties cannot be outlined here due to lack of space. For
a brief example, skin structures and the underlying tissue that absorb photons are called
chromophores [32–34]. Different chromophores have scattering and absorption coefficients
that are very much dependent on wavelength and thus affect attenuation. For example,
common skin chromophores include hemoglobin, melanin, water, and inhomogeneous
factors such as tattoos. This wavelength dependency is used to create light-based therapy
procedures, design optical devices, and analyze optical spectra and pictures for diagnostic
purposes [35,36].

3. Diffuse Optical Tomography (DOT)

Having seen the various optical properties of tissues and light-tissue interactions,
we now move on to the subject of imaging tissues using diffuse light. Diffuse optical
tomography (DOT) is an imaging technique that uses diffuse light to image soft tissues,
with applications ranging from the functional imaging of the brain [37–39], and breast
cancer research [40,41], to name a few. Due to the nature of light sources used and the type
of photons used for imaging, DOT is considered one of the best state-of-the-art technologies
for deep tissue imaging. This is due to the fact that DOT is able to break the conventional
barrier by imaging deep within the tissue (>10–15 mean free path lengths) [42]. In fact,
the first clinical trial using optical light was conducted in ACRIN 6691, where the diffuse
optical spectroscopic imaging (DOSI) was used to predict the clinical outcome in breast
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cancer patients undergoing neoadjuvant chemotherapy (NAC) [40]. As a multidisciplinary
technology, the imaging capabilities of DOT combined with signal processing and com-
puter vision allow us to obtain millimeter resolution and reasonably high penetration
depth [6,42,43]. However, the path taken by diffuse photons within a tissue is unknown,
and hence imaging with such diffuse photons requires inverse problems to be solved for
image reconstruction [44–48]. Based on these source types, DOT can be categorized as
time-domain (TD), frequency-domain (FD), or continuous wave (CW) systems. Another
classification is based on measurement geometry: parallel plate and circular arrangement.
Figure 3 shows the different types of diffuse optical tomography systems.

Figure 3. Types of diffuse optical tomography.

In the CW system, a laser of constant intensity or modulated at low frequency (a
few kHz) is used to sample the tissue. The attenuation of the signal propagating through
the tissue is measured to determine the tissue’s optical properties. It is relatively easy to
implement and faster, but a single measurement cannot differentiate the tissue absorption
and scattering coefficient [49–52]. A CW system gives the least information per source-
detector pair. Within the diffusion approximation, a tissue is described by space and
time-dependent absorption, scattering coefficient, and refraction index [22,53–55]. At least
three independent measurements are necessary in order to separate these properties at a
single wavelength measurement.

A simple simulation of imaging a compressed breast in a parallel plate geometry is
shown in Figure 4. In this simulation, a compressed breast is modeled as an oblate spheroid
with a polar radius of 20 mm and an equatorial radius of 22 mm. A small sphere with
a radius of 2 mm is placed in the center of the oblate spheroid and is given the optical
properties of oxy-hemoglobin. This serves as a test object. The homogeneous breast tissue
and the test object (oxy-hemoglobin sphere) are given optical properties according to
references [35,36]. The oblate spheroid is placed inside a glass box, and simulated output
data are taken from two parallel sides, as shown in Figure 4B. Two billion photons are used
in the Monte-Carlo simulations using the ValoMC toolkit [56]. The output light is then
normalized and adjusted according to the source term, and the resultant output is averaged
out for all the angles. Then, an inverse problem [56] is applied to obtain the general shape
and location of the inhomogeneity.
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Figure 4. (A) The compressed breast is enclosed in a glass cuboid. (B) The source−detector arrays
(scanning and detection points) in the parallel plate geometry (C) The reconstructed image.

FD systems employ an intensity-modulated laser source (a few MHz–1 GHz) to
irradiate the tissue and detect the amplitude and phase of diffusing waves [7,57–66]. FD
systems contain more information than CW systems [22,53,67]. The additional information
from the phase makes it possible to simultaneously determine the absorption and scattering
coefficient in a single measurement. The detection can be either homodyne or heterodyne.
FD systems are more complex than CW systems. A hybrid system employing both the CW
and FD systems has been designed for optical tomography that employs a limited number
of FD measurements and a larger CW measurement set [68].

In TD systems, an ultra-short laser pulse irradiates the tissue. The short laser pulse
passes through the tissue and spreads in time due to scattering, which deviates the photons’
path within the media. Photons take a much longer path causing a temporal shift and
broadening of pulse [69–73]. The detection electronics are based on photon counting at
a particular point of the sample with sensitivity at a single-photon level. This temporal
behavior of exiting photons is referred to as the temporal point spread function (TPSF). The
diffuse photons that travel more distance in the tissue arrive later and contain information
about the absorption coefficient. TD systems have the highest amount of data per source-
detector pair but are the most complex and costly.

The DOT system can be employed in two different geometries based on source-
detector position: reflectance and transmittance geometry [74–77]. In reflectance geometry,
the source and the detector are placed on the same side of the sample, while in transmittance
geometry, they are on the opposite side of the sample. The time-domain diffuse optical
tomography system has been developed by many academic groups [43,78–83].

4. Inverse Problems in DOT

As explained above, in DOT, the medium’s optical properties and the spatial distribu-
tion of the optical properties are reconstructed from the measured signals. The scarcity of
ballistic photons and the loss of imaging information from multiple scattering events result
in a non-linear ill-posed inverse problem [84], and appropriate solutions must be applied
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to solve this challenging task. DOT reconstruction problems are part of a broader class of
tasks called inverse problems [85] which has a general form written as follows:

Find x ∈ X f rom data y = A(x) + δ, y ∈ Y (4)

where X is the optical parameters space, Y is the measurements space, A is the propagation
model of photons convolved with the optical component response, and δ is the noise
mechanism in the system. The traditional technique to solve this problem uses an analytical
iterative-based algorithm [84]. This method consists of several steps: First, the time-resolved
signals are registered. Then, the forward problem is calculated using a forward model,
noise model, and guessed optical properties. The forward problem result is compared to
the measured signal, and iteratively the guess is modified to achieve perfect agreement
with the measured data. Furthermore, analytical reconstruction algorithms possess an
additional term other than the data-fit term, called the regularization term. Its goal is
penalizing “bad” non-physical solutions which cannot represent the proper solution we
search for in the optimization process.

Since most reconstruction algorithms are ill-posed in nature, the regularization terms
are crucial for attaining good results since they minimize the space of all possible solutions
into only a subset of physically accurate ones. Hence, analytical algorithms have two
separate mechanisms which encapsulate our understanding of the underlying physics
and the attributes of the solution space to help guide the optimization process in the right
direction. However, despite its many advantages, analytical methods suffer from very high
computational cost, and in the context of DOT, from an inability to achieve accurate results
for realistic 3D problems. Therefore, it has become customary to employ deep learning
tools to solve reconstruction problems [6,9,81,86,87]. In the case of diffusive imaging, this
refers to the mapping between the optical properties of the media to the measured time-
resolved signal registered by the detectors. Typically, forward mapping uses a relatively
simple model to make the reconstruction process computationally feasible. This leads in
many cases to an oversimplified model that cannot reproduce the realistic properties of the
physical process it aims to describe. This does not happen in the deep learning approach
since the learning part minimizes the error on training data pairs. The forward model does
not have to be understood, and the minimization process can indirectly learn the inverse
mapping. If the training process is done correctly and sufficient data are available, the
inverse mapping learned by the network can incorporate many of the complex processes
which analytical models tend to neglect.

Despite this, deep learning techniques suffer from several drawbacks as well. The need
for a large dataset when training a network and the relatively high effort linked to acquiring
real data leads in many cases to use simulated data for large portions of the training process.
Since the simulated data do not perfectly emulate realistic conditions, this can lead to a big
performance gap when transitioning to real data training and testing. Additionally, deep
learning methods use the data and the data alone to formulate their solution, and this is
its best and worst attribute. This is beneficial since it is applicable for almost any task for
which enough training data are available. However, since the deep learning network acts
as a black box, it has no prior knowledge of the physical process it tries to solve. Therefore,
deep learning methods need to understand the space of correct solutions and understand
the underlying physics of the problem. This is a highly demanding task, and when an
insufficient amount of data are available, it can be almost impossible to solve. The scarcity
of data in biomedical applications leads directly to this problem. Thus, increased effort is
made towards incorporating methodologies and prior knowledge from analytical methods
into the deep learning schemes to help reduce the complexity and computational burden of
the problem. Deep learning offers a powerful and versatile toolkit that can be utilized for
many problems and in numerous constellations. In the next sections, the concept of deep
learning will be introduced, and a detailed review of the applications of deep learning for
solving DOT inverse problems is conducted.
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5. Deep Learning

In recent years, the subject of machine learning (ML), with an emphasis on deep
learning (DL), has given rise to the most widely used algorithms in artificial intelligence.
DL is a form of a model with multiple learning layers [88,89]. These models are called
artificial neural networks (ANNs). The idea for these models is influenced by information
analysis in many living beings, based on the communication between brain cells [89,90].
Each layer of an ANN contains units called artificial neurons. Each neuron has a real
number that describes the neuron’s state. The neuron can transmit a signal through
connections called edges to neurons in the next layer.

The signals coming out of the neurons are also real numbers. Each neuron’s state is
determined by the output of a non-linear function (activation function) on the sum of the
incoming signals. Usually, each edge contains a weight that determines the strength of the
connection between the two neurons. These weights are defined as a learning parameter
because the weight values are updated during the training process. Another learning
parameter is bias. Each neuron contains a bias whose function is to balance the incoming
signals. As noted above, the neuron’s state is determined by the activation function’s result
on the weighted signals’ sum. Usually, the bias is added to each amount to balance the
amount of the weighted signals. Like the weights, the bias is updated during the learning
process. The network layers are divided into input, output, and intermediate (hidden)
layers [88–90]. The input layer contains the information that the network needs to analyze.
In the output layer, the result of the calculation of the network is obtained. The hidden
layers connect the input layer to the output layer and are intended to extract features
from the incoming information. DL refers to ANN networks having several hidden layers,
where there are different architectures for these networks such as deep neural network
(DNN), convolutional neural network (CNN), deep belief network (DBN), and recurrent
neural network (RNN) [88–92]. The networks can also be classified based on the learning
processes such as supervised, unsupervised, and semi-supervised [88–90,93].

Although heavily used in recent years, the idea of ANN is not new and was first
proposed in 1943 by Warren McCulloch and Walter Pitts [94]. In 1958 Frank Rosenblatt
developed and introduced a basic neural network method called the Perceptron algorithms
with an input and output layer (also called single-layer Perceptron), which had many
similarities to the proposal by McCulloch and Pitts [94,95]. At first, this method seemed
to show promise; however, in 1969, Marvin Minsky and Seymour Papert showed that
this method is limited and showed that perceptron could not learn XOR operation [96].
They argued that the Perceptron model needs more learning layers to learn more complex
problems, which is not possible in the algorithm’s learning process, which led to the
freezing of the domain of the ANNs until the mid-1980s [97]. Instead, the backpropagation
process solved the solution, an algorithm with ancestors as early as the 1960s. Only in
1986 did researchers first introduce the use of this algorithm for the learning process of
ANNs, which forms the basis of today’s ANN networks [98]. From there, the field of ANNs
evolved, and networks began to solve complex problems like the identification of shapes
and letters [99,100].

The learning process of ANNs requires memory and processing power, and the more
complex the network, the greater the need for these resources. Besides, more extensive
data were needed for the learning process. That is why the field leaped forward in the last
decade [89,91]. The availability of graphics processing units (GPUs) at a cheaper cost and
the advantages of GPU over CPU has resulted in the neural networks becoming deeper
and more powerful. Researchers have discovered new activation functions that are more
effective, and regularization techniques that streamline training have been developed
during this time. All of these have made the field of DL state-of-the-art machine learning
techniques [101].

Today, DL algorithms are applied in various fields such as computer vision, voice, lan-
guage analysis, signal processing, bioinformatics, drug design, and more [88,89,91,101–103].
In recent years, researchers working in medical image analysis investigated the use of DL
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algorithms differently. Many studies have been written on computer vision architectures to
analyze information from medical examinations such as blood tests, X-rays, ultrasound,
and magnetic resonance imaging (MRI) [103,104]. The networks learn to perform different
tasks: detecting tumors, classifying cells, and detecting various diseases. Today, these
networks’ accuracy is extremely high, and their ability to analyze is swift and surpasses
human ability. Another example is the use of networks to recover information coming from
imaging systems to obtain medical information. The use of networks has given rise to new
imaging methods and streamlining of existing imaging methods [105–108].

6. Deep Learning Diffuse Optical Tomography

Recently deep learning algorithms have been increasingly used to solve diffuse op-
tical tomography problems for biomedical imaging. In recent works [10,43], it has been
shown that using convoluted neural networks to estimate bulk optical properties and
imaging is more accurate and faster compared to other existing methods, thus show-
ing us a way forward to use convolution neural networks (CNN) along with optical
tomography techniques.

One of the preliminary works in this field was submitted to the European Conference
on Biomedical Optics conference to be held in June 2021 [109], titled “Anomaly Detection
Inside Diffuse Media using Deep Learning Algorithm”. In this paper, a simple, densely
connected neural network with only one hidden layer was used to reconstruct 2D spherical
objects with embedded spherical occlusions. A total of 16 sources and 16 detectors were
uniformly arranged along the circumference of the phantom.

Therefore, the input to the network was the time-integrated flux of each detector from
each source totaling 240 (16 × 15) values. The network output is trained to regress to the
absorption coefficients of each location in the phantom. A significant improvement of up
to 77% compared to the Tikhonov regularization method was registered, thus, showing
the utility of this approach. Another interesting paper [9] used simulation data generated
using the Toast++ toolbox [11] of 2D breast-shaped objects with asymmetrical embedded
anomalies. Two sources and 128 detectors were placed to detect backscattered light from
the sample, and the network was trained to reconstruct the spatial distribution of the
sample’s optical properties. The network comprises an initial dense layer (generalize the
filtered-back-projection operator) followed by multiple convolution layers with various
channel numbers and kernel sizes. A comparison to an analytical approach was made,
and higher accuracy with considerably lower inference time was attained. Moreover,
a follow-up paper [82] applied an additional loss and transfer learning procedure, and
an additional improvement was registered. The entrance of time-resolved DOT was
introduced in [9], where a time-resolved RTE-based solver was used to simulate the data.
The time-resolved data registered in different detectors were used to detect cancerous cells.
This was effective even though the detection was accomplished by classifying predefined
locations as containing tumors instead of regressing to their continuous location. High
accuracy was achieved for time-resolved data even when noise sources were introduced. In
another paper yet to be published, time-resolved measurements were used to reconstruct
anomalies embedded inside 3D scattering media. The objects were spherical anomalies
with various sizes and locations embedded inside a 5 cm diameter sphere. To emulate
realistic conditions, the optical properties of the anomaly and surrounding tissues were
taken from available breast tissue experimental data. The network was trained using
a large, simulated dataset of time-resolved measurements generated using the Toast++
toolbox [110]. Figure 5 presents an example of the objects and the optical devices. Two
sources and three detectors were used. The time-resolved measurements registered in each
detector are also shown.



Electronics 2022, 11, 305 10 of 25

Figure 5. (a) Spherical tumor embedded inside the sphere along with two sources and de-
tectors, (b) Time-resolved measurements of each detector (Src and Det refer to sources and
detectors, respectively).

2D convolution layers followed by three fully connected layers were used to regress to
the Cartesian coordinates and size of the embedded anomaly. The best-performing model
detected the anomalies with high accuracy and proved that good results could be attained
using a small set of optical measurements. In another article [17], the propagation of angled
light sources in compressed breast tissues with sub-surface inhomogeneities and the use
of novel inverse problems in combination with deep learning methods were studied. The
U-Net deep learning algorithm was constructed to detect and reconstruct test objects with
a radius of 1 mm with high resolution at a penetration depth of up to 4 cm with a minimal
error of 0.0334 mm in terms of mean squared error (MSE). Despite their relative success, the
presented algorithm still fails to implement our physical knowledge of the problem. This
tremendously enhances the complexity of the task since the network is treated as a black box,
and it has no prior knowledge of the problem. In an interesting article [111], a new approach
that exploits prior information was introduced. By performing a perturbative analysis of
the forward mapping between the scattering field and the boundary measurements, they
proved it can be reduced to a family of 1D convolutions in polar coordinates. Motivated
by this understanding and using the filtered-back-projection method [112], the inverse
mapping can also be represented by the convolutions layer with a specific structure. The use
of physical knowledge guided the architecture design, and they showed that by using their
method, both the forward and inverse mapping could be accurately represented by neural
networks. Deep learning and DOT are still in their juvenile form. Most implementation of
this combination was performed using basic tools and in simplified cases. The next step will
be utilizing the knowledge acquired in other fields focusing on inverse problem-solving.
The following section will be dedicated to reviewing the recent trends of this approach to
inspire further advances in deep learning-based diffuse imaging.

7. Deep Learning as a Tool to Solve Inverse Problems

Having looked at the basics of deep learning, we will now review the recent trends
and tools used by the inverse problem community and explore the relevant mechanisms
which are used to achieve enhanced performance for those tasks. Deep learning techniques
used for inverse problem solving can be broadly classified into two distinct types. The first
type is feed-forward networks, in which the network is employed in a traditional direct
manner with training pairs used to optimize the network parameters. The second type is
regularization networks, inspired by the regularization terms, more commonly found in
analytical methods. In the following section, we will present these two distinct methods
and describe how they are implemented.
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7.1. Feed-Forward Networks

Feed-forward networks are the archetypal models used in deep learning. These
networks have a simple form where input data are fed to the network and output data
are generated. However, despite its relatively simple architecture, it has led to numerous
successes [113] for prediction models with big data and improvements in various fields
including one of its variants, the CNN, which is considered the leading technique used in
computer vision and in many other fields [114].

Although feed-forward networks are based only on training pairs, numerous strate-
gies are employed to help exploit the network abilities and enhance the reconstruction
performance. One popular approach is using the network in a two-phase manner. The
first phase uses some form of initial mapping to help reduce the complexity of the network
task, and the second phase consists of training the network by minimizing an error term
and optimizing the network parameters. As explained above, reconstruction problems are
typically ill-posed. Therefore, one way to meaningfully map the input is using the training
data to establish a low-dimensional representation of the measurement space and transform
the problem to be well-posed. It is customary in computerized image reconstruction tasks
to discretize both the parameters and measurements into finite elements. Consequently,
both can be identified using a column vector:

x = (x1, . . . , xn)
T ∈ Rn, y = (y1, . . . , ym)

T ∈ Rm (5)

where n is commonly much more significant than m, as in most DOT setups. Hence, to
transform the problem to be well-posed, a k dimensional latent space representation of the
parameter space is needed, where k ≤ m. This can be made using an autoencoder [115,116]
or its successor, the variational-autoencoder [117–119]. After the representation is found,
the task can be reformulated by reconstructing only the latent representation x̃ from y,
then, using the decoder part, the original x is generated, this is shown in Figure 6. In [120],
this scheme was implemented for lung electrical impedance tomography, and a significant
improvement over previous methods was registered.

Figure 6. Low dimensional representation leaning for ill to well-posed transformation. First, the
latent vector is learned. Next, a well-posed problem is solved using a neural network. Finally, the
original image is reconstructed using the pre-trained decoder part from phase 1.

Another type of strategy which uses two-step reconstruction is possible. This method
incorporates prior physical knowledge by first using an inversion of a simplified propaga-
tion model (pseudo-inverse) Ã−1 to map from the measurement space to the parameter
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space. Then, a network is trained to reconstruct the actual parameters from the simple initial
guess generated in the first step. The two steps reconstruction can be written as follows:

x = Ψinverse(y), Ψinverse = ΦNN
◦ Ã−1,

Ã−1 :Y → X, ΦNN : X → X
(6)

These algorithms rely on the fact that by mapping the input to a physically possible
solution and the same space as the desired solution, the computational burden is reduced.
Furthermore, instead of directly reconstructing based on the estimated inverse, the network
output can be residually connected to the estimate. Hence, the network goal will be to
refine the initial guess. This method was used in many biomedical imaging fields, such as
computed tomography [121,122], compressive sensing [123–125] and MR imaging [126],
and is represented in Figure 7.

Figure 7. An approximate inverse is attained using Ã−1. Then, it is residually connected to the
network, which refines it to achieve an improved reconstruction.

So far, our physical understanding of the problem was only implemented indirectly.
The knowledge of the forward model A or its approximate can be utilized along with
a neural network in a self-consistent manner. In [127], a self-consistent network was
implemented for geo-steering inversion. The architecture is as follows. First, the observed
measurements y are passed through a neural network to generate the predicted parameters
x̂. Next, the network output is compared to the ground truth parameters and passed into a
forward model A to generate synthetic measurements ŷ. The synthetic measurements are
compared to the real measurements and a combined loss of both comparisons is calculated;
the network is trained to minimize both losses. The addition of the synthetic simulation
part can be seen as a form of regularization, similar to the self-consistent loss found in Cycle-
GAN [128]. The network is constrained to output realistic solutions since they are used
to regenerate the original input of the network using realistic physical models. Figure 8
presents this method.

Figure 8. Self-consistent architecture. The measurements are passed through a neural network. The
output is used both to measure the data-fit loss and to generate new synthetic measurements. The
true and synthetic measurements are used to calculate another data-fit loss. Both losses are weighted
into a single loss which the network is trained to minimize.

7.2. Regularization Networks

The second class of algorithms focuses on implementing the regularization terms
that are crucial to the success of analytical methods. Moreover, regularization networks
can typically be implemented as part of an iterative-based optimization scheme. There-
fore, both aspects making the analytical approach successful can be utilized using this
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approach. Up to now, the regularization terms used by analytical methods were based on
general attributes of the data like smoothness or sparsity. The idea behind regularization
networks is to generate a custom data-specific regularizer based on the available training
data. Several common approaches are used in the modern literature. The first approach
uses perturbations of the training data in order to train a projector/denoiser that can be
implemented later into an analytical algorithm. Suppose that the true solutions x lie on a
set S ⊂ RN , therefore, PS is a good projector if it satisfies the following:

PS (x̃) = x (7)

where x̃ is any perturbed version of x including x itself. Hence, by training the network
on a sufficiently diverse and meaningful set of perturbed solutions, the ill-posedness of
the problem can be bypassed. After the projector is trained, it can be implemented into
a proximal gradient descent algorithm where the trained network replaces the projector.
The proposed scheme is illustrated in Figure 9. In [121], this scheme was implemented for
sparse-view CT reconstruction. The network was trained using three types of perturbations
(identity, linear and non-linear) of the data, and detailed convergence analysis of the
algorithm was made.

Figure 9. Visualization of the proximal gradient descent scheme. This method consists of three steps:
(1) The current guess and the forward model are used for the forward calculation (shown in red).
(2) The difference between the true and calculated measurements are used to calculate an updated
intermediate guess (shown in green). (3) The intermediate guess is projected onto the true solution
set S to acquire the next guess xm+1 using the trained projector PS . This process is repeated until
sufficiently low error is achieved.

A different algorithm suggested in [129] used both measurements y and parameters x
from the training dataset to train an adversarial regularizer Ψθ, the regularizer was later
implemented into an optimization algorithm to solve the following problem:

argminx‖Ax− y‖2
2 + λ1Ψθ(x) (8)

The adversarial regularizer Ψθ was constructed as follows. Suppose that the param-
eters x ∈ X are drawn from the distribution Px and the measurements y ∈ Y are drawn
from the distribution Py. We define Px̃ as the distribution obtained by mapping Py using a

pseudo-inverse operator Ã−1
δ that incorporates both the contributions of the forward model

A and the noise model δ. The adversarial regularizer Ψθ will be trained to discriminate
between the two distributions Px and Px̃. Moreover, we would like the output of the
network to be small for x ∼ Px and large for x̃ ∼ Px̃. This goal can be achieved by training
the network to minimize the following loss:

EX∼Px [Ψθ(X)]− EX̃∼Px̃
[Ψθ(X)] (9)
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Consequently, as proved in the paper, starting from a noisy parameter x̃ ∼ Px̃ and
taking a gradient step with size η over the regularization network where,

gη(x̃) = x̃− η · ∇x̃Ψθ(x̃) (10)

results in a distribution Pη =
(

gη

)
#Px̃ closer to the true parameter distribution Px in

Wasserstein distance [130]. Hence, the regularizer helps in directing our optimization
scheme towards reasonable solutions. The available parameters dataset can also be utilized
in a different setup to learn a generative prior of the data. To understand this method, let us
suppose that the true solutions x lie on a set as was assumed before. A perfect regularizer
r(x̂) would satisfiy the following:

r(x) =
{

0 , x ∈ S
∞, otherwise

(11)

The optimization problem can be solved by finding a solution for the following task:

x̂ = argminx‖y− Ax‖2
2 + r(x) (12)

This method substitutes the perfect regularizer with a generator G that was trained
to capture the true distribution Px by learning to generate a solution that lies on the
manifold S given a noisy input z ∈ RK, (K < N). The subject of learning generative
models and approximating high dimensional distributions has been well developed and
can be achieved either by using adversarial training for generative adversarial networks
(GANs) [131] or with variational-autoencoders [117]. After the generator is trained, the
following alternative optimization process is employed to exploit the understanding of the
solution space summarized in G:

x̂ = G(ẑ) , ẑ = argminz‖y− AG(z)‖2
2 (13)

Therefore, we search in lower-dimensional space RK for optimal solutions. Since the
generator G is differentiable, the optimization formulated in Equation (10) can be solved
using regular gradient-based algorithms. This scheme was developed in compressive
sensing [132], and a noticeable improvement over traditional analytical algorithms was
registered. However, to the attempt to learn prior information about the solution space also
has its weaknesses. The task of learning the full distribution Px based on the data requires
tremendous amount of training samples, and with the low amount of available data, this
approach fails to achieve satisfactory results [133]. Consequently, the research community
has aimed to develop a method that can combine the strength of the regularization network
with the iterative nature and knowledge of the forward operator analytical methods. This
process led to the development of unrolled methods. Unrolled optimization schemes are
very similar to the projector/denoiser approach suggested above, and the network still
plays the role of projecting the temporary solution to the desired solution space S . The main
difference is that instead of training the regularization network before the optimization,
unrolled methods incorporate the neural network into the optimizer architecture, and the
network is trained during the search for the solution.

To understand this method, let us try to solve the same task as formulated by
Equation (9) where r(x) is the perfect regularizer introduced above. The optimization
task can be solved using the following update rule for the estimate x̂:

x̂(k+1) = x̂(k) + ηAT
(

y− Ax̂(k)
)
+ η∇r

(
x̂(k)

)
(14)

Since we do not know what the perfect regularizer is, its derivatives are also unknown
to us. Therefore, the idea in unrolled optimization is substituting the ∇r term with a
neural network, which during the optimization will be trained to direct the search towards
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better solutions. The scheme can easily be presented using block diagrams (Figure 10).
This representation shows its recurrent nature and guides us to use recurrent network
architectures to implement if efficiently.

Figure 10. Architecture of unrolled networks. x̂(n) is passed through a constant operator and
through the network. The output from both along with the transformed measurement are summed
to acquire x̂(n+1).

Unrolled optimization schemes were implemented for various tasks, such as com-
pressive sensing [134] and MR-imaging [126]. For most tasks, these schemes tend to
perform better, especially where the size of the dataset is limited. Moreover, this approach
was also extended to other optimization algorithms such as ADMM [135], half-quadratic
splitting [136] etc. Despite its comparably good performance for various tasks, unrolling
methods suffer from a similar gradients problem as a regular recurrent network. Their
structure makes it challenging to train the first layers/iterations since their output needs
to be passed through several operations to make an effect. Inspired by their structure, a
new method called the Neumann network was suggested [133]. This method estimates the
solution to Equation (9) using a Neumann series approximation. Suppose that we know
the perfect regularizer r(x) and it is differentiable, hence, the least squares solution can be
written as:

x̂ = argminx‖y− Ax‖2
2 + r(x) = (AT A +∇r)

−1
ATy (15)

The inverse operator from Equation (12) can be approximated using the Neumann
series expansion [137]. By truncating the series to only K + 1 terms, Equation (12) can be
written in the following form:

x̂ ≈
K

∑
k=0

(
1− ηAT A− η∇r

)k
ηATy (16)

Like the unrolled method, the gradient operator and the step size can be replaced by a
trainable operator and optimized using the training data. This representation can also be
presented using a block diagram. This is shown in Figure 11.

Figure 11. Neumann network architecture. The measurement is linearly mapped to get the first
estimate x0. Inspired by the Neumann series expansion, the reconstruction is achieved by successive
transformations through a constant operator and through the network. Meanwhile, the intermediate
results are summed in a residual manner to get desired output x̂. In contrast to the unrolled method,
the residual connections minimize the difficulties associated with training of the first layers/iterations.

In the figure, each block represents another term from the expansion series, it is crucial
to notice that the Neumann expansion is only justifiable from a linear operator. However,
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as shown in the paper, using this approximation is valid for certain assumptions on the
distribution and about the operator ∇r. A Neumann network was applied for numerous
applications in [133], including compressed sensing, super-resolution, inpainting, etc. For
most tasks, it outperformed other competing methods, including unrolled optimization
and various other regularizer networks.

The following section describes how to generate breast imaging using standard tools
in the field and then all the steps required to reconstruct the image using a deep learning
algorithm with actual examples.

8. Tutorial on the Use of Deep Learning for Diffuse Optical Tomography

The previous sections have shown the considerable amount of study conducted in
this particular area of research. As can be seen, in order to create a prototype medical
system, it is critical to analyze the impact of boundaries and source-detector configurations
on breast image reconstruction and classification. These models are mostly evaluated
through computer simulations to avoid the costly and wasteful fabrication of clinical
prototype systems that might possess intrinsic engineering problems [138]. However, for
clinical applications, testing the application and validating it in clinical trials is very critical.
Sections 3 and 6 discuss many imaging geometries and source-detector configurations that
exist for imaging tissues. Moreover, many software and algorithms are available to simulate
these conditions. The state-of-the-art algorithms include NIRFAST [5], toast++ [110], and
ValoMC [56], to name a few. In this particular section, the tutorial is demonstrated using
the ValoMC software. For the sake of simplicity and better understanding, a CW system is
employed in a parallel plate geometry, and the image reconstruction is demonstrated using
a simple U-Net architecture [139]. The details about the optical properties of the tissue,
parallel plates, source-detector locations, and the inverse problem are shown in Figure 4 in
Section 3. The results are shown using a single 2-D plane. The schematic process for any
deep-learning tomography modality is shown in Figure 12.

Figure 12. General schematic for deep-learning diffuse optical tomography.

The operation for deep-learning diffuse optical tomography is as follows:

(1) Optical property estimation and mesh creation:

To create an accurate tomographic reconstruction, the optical properties of the breast
should be known. Typically, in experiments, this is estimated using spectroscopic meth-
ods [4,35,36]. However, in simulations, the optical property distributions of the anomalies
and the breast tissues are known beforehand. Therefore, the geometry shown in Figure 4 is
created using the optical properties in references [138,140].
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(2) Forward process and data creation:

The light propagation in tissue from the source locations is simulated using a Monte-
Carlo algorithm [5,56,110,141,142]. The Monte-Carlo algorithm propagates light through
the tissues using the given source and detector locations and collects the output light at
the detector.

(3) Solving the inverse problem and designing the network architecture:

In this step, the data are simulated for different sizes of the anomalies and at different
locations, and the simulated output signals are then used to feed the inverse problem
to solve DOT. The neural network or deep-learning approach used to solve the inverse
problem is highly dependent on the type of datasets used. The various deep learning
algorithms and their applications in diffuse optical tomography are already discussed
in Section 6.

In the next section, an example which implements all the steps described in this section
is shown.

9. Deep-Learning Diffuse Optical Tomography Using Digital Phantoms: An Example

(1) Optical property estimation and mesh creation: Creating the digital breast phantom

The ValoMC program is employed to simulate the geometry and create the mesh. The
created mesh and the source-detector locations are shown in Figure 4. Table 1 describes the
functions that describe the optical properties of the mesh and how to impart and fix the
source-detector locations.

Table 1. Functions to impart optical properties to the medium and fix the source-detector locations.

S. No. Function Use Value

1 vmcmedium.absorption_coefficient
Function used to impart
absorption coefficient to
the medium.

µa(glass box) = 0 mm−1

µa(compressed breast) = 0.1 mm−1

µa(anomaly) = 0.398 mm−1

2 vmcmedium.scattering_coefficient
Function used to impart
scattering coefficient to
the medium.

µs(glass box) = 0 mm−1

µs(compressed breast) = 1.25 mm−1

µs(anomaly) = 1 mm−1

3 vmcmedium.refravtive_index
Function used to impart
refractive index to
the medium.

N (glass box) = 1.013
n (compressed breast) = 1.37
n (anomaly) = 1.4

4 vmcmedium.scattering_anisotropy
Function used to impart
scattering anisotropy
to the medium.

G (glass box) = 1
g (compressed breast) = 0.9
g (anomaly) = 0.85

5 vmcboundary.lightsource
Define the type of light source
and the location of the
light source.

Light source and detector locations are
set according to Figure 4.

6 vmcboundary.exterior_refractive_index Define the refractive index of
the external medium.

Exterior refractive index is set at 1.5 to
create a mismatch between the glass box
and surrounding environment.

(2) Forward process: Propagation of light through the digital phantom:

As stated above, the ValoMC software is used for this simulation. In this particular
study, the anomaly is created as an oxy-hemoglobin sphere of radius 1 mm, and it is placed
at 2000 random locations within the compressed breast, thereby creating a dataset of breast
images. The forward process is initiated using the function:

solution = ValoMC(vmcmesh, vmcmedium, vmcboundary).

The various parameters that can be calculated using the forward process are shown in
Table 2. The results of the simulation are shown in Figure 13.
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Table 2. Parameter estimation using the ValoMC software.

S. No. Function Use

1 Solution.element_fluence Function that outputs the fluence at
each element.

2 Solution.boundary_fluence Function that outputs the excitance at
each boundary element.

Figure 13. (A) Compressed breast 2D slices containing anomalies that are used as the ground
truth. (B) Reconstructed compressed breast. The width and depth of the tissue are 3 cm and
4 cm, respectively.

(3) The neural network architecture used for image reconstruction:

This example uses a convolutional neural network (CNN) architecture for image
reconstruction [17]. The U-Net network learns from the dataset to detect anomalies in
breast tissues produced with the ValoMC program. The network diagram of the neural
network architecture is shown in Figure 14.

Figure 14. Network architecture for image reconstruction.

The CNN design is built on the U-Net architecture’s encoder-decoder concept. First,
the images an input layer consisting of 3 × 3 kernels to create an initial feature map. The
image is then convoluted and passes through a down sample layer (max-pooling 2 × 2).
This process repeats itself four times in the encoder. Following this process, the feature
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maps enter a batch normalization and ReLU activation layer. After which, they pass
through a dropout layer (25% dropout). This feature map then enters an up-convolution
layer (transpose convolution 2 × 2). The up-convolution process repeats itself four more
times in the decoder to obtain the network output. Skip connections are made with the
feature maps obtained at the end of the corresponding stage in the encoder with the feature
maps obtained after the up-sample layer to retain the information. The algorithm employs
the MSE loss function and runs for 40 epochs. The algorithm learns from the training
set, which contains 90% of all the simulated data acquired. With each passing epoch, the
algorithm learns more from the data generated. The algorithm is tested with ten percent of
the data.

After solving the inverse problem and pre-processing the data, we find that the location
of the reconstructed object is fairly accurate. However, it should be considered that the MSE
is calculated to by using the intensity of each pixel in the image. Due to background noise
and apparent mismatches at the boundary, the MSE of the inverse problem is very low. The
difference in contrast between the ground truth and the reconstructed image should also
be noticed, where even though the location is reasonably accurate, the optical property
reconstruction is not.

On the other hand, such problems do not persist in the deep learning method. The
U-Net algorithm can reconstruct the data as close to the ground truth as possible, both in
terms of the location and the intensity.

The architecture results are shown below in Figure 15 and compared to the re-
sults of the analytical solution. The mean squared error (MSE) loss function is used
to check for the performance of the deep learning algorithm, and an excellent result of
MSE = 0.0294 ± 0.0012 mm is achieved. The reconstructed images using this method are
more explicit and attain a Dice similarity coefficient [143] of 97.98% compared to 48.65%
when an analytical solution is used.

Figure 15. Results of the deep learning architecture compared to the image reconstruction done by
an analytical method.
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10. Conclusions

Diffuse optical tomography is an excellent tool to image irregularities in bulk tissues
and investigate changes in the body [4,55,144,145]. It is one of the safest and noninvasive
methods available in medical diagnostic imaging [22,53,146]. The different types of geome-
tries used and the source type employed have their advantages and disadvantages. The
iterative inverse problems are also cumbersome, time-consuming, and computationally
inefficient [6,87,107,120]. Therefore, while employing these methods, one must be accurate
and precise to obtain correct diagnostic results. This article reviews different diffuse optical
tomography methods and the inverse problems used to solve them. A comprehensive
study of deep learning algorithms and their application in solving inverse problems in DOT
is also conducted. The literature review shows that deep learning algorithms could prove to
be an extremely viable alternative to the ill-posed and computationally inefficient iterative
problems [9,86,87]. This is because of the increased efficiency, greater accuracy, and high
computational speed of solving inverse problems. The ability of deep learning algorithms
to reconstruct images in a noisy environment, work with different types of datasets, their
robustness, and the speed of computing makes it an attractive solution to solve inverse
problems. However, certain limitations and issues persist in deep learning DOT. Apart from
being highly dependent on the dataset and network parameters, the main issue in such
research is that it is difficult to train a deep learning network using real-time experimental
data because it is near-impossible to collect such a large set of experimental data. Therefore,
most deep learning algorithms to solve DOT are trained using simulated datasets, leading
to trade-offs in precision and accuracy during real experiments. However, as shown in
Section 7.1, Section 7.2, Section 8, and Section 9, end-to-end deep learning algorithms can be
applied to solve inverse problems in DOT, and novel imaging techniques and deep learning
algorithms can be developed to bring this optical imaging modality closer to real-time
experimental procedures. With suitable datasets, accurate data acquisition, optimal loss
functions, and the latest architectures, deep learning algorithms, along with advances in
diffuse optical imaging systems, could have tremendous applications in the biomedical
diagnostic field [10,86,89].

Author Contributions: All authors contributed to the review equally. R.K., J.K. and G.M.B. con-
tributed to Sections 1 and 2. G.M.B. contributed to Section 3. B.W. and G.M.B. contributed to Section 4.
N.B. contributed to Section 5. B.W. contributed to Sections 6 and 7. G.M.B., N.B. and B.W. contributed
to Sections 8 and 9. S.A. and G.M.B. contributed to Section 10, designed the manuscript, and reviewed
the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: The cancer scan project received funding from the European Union’s Horizon 2020 research
and innovation program (Future and Emerging Technologies) under Grant Agreement No. 828978
from Ben Gurion University of the Negev and the Ministry of Science Jabotinsky Fellowship.

Conflicts of Interest: The authors declare no competing interests.

References
1. Drukteinis, J.S.; Mooney, B.P.; Flowers, C.I.; Gatenby, R.A. Beyond mammography: New frontiers in breast cancer screening. Am.

J. Med. 2013, 126, 472–479. [CrossRef] [PubMed]
2. Taroni, P. Diffuse optical imaging and spectroscopy of the breast: A brief outline of history and perspectives. Photochem. Photobiol.

Sci. 2012, 11, 241–250. [CrossRef] [PubMed]
3. Santarelli, M.F.; Giovannetti, G.; Hartwig, V.; Celi, S.; Positano, V.; Landini, L. The core of medical imaging: State of the art and

perspectives on the detectors. Electronics 2021, 10, 1642. [CrossRef]
4. Tuchin, V.V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 3rd ed.; SPIE: Bellingham, WA, USA, 2015;

ISBN 9781628415179.
5. Dehghani, H.; Eames, M.E.; Yalavarthy, P.K.; Davis, S.C.; Srinivasan, S.; Carpenter, C.M.; Pogue, B.W.; Paulsen, K.D. Near infrared

optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction. Commun. Numer. Methods Eng.
2009, 25, 711–732. [CrossRef]

6. Yoo, J.; Sabir, S.; Heo, D.; Kim, K.H.; Wahab, A.; Choi, Y.; Lee, S.I.; Chae, E.Y.; Kim, H.H.; Bae, Y.M.; et al. Deep Learning Diffuse
Optical Tomography. IEEE Trans. Med. Imaging 2020, 39, 877–887. [CrossRef] [PubMed]

http://doi.org/10.1016/j.amjmed.2012.11.025
http://www.ncbi.nlm.nih.gov/pubmed/23561631
http://doi.org/10.1039/C1PP05230F
http://www.ncbi.nlm.nih.gov/pubmed/22094324
http://doi.org/10.3390/electronics10141642
http://doi.org/10.1002/cnm.1162
http://doi.org/10.1109/TMI.2019.2936522
http://www.ncbi.nlm.nih.gov/pubmed/31442973


Electronics 2022, 11, 305 21 of 25

7. Ban, H.Y.; Schweiger, M.; Kavuri, V.C.; Cochran, J.M.; Xie, L.; Busch, D.R.; Katrašnik, J.; Pathak, S.; Chung, S.H.; Lee, K.; et al.
Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission
geometry. Med. Phys. 2016, 43, 4383–4395. [CrossRef]

8. Survarachakan, S.; Pelanis, E.; Khan, Z.A.; Kumar, R.P.; Edwin, B.; Lindseth, F. Effects of enhancement on deep learning based
hepatic vessel segmentation. Electronics 2021, 10, 1165. [CrossRef]

9. Ben Yedder, H.; BenTaieb, A.; Shokoufi, M.; Zahiremami, A.; Golnaraghi, F.; Hamarneh, G. Deep learning based image
reconstruction for diffuse optical tomography. Proceedings of Internal workshop on Machine Learning for Medical Image
Reconstruction Conference, Granada, Spain, 16 September 2018; Volume 11074, pp. 112–119.

10. Applegate, M.B.; Istfan, R.E.; Spink, S.; Tank, A.; Roblyer, D. Recent advances in high speed diffuse optical imaging in biomedicine.
APL Photonics 2020, 5. [CrossRef]

11. Fang, X.; Gao, C.; Li, Y.; Li, T. Solving heterogenous region for diffuse optical tomography with a convolutional forward
calculation model and the inverse neural network. In Advanced Optical Imaging Technologies III; International Society for Optics
and Photonics: Bellingham, WA, USA, 2020; p. 18.

12. Kabe, G.K.; Song, Y.; Liu, Z. Optimization of firenet for liver lesion classification. Electronics 2020, 9, 1237. [CrossRef]
13. Chen, Z.; Ma, G.; Jiang, Y.; Wang, B.; Soleimani, M. Application of Deep Neural Network to the Reconstruction of Two-Phase

Material Imaging by Capacitively Coupled Electrical Resistance Tomography. Electronics 2021, 10, 1058. [CrossRef]
14. Cho, C.; Lee, Y.H.; Park, J.; Lee, S. A self-spatial adaptive weighting based u-net for image segmentation. Electronics 2021, 10, 348.

[CrossRef]
15. Blondel, W.; Delconte, A.; Khairallah, G.; Marchal, F.; Gavoille, A.; Amouroux, M. Spatially-resolved multiply-excited autofluores-

cence and diffuse reflectance spectroscopy: Spectrolive medical device for skin in vivo optical biopsy. Electronics 2021, 10, 243.
[CrossRef]

16. Feng, Y.; Lighter, D.; Lei, Z.; Yan, W.; Dehghani, H. Application of deep neural networks to improve diagnostic accuracy of
rheumatoid arthritis using diffuse optical tomography. Quantum Electron. 2020, 50, 21–32. [CrossRef]

17. Balasubramaniam, G.M.; Arnon, S. Deep-Learning Algorithm To Detect Anomalies In Compressed Breast: A Numerical Study. In
Proceedings of the Bio-Optics: Design and Application 2021, Washington, DC, USA, 12–16 April 2021.

18. Saikia, M.J.; Kanhirodan, R.; Mohan Vasu, R. High-speed GPU-based fully three-dimensional diffuse optical tomographic system.
Int. J. Biomed. Imaging 2014, 2014, 376456. [CrossRef]

19. Altini, N.; Cascarano, G.D.; Brunetti, A.; De Feudis, I.; Buongiorno, D.; Rossini, M.; Pesce, F.; Gesualdo, L.; Bevilacqua, V. A deep
learning instance segmentation approach for global glomerulosclerosis assessment in donor kidney biopsies. Electronics 2020, 9,
1768. [CrossRef]

20. Binzoni, T.; Leung, T.S.; Gandjbakhche, A.H.; Rüfenacht, D.; Delpy, D.T. The use of the Henyey-Greenstein phase function in
Monte Carlo simulations in biomedical optics. Phys. Med. Biol. 2006, 51. [CrossRef]

21. Bloembergen, N. Laser-material interactions, fundamentals and applications. In AIP Conference Proceedings, 2nd ed.; Springer:
Berlin/Heidelberg, Germany, 2008; ISBN 978-3-662-04717-0.

22. Wang, L.V.; Wu, H.I. Biomedical Optics: Principles and Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 9780471743040.
23. Tran, A.P.; Jacques, S.L. Modeling voxel-based Monte Carlo light transport with curved and oblique boundary surfaces. J. Biomed.

Opt. 2020, 25, 1. [CrossRef]
24. Zhu, C.; Liu, Q. Review of Monte Carlo modeling of light transport in tissues. J. Biomed. Opt. 2013, 18, 050902. [CrossRef]
25. Keller, M.D.; Wilson, R.H.; Mycek, M.A.; Mahadevan-Jansen, A. Monte cario model of spatially offset raman spectroscopy for

breast tumor margin analysis. Appl. Spectrosc. 2010, 64, 607–614. [CrossRef]
26. Alerstam, E.; Andersson-Engels, S.; Svensson, T. White Monte Carlo for time-resolved photon migration. J. Biomed. Opt. 2008, 13,

041304. [CrossRef]
27. Gardner, A.R.; Venugopalan, V. Accurate and efficient Monte Carlo solutions to the radiative transport equation in the spatial

frequency domain. Opt. Lett. 2011, 36, 2269. [CrossRef] [PubMed]
28. Ren, N.; Liang, J.; Qu, X.; Li, J.; Lu, B.; Tian, J. GPU-based Monte Carlo simulation for light propagation in complex heterogeneous

tissues. Opt. Express 2010, 18, 6811. [CrossRef] [PubMed]
29. Hu, D.; Sun, T.; Yao, L.; Yang, Z.; Wang, A.; Ying, Y. Monte Carlo: A flexible and accurate technique for modeling light transport

in food and agricultural products. Trends Food Sci. Technol. 2020, 102, 280–290. [CrossRef]
30. Mavaddat, N.; Ahderom, S.; Tiporlini, V.; Alameh, K. Simulation of biomedical signals and images using Monte Carlo methods for

training of deep learning networks. In Deep Learning Techniques for Biomedical and Health Informatics; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 213–236. ISBN 9780128190616.

31. Kaiser, W.; Göwein, M.; Gagliardi, A. Acceleration scheme for particle transport in kinetic Monte Carlo methods. J. Chem. Phys.
2020, 152. [CrossRef]

32. Kwon, K.; Son, T.; Lee, K.J.; Jung, B. Enhancement of light propagation depth in skin: Cross-validation of mathematical modeling
methods. Lasers Med. Sci. 2009, 24, 605–615. [CrossRef]

33. Anderson, R.R.; Parrish, J.A. The optics of human skin. J. Invest. Dermatol. 1981, 77, 13–19. [CrossRef]
34. Young, A.R. Chromophores in human skin. Phys. Med. Biol. 1997, 42, 789–802. [CrossRef]
35. Jacques, S.L. Optical properties of biological tissues: A review. Phys. Med. Biol. 2013, 58. [CrossRef]

http://doi.org/10.1118/1.4953830
http://doi.org/10.3390/electronics10101165
http://doi.org/10.1063/1.5139647
http://doi.org/10.3390/electronics9081237
http://doi.org/10.3390/electronics10091058
http://doi.org/10.3390/electronics10030348
http://doi.org/10.3390/electronics10030243
http://doi.org/10.1070/QEL17177
http://doi.org/10.1155/2014/376456
http://doi.org/10.3390/electronics9111768
http://doi.org/10.1088/0031-9155/51/17/N04
http://doi.org/10.1117/1.JBO.25.2.025001
http://doi.org/10.1117/1.JBO.18.5.050902
http://doi.org/10.1366/000370210791414407
http://doi.org/10.1117/1.2950319
http://doi.org/10.1364/OL.36.002269
http://www.ncbi.nlm.nih.gov/pubmed/21685989
http://doi.org/10.1364/OE.18.006811
http://www.ncbi.nlm.nih.gov/pubmed/20389700
http://doi.org/10.1016/j.tifs.2020.05.006
http://doi.org/10.1063/5.0002289
http://doi.org/10.1007/s10103-008-0625-4
http://doi.org/10.1111/1523-1747.ep12479191
http://doi.org/10.1088/0031-9155/42/5/004
http://doi.org/10.1088/0031-9155/58/11/R37


Electronics 2022, 11, 305 22 of 25

36. Cheong, W.F.; Prahl, S.A.; Welch, A.J. A Review of the Optical Properties of Biological Tissues. IEEE J. Quantum Electron. 1990, 26,
2166–2185. [CrossRef]

37. Frijia, E.M.; Billing, A.; Lloyd-Fox, S.; Vidal Rosas, E.; Collins-Jones, L.; Crespo-Llado, M.M.; Amadó, M.P.; Austin, T.; Edwards,
A.; Dunne, L.; et al. Functional imaging of the developing brain with wearable high-density diffuse optical tomography: A new
benchmark for infant neuroimaging outside the scanner environment. Neuroimage 2021, 225. [CrossRef]

38. Sherafati, A.; Snyder, A.Z.; Eggebrecht, A.T.; Bergonzi, K.M.; Burns-Yocum, T.M.; Lugar, H.M.; Ferradal, S.L.; Robichaux-
Viehoever, A.; Smyser, C.D.; Palanca, B.J.; et al. Global motion detection and censoring in high-density diffuse optical tomography.
Hum. Brain Mapp. 2020, 41, 4093–4112. [CrossRef]

39. Lavaud, J.; Henry, M.; Gayet, P.; Fertin, A.; Vollaire, J.; Usson, Y.; Coll, J.L.; Josserand, V. Noninvasive monitoring of liver
metastasis development via combined multispectral photoacoustic imaging and fluorescence diffuse optical tomography. Int. J.
Biol. Sci. 2020, 16, 1616–1628. [CrossRef]

40. Tromberg, B.J.; Zhang, Z.; Leproux, A.; O’Sullivan, T.D.; Cerussi, A.E.; Carpenter, P.M.; Mehta, R.S.; Roblyer, D.; Yang, W.; Paulsen,
K.D.; et al. Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic
imaging. Cancer Res. 2016, 76, 5933–5944. [CrossRef]

41. Uddin, K.M.S.; Zhang, M.; Anastasio, M.; Zhu, Q. Optimal breast cancer diagnostic strategy using combined ultrasound and
diffuse optical tomography. Biomed. Opt. Express 2020, 11, 2722. [CrossRef]

42. Zhao, Y.; Raghuram, A.; Kim, H.; Hielscher, A.; Robinson, J.T.; Veeraraghavan, A.N. High Resolution, Deep Imaging Using
Confocal Time-of-flight Diffuse Optical Tomography. IEEE Trans. Pattern Anal. Mach. Intell. 2021. [CrossRef]

43. Sabir, S.; Cho, S.; Kim, Y.; Pua, R.; Heo, D.; Kim, K.H.; Choi, Y.; Cho, S. Convolutional neural network-based approach to estimate
bulk optical properties in diffuse optical tomography. Appl. Opt. 2020, 59, 1461. [CrossRef]

44. Arridge, S.R.; Schotland, J.C. Optical tomography: Forward and inverse problems. Inverse Probl. 2009, 25, 123010. [CrossRef]
45. Tarvainen, T.; Cox, B.T.; Kaipio, J.P.; Arridge, S.R. Reconstructing absorption and scattering distributions in quantitative

photoacoustic tomography. Inverse Probl. 2012, 28. [CrossRef]
46. Arridge, S.R. Optical tomography in medical imaging. Inverse Probl. 1999, 15, R41. [CrossRef]
47. Abdoulaev, G.S.; Ren, K.; Hielscher, A.H. Optical tomography as a PDE-constrained optimization problem. Inverse Probl. 2005, 21,

1507–1530. [CrossRef]
48. Bal, G. Inverse transport theory and applications. Inverse Probl. 2009, 25. [CrossRef]
49. Arridge, S.R.; Lionheart, W.R.B. Nonuniqueness in diffusion-based optical tomography. Opt. Lett. 1998, 23, 882. [CrossRef]
50. Venugopal, V.; Fang, Q.; Intes, X. Multimodal diffuse optical imaging for biomedical applications. In Biophotonics for Medical

Applications; Elsevier: Amsterdam, The Netherlands, 2015; pp. 3–24. ISBN 9780857096746.
51. Wang, X.; Xie, X.; Ku, G.; Wang, L.V.; Stoica, G. Noninvasive imaging of hemoglobin concentration and oxygenation in the rat

brain using high-resolution photoacoustic tomography. J. Biomed. Opt. 2006, 11, 024015. [CrossRef]
52. Siegel, A.; Marota, J.J.; Boas, D. Design and evaluation of a continuous-wave diffuse optical tomography system. Opt. Express

1999, 4, 287. [CrossRef]
53. Vo-Dinh, T. Biomedical Photonics: Handbook; CRC Press: Boca Raton, FL, USA, 2003; ISBN 9780203008997.
54. Haskell, R.C.; Svaasand, L.O.; Tsay, T.-T.; Feng, T.-C.; Tromberg, B.J.; McAdams, M.S. Boundary conditions for the diffusion

equation in radiative transfer. J. Opt. Soc. Am. A 1994, 11, 2727. [CrossRef]
55. Shah, N.; Cerussi, A.; Eker, C.; Espinoza, J.; Butler, J.; Fishkin, J.; Hornung, R.; Tromberg, B. Noninvasive functional optical

spectroscopy of human breast tissue. Proc. Natl. Acad. Sci. USA 2001, 98, 4420–4425. [CrossRef]
56. Leino, A.A.; Pulkkinen, A.; Tarvainen, T. ValoMC: A Monte Carlo software and MATLAB toolbox for simulating light transport in

biological tissue. OSA Contin. 2019, 2, 957. [CrossRef]
57. Yun, S.; Tearney, G.; de Boer, J.; Iftimia, N.; Bouma, B. High-speed optical frequency-domain imaging. Opt. Express 2003, 11, 2953.

[CrossRef]
58. Cuccia, D.J.; Bevilacqua, F.; Durkin, A.J.; Tromberg, B.J. Modulated imaging: Quantitative analysis and tomography of turbid

media in the spatial-frequency domain. Opt. Lett. 2005, 30, 1354. [CrossRef] [PubMed]
59. O’Leary, M.A.; Boas, D.A.; Chance, B.; Yodh, A.G. Experimental images of heterogeneous turbid media by frequency-domain

diffusing-photon tomography. Opt. Lett. 1995, 20, 426. [CrossRef] [PubMed]
60. Nissilä, I.; Hebden, J.C.; Jennions, D.; Heino, J.; Schweiger, M.; Kotilahti, K.; Noponen, T.; Gibson, A.; Järvenpää, S.; Lipiäinen,

L.; et al. Comparison between a time-domain and a frequency-domain system for optical tomography. J. Biomed. Opt. 2006, 11,
064015. [CrossRef] [PubMed]

61. Kumar, A.T.N.; Raymond, S.B.; Bacskai, B.J.; Boas, D.A. Comparison of frequency-domain and time-domain fluorescence lifetime
tomography. Opt. Lett. 2008, 33, 470. [CrossRef] [PubMed]

62. Joshi, A.; Rasmussen, J.C.; Sevick-Muraca, E.M.; Wareing, T.A.; McGhee, J. Radiative transport-based frequency-domain
fluorescence tomography. Phys. Med. Biol. 2008, 53, 2069–2088. [CrossRef] [PubMed]

63. Stillwell, R.A.; Kitsmiller, V.J.; O’Sullivan, T.D. Towards a high-speed handheld frequency-domain diffuse optical spectroscopy
deep tissue imaging system. In Proceedings of the Optics InfoBase Conference Papers, Washington, DC, USA, 20–23 March 2020;
Volume Part F178.

64. Kitsmiller, V.J.; Campbell, C.; O’Sullivan, T.D. Optimizing sensitivity and dynamic range of silicon photomultipliers for frequency-
domain near infrared spectroscopy. Biomed. Opt. Express 2020, 11, 5373. [CrossRef]

http://doi.org/10.1109/3.64354
http://doi.org/10.1016/j.neuroimage.2020.117490
http://doi.org/10.1002/hbm.25111
http://doi.org/10.7150/ijbs.40896
http://doi.org/10.1158/0008-5472.CAN-16-0346
http://doi.org/10.1364/BOE.389275
http://doi.org/10.1109/TPAMI.2021.3075366
http://doi.org/10.1364/AO.377810
http://doi.org/10.1088/0266-5611/25/12/123010
http://doi.org/10.1088/0266-5611/28/8/084009
http://doi.org/10.1088/0266-5611/15/2/022
http://doi.org/10.1088/0266-5611/21/5/002
http://doi.org/10.1088/0266-5611/25/5/053001
http://doi.org/10.1364/OL.23.000882
http://doi.org/10.1117/1.2192804
http://doi.org/10.1364/OE.4.000287
http://doi.org/10.1364/JOSAA.11.002727
http://doi.org/10.1073/pnas.071511098
http://doi.org/10.1364/OSAC.2.000957
http://doi.org/10.1364/OE.11.002953
http://doi.org/10.1364/OL.30.001354
http://www.ncbi.nlm.nih.gov/pubmed/15981531
http://doi.org/10.1364/OL.20.000426
http://www.ncbi.nlm.nih.gov/pubmed/19859209
http://doi.org/10.1117/1.2400700
http://www.ncbi.nlm.nih.gov/pubmed/17212538
http://doi.org/10.1364/OL.33.000470
http://www.ncbi.nlm.nih.gov/pubmed/18311295
http://doi.org/10.1088/0031-9155/53/8/005
http://www.ncbi.nlm.nih.gov/pubmed/18364555
http://doi.org/10.1364/BOE.401439


Electronics 2022, 11, 305 23 of 25

65. Zhao, Y.; Deng, Y.; Yue, S.; Wang, M.; Song, B.; Fan, Y. Direct mapping from diffuse reflectance to chromophore concentrations
in multi-fx spatial frequency domain imaging (SFDI) with a deep residual network (DRN). Biomed. Opt. Express 2021, 12, 433.
[CrossRef]

66. Hu, D.; Lu, R.; Ying, Y. Spatial-frequency domain imaging coupled with frequency optimization for estimating optical properties
of two-layered food and agricultural products. J. Food Eng. 2020, 277. [CrossRef]

67. Hillman, E. Experimental and Theoretical Investigations of Near Infrared Tomographic Imaging Methods and Clinical Applica-
tions. Ph.D. Thesis, University College London, London, UK, 2002.

68. Culver, J.P.; Choe, R.; Holboke, M.J.; Zubkov, L.; Durduran, T.; Slemp, A.; Ntziachristos, V.; Chance, B.; Yodh, A.G. Three-
dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency do-
main/continuous wave clinical system for breast imaging. Med. Phys. 2003, 30, 235–247. [CrossRef]

69. Cubeddu, R.; Musolino, M.; Pifferi, A.; Taroni, P.; Valentini, G. Time-Resolved Reflectance: A Systematic Study for Application to
The Optical Characterization of Tissues. IEEE J. Quantum Electron. 1994, 30, 2421–2430. [CrossRef]

70. Taroni, P.; Pifferi, A.; Torricelli, A.; Comelli, D.; Cubeddu, R. In vivo absorption and scattering spectroscopy of biological tissues.
Photochem. Photobiol. Sci. 2003, 2, 124–129. [CrossRef]

71. Jacques, S.L. Time resolved propagation of ultrashort laser pulses within turbid tissues. Appl. Opt. 1989, 28, 2223. [CrossRef]
72. Zevallos, M.E.; Liu, F.; Alfano, R.R. Time-resolved pulse propagation in tissue tubular structures. In Proceedings of the Lasers

and Electro-Optics Society Annual Meeting-LEOS, Baltimore, MD, USA, 18–23 May 1997; Volume 11, pp. 148–149.
73. Piron, V.; L’Huillier, J.P.; Mansouri, C. Object localization within turbid slab media using time-resolved transillumination contrast

functions: A finite element approach. In Proceedings of the European Conferences on Biomedical Optics, Munich, Germany,
17–21 June 2007. paper 6628_32.

74. Patterson, M.S.; Chance, B.; Wilson, B.C. Time resolved reflectance and transmittance for the noninvasive measurement of tissue
optical properties. Appl. Opt. 1989, 28, 2331. [CrossRef]

75. Wilson, B.C.; Jacques, S.L. Optical Reflectance and Transmittance of Tissues: Principles and Applications. IEEE J. Quantum
Electron. 1990, 26, 2186–2199. [CrossRef]

76. Pifferi, A.; Swartling, J.; Chikoidze, E.; Torricelli, A.; Taroni, P.; Bassi, A.; Andersson-Engels, S.; Cubeddu, R. Spectroscopic
time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances. J. Biomed.
Opt. 2004, 9, 1143. [CrossRef]

77. Cubeddu, R.; Pifferi, A.; Taroni, P.; Torricelli, A.; Valentini, G. Noninvasive absorption and scattering spectroscopy of bulk
diffusive media: An application to the optical characterization of human breast. Appl. Phys. Lett. 1999, 74, 874–876. [CrossRef]

78. Mozumder, M.; Tarvainen, T. Evaluation of temporal moments and Fourier transformed data in time-domain diffuse optical
tomography. J. Opt. Soc. Am. A 2020, 37, 1845. [CrossRef]

79. Di Sieno, L.; Dalla Mora, A.; Ferocino, E.; Pifferi, A.; Tosi, A.; Conca, E.; Sesta, V.; Giudice, A.; Ruggeri, A.; Tisa, S.; et al. SOLUS
project: Bringing innovation into breast cancer diagnosis and in the time-domain diffuse optical field. In Proceedings of the
Optics InfoBase Conference Papers, Washington, DC, USA, 20–23 March 2020; Volume Part F179.
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