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Abstract: Presently, several million people suffer from major depressive and bipolar disorders. Thus,
the modelling, characterization, classification, diagnosis, and analysis of such mental disorders
bears great significance in medical research. Electroencephalogram records provide important
information to improve clinical diagnosis and are very useful in the scientific community. In this
work, electroencephalogram records and patient data from the Hospital Virgen de la Luz in Cuenca
(Spain) were processed for a correct classification of bipolar disorders. This work implemented an
innovative radial basis function-based neural network employing a fuzzy means algorithm. The
results show that the proposed method is an effective approach for discrimination of two kinds of
classes, i.e., bipolar disorder patients and healthy persons. The proposed algorithm achieved the best
performance compared with other machine learning techniques such as Bayesian linear discriminant
analysis, Gaussian naive Bayes, decision trees, K-nearest neighbour, or support vector machine,
showing a very high accuracy close to 97%. Therefore, the neural network technique presented could
be used as a new tool for the diagnosis of bipolar disorder, considering the possibility of integrating
this method into medical software.

Keywords: electroencephalography (EEG); machine learning; deep learning; neural network; bipo-
lar disorder

1. Introduction

Electroencephalogram (EEG) signals can reveal a great variety of brain pathologic,
behavioural, and medication patterns, thus providing a valuable aid in clinical applications,
for instance in early diagnosis, treatment, rehabilitation, and classification [1–4]. Visual
inspection of the EEG for seizure detection varies with human expertise. Thus, an automatic
diagnosis of bipolar disorders (BD) can be crucial in clinical environments. BD is a grave
mental illness characterized by episodes of depression, psychosis, changes in mood state,
and manias. The main consequences of late diagnosis/treatment involves high rates of
suicide, lower productivity, and poorer quality of life. The causes of bipolar disorder are
unidentified, but present research indicates a combination of genetic components (about
70–90%) and environmental factors [5]. As a consequence, early diagnosis of BD may
significantly reduce health care costs [6]. The prevalence of bipolar disorder is between
2.6% and 5% of the population [7]. According to diverse authors, misdiagnosed patients
received inappropriate and costly treatment regimens involving suboptimal medication
treatment [8,9]. When untreated, the illness poses a high risk of morbidity and mortality [10].
There is also an increased risk of suicide compared with unipolar depression [11]. BD is a
leading cause of global disability. Therefore, correctly diagnosing bipolar disorder should
be a priority for the health care systems for clinical, administrative, and research purposes.
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For sixty years, psychiatric case records have been considered important epidemio-
logical research tools for estimating the incidence and prevalence of treatment and care
patterns [12]. Classification is considered as a useful instrument for medical problems,
which has a common application area focusing on medical diagnosis. Recent studies
contributed to the classification of diseases using techniques such as expert systems, arti-
ficial neural networks, linear programming, database systems, evolutionary algorithms,
and swarm intelligence [13–15]. As for classification algorithms of EEG signals, conven-
tional classifiers such as neural networks (NN) [16–18], singular value decomposition
(SVD) [19] and Bayesian linear discriminant analysis (BLDA) [20] are widely used. In addi-
tion, researchers have also attempted various classifiers such as support vector machines
(SVM) [21–24], K-nearest neighbour (KNN) [25,26], logistic regression (LR) [27,28], Bayes
classification (BC) [29,30], Gaussian naive Bayes (GNB) [31], decision tree (DT) [32,33], or
adaptive neuro-fuzzy inference systems [34,35] to classify data.

This study was based on the use of deep learning techniques. These techniques
have been implemented for years in different topics, for example, classification networks,
medical research, or pattern recognition [36–39]. Deep learning has been used as a precise
tool for the classification of medical records, e.g., EEG, ECG. For our study, we focused on
radial basis function (RBF) neural networks [40–42]. Not many uses of the RBF architecture
have been reported in the literature in bipolar diseases classification. It employs radial
basis functions as activation functions where the output is a linear combination of RBFs of
the inputs and neuron weights. This type of network has some characteristics that make it
ideal for this work. On the one hand, good performance with different patterns used in
the training phase, fast training procedures, and simple network configurations [43,44] can
be achieved. On the other hand, its network structure can grow to the desired degree of
accuracy [43,44]. Finally, the designed application can be integrated into medical devices
due to its rapid response and reduced complexity, which would allow the creation of a
diagnostic aid tool that can be used effectively by healthcare personnel.

In order to develop the neural network classifiers, an innovative method based on
the fuzzy means (FM) algorithm was employed. The method starts with an initial fuzzy
partition (FP) of the multidimensional input space. Then, it uses the FM algorithm to select
the size of the network and the hidden nodes. The rest of the network parameters are
calculated using standard techniques. It must be emphasized that as opposed to both the
K-means and the C-means clustering algorithms, the FM technique does not need a fixed
number of clusters prior to the execution of the method. Moreover, since it is a one-phase
algorithm, it is extremely fast, even in the case of a large database. The proposed method
was compared with different machine learning (ML) techniques for classification. EEG
records from two types of subjects (bipolar disorder and healthy control) were utilized to
check the accuracy of the proposed system.

The paper is organized as follows: Section 2 introduces the materials used in this study.
Section 3 presents our proposed approach. The description of the experiments and the
discussion of the results are given in Sections 4 and 5, respectively. Finally, the conclusions
of this paper are summarized in Section 6.

2. Materials

In this study, real EEG recordings were used to review the operation of the NN system.
One hundred and five bipolar disorder and two hundred and five comparison subjects
were tested for brain disorder diagnosis measured by EEG recording. In this regard, Table 1
details both the patients and healthy volunteers by gender grouping, age average, and
standard deviation. The Structured Clinical Interview for DSM-IV (SCID) was administered
to all subjects to obtain DSM-IV diagnoses. All patients and controls resided in the health
area of Cuenca, Spain, and were enrolled in the Severe Mental Disorder Program of the
Psychiatric Service of Virgen de la Luz Hospital, Cuenca, Spain. All participants provided
written informed consent after being given an explanation of the study and the procedures
involved. The study was approved by the Clinical Research Ethics Committee of the Cuenca
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Health Area. Selected patients met a series of criteria for inclusion in the database, such
as being between 18 and 55 years of age, having an IQ > 70, fulfilling the DSM-IV criteria
for bipolar disorder, and understanding/speaking Spanish correctly. On the other hand,
exclusion criteria comprised mental retardation, some type of traumatic brain injury with
loss of consciousness, severe neurological disease, and abuse or dependence on alcohol or
other substances during the 12 months prior to the study.

Table 1. Patients and healthy controls included in the study grouped by gender and age.

Adults Children

(31 ± 5 Years) (22 ± 3 Years) (14 ± 3 Years)

Male 71 63 32
Female 54 56 34

The EEG records were obtained at the Psychiatric Service of the Virgen de la Luz Hos-
pital. The equipment available at the Hospital was used to perform the EEGs, specifically
a BrainAmp DC-32 channel Brain Vision system with a sampling frequency of 500 Hz.
The International System 10–20 was used to place the electrodes, and the EEG recording
standard was maintained with that format according to the clinical practice manual. Sil-
ver chloride electrodes and gel were used for measurements [45]. The impedance value
between the electrode and the scalp remained less than 10 KΩ during the recording. For
this, the measuring BrainAmp DC-Brain Vision System had an impedance warning system,
indicating values above this limit (in this case, the electrodes were placed again or filled
with more gel). The entire measuring process was standardized and strictly followed a
medical protocol. It should be noted that the placement, impedance adjustment, and EEG
recording were carried out by medically trained staff. The EEG records of different patients
presented various noise samples, such as muscle noise, artefacts, baseline, etc. To obtain a
more accurate result of the neural network, the raw brain signal measured by the electrodes
was pre-processed [46,47] prior to classification. By this means, this noise and artefacts
were removed. In this study, the signal was filtered between 0.5 Hz and 40 Hz, and a notch
filter at 50 Hz was applied.

Figure 1 shows a sample of the raw EEG recording and scalp maps. More specifically,
the results obtained for all electrodes are presented at different times i.e., from 1028 ms to
9976 ms, to check which part of the brain was activated. Scalp maps display the distribution
of voltage in the time or frequency domain. Information about the position of the electrodes
was used to create the maps. The algorithm used to create the scalp map was based on
spherical spline interpolation [48]. To calculate the spherical splines, different parameters
were used: the order of the splines and the maximum degree of the Legendre polynomial.
The values of the parameters used the interpolation to provide different ripple, whereas
high-order splines provide flat responses.
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Figure 1. Raw EEG and scalp maps recorded.

3. Method

An artificial neuronal network (ANN) is a computational model based on the struc-
ture and functions of biological neural networks, inspired by the known behaviour of
the human brain. ANN systems have a non-linear behaviour and allow adjustment to
various objectives. The inputs are the stimuli that the artificial neuron receives, and the
outputs are the responses to those stimuli. The neuron can adapt and learn by modifying
the value of its synaptic weights since they can be modified and adapted to perform a
given target [37,43,44].

The training method and RBF network architecture developed for the classification of
bipolar disorder are shown below. In our proposed system, we created two classes: class
BD corresponds to bipolar disorders, and class CN corresponds to control subjects. The
characteristics of the proposed neuronal network system can be seen in Figure 2. It has
three layers: an input layer, a hidden layer with a non-linear RBF activation function, and a
linear output layer.
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Equation (1) shows the activity as(p) of the sth node, which represents the Euclidean norm.

as(p) =‖ p− p̂s ‖=

√√√√ M

∑
m=1

(pm − p̂s,m)
2 (1)
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where pT = [p1, p2, . . . , pM] denotes the input vector, and p̂T
s =

[
p̂T

s,1, p̂T
s,2, . . . , p̂T

s,M

]
represents the center of the sth node. For node output, a radial symmetric function was
used. A Gaussian function can also be applied:

y(v) = e(a2
s/w2

s ) (2)

with w2
s being the width of the node.

3.1. Training of the Proposed Neural Network

In order to train the neural network, a group of known inputs and outputs
(pk; fk)(k = 1, 2, . . . , K) training pairs was used. In the proposed system, the training
of the neural network consisted of two steps:

1. First, the parameters of the hidden layer cs(p) were calculated;
2. They are determined from the junction weights between the output and the hidden layer.

In addition, the FM algorithm was applied to choose the network structure and
the centres of the hidden nodes [37,43,44]. The proposed algorithm used the FP of the
input space, where a number of fuzzy sets were defined for each input variable. The
innovative RBF method applied a uniform division of the discourse universe for its input
pj (j = 1, 2, . . . , M) into cj fuzzy sets F1

j , F1
j , . . . , F

cj
j with functions of form as follows:

Fs
j
(

pj
)
=

 1−
∣∣∣aj−vs

j

∣∣∣
ls
j

i f p ∈
[
vs

j − ls
j , vs

j + ls
j

] (
s = 1, . . . , cj

)
0 otherwise

(3)

where vs
j represents the central element to which the unit’s membership value is set, and ls

j
is half of the respective width. The sum of the degrees of correspondence at any point in the
discourse universe is close to 1 for each input variable. Defining a FP into the M dimensional
input space results in the initial FP of every input. From this, the following algorithm is
proposed to find, from the input data vector, the nearest fuzzy subspace [37,43,44].

• Algorithm A: The closest diffuse subspace to a determined input vector is created.

# Phase 1: From an input data vector p = [p1, p2, . . . , pM]T and for j = 1, 2, . . . , M,
the fuzzy set that fixes the maximum degree of membership to pj is elected.

# Phase 2: As for p, a fuzzy subspace F is created, obtained as the sum of the
fuzzy sets chosen in phase 1.

• Through the FM algorithm, the size and centres of the hidden layer are decided. The
phases in the algorithm used to select the centres and size of the hidden layer are
explained below [37,43,44].

# Phase 1: From input and output data (pk; fk)(k = 1, 2, . . . , K), the rules number
S is established to 0.

# Phase 2: The initial input data p(1) is selected, and we applied Algorithm A to
create the initial diffuse subspace F1 =

{
v1, 11}. In addition, S is fixed to 1.

# Phase 3: The k− 1 input vectors are exanimated, and S diffuse subspaces are
generated, with 1 ≤ S ≤ k− 1. The kth input vector p(k) is inserted, and the
Euclidean relative distances zls(p(k))(s = 1, . . . , S) are calculated between p(k)
and all fuzzy subspaces S created using Equation (4).

zls
j r(p(k)) =


[

∑M
j=1

(
vs

j−pj(k)
)2
]1/2

[
∑M

j=1

(
ls
j

)2
]1/2 i f

[
M
∑

j=1

(
vs

j − pj(k)
)2
]1/2

≤
[

M
∑

j=1

(
ls
j

)2
]1/2

1 otherwise

(4)
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The minimum distance zls0(p(k)) is assumed to belong to the fuzzy subspace
FS0 =

{
vS0, 1S0}. Then, whether the next comparison is true is checked:

zls0(p(k)) < 1 (5)

If the condition is met, phase 4 can be skipped. Otherwise, the algorithm
continues its normal order in phase 4.

# Phase 4: Algorithm A is applied and a novel fuzzy subspace is created for p(k).
In addition, the S value is updated to S = S + 1.

# Phase 5: It stops if k = K. Otherwise, the successive input vector is included
and returns to phase 3. The final step of the initial phase aims to define the
width w of the Gaussian activation function. For each i node, the width wi is
estimated using the g heuristic of the nearest neighbour:

wi(p) =

(
1
g

g

∑
j=1
‖ci−cj‖2

)1/2

(6)

where c1, c2, . . . , cg represents the node centres closest to the hidden i node.
The g value was chosen so that entering an input vector into the system activates
a large number of nodes.

3.2. Performance Metrics

For this study, the techniques used to check performance are described below:

Recall (%) =
TP

TP + FN
× 100 (7)

Speci f icity (%) =
TN

TN + FP
× 100 (8)

Precision (%) =
TP

FP + FP
× 100 (9)

Balanced accuracy (%) =
Recall + Speci f icity

2
× 100 (10)

In these equations, TP represents the number of true positive cases, TN the true
negatives, FN the false negatives, and FP corresponds to the false positive cases.

The F1 score can be defined as

F1 score (%) =
Precision·Recall

Precision + Recall
× 100 (11)

Another measure of overall model classification performance is the Matthew’s correla-
tion coefficient (MCC) [49], which is defined as

MCC (%) =
TP·TN − FP·FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
× 100 (12)

Finally, degenerated Younden’s index (DYI) [49] and Cohen’s Kappa (CK) parameters
are also employed to analyse the performance of the proposed method [49].

3.3. Proposed Methodology

In the cross validation, the train sample was divided into several box folds that were
retained from the training process, with training carried out iteratively with the remaining
cases. The diagnostic performance of classification methods was evaluated by repeated
ten-fold cross-validation and percentage split strategies. The dataset was divided into 70%
for training and 30% for testing. Recorded brain signals employed during the training
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phase were pre-processed as described in Section 2. These pre-processed EEG data were
not shared during the training and testing subsets in order to avoid the use of the same
data for classification and training. The methodology applied in this study can be observed
in Figure 3. To check the performance of the proposed method, its operation was compared
with different machine learning algorithms. From all of them we selected the following
algorithms: BLDA, GNB, KNN, DT, and SVM. All of these ML methods were implemented
using the statistics and machine/deep learning MATLAB toolbox [50].
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Figure 3. Methodology used for the development of the study.

Machine learning techniques usually have one or more hyperparameters that allow
a different adjustment of the algorithm during the training process. The values of these
hyperparameters (number of splits, learners, neighbours, distance metric, distant weight,
kernel, box constraint level, multiclass method, etc.) for each method lead to algorithms
with different prediction performances to obtain the best possible accuracy. In order to
optimize these hyperparameters for each ML technique used in this study, each model was
trained with a Bayesian optimization approach. Bayesian optimization aims to estimate
which configuration of hyperparameters is the one that would maximize the performance
of the algorithm from the previous attempts, based on the assumption that there is a
relationship between the various hyperparameters and the performance achieved by the
algorithm. In this regard, the area under the curve (AUC) and the balanced accuracy were
used as performance measures to be maximized.

4. Results

This section describes the results obtained during the training and classification of
bipolar disorder patients. The performance of the proposed system was compared with
different classification machine learning methods accepted in the scientific community.
Table 2 shows the values of balanced accuracy, recall, precision, and F1 score of the clas-
sification methods for bipolar disorder and healthy patients. Systems based on BLDA
and GNB obtained lower classification values than other methods, with accuracy values
close to 86%; this value is improved with SVM and KNN methods that reached values
around 89%. On the other hand, the proposed system, based on a NN, obtained the best
performance, achieving accuracy values close to 96.78% for real EEG records. As for the
precision and recall values, the KNN and SVM methods were the closest to the proposed
NN-based system. In the case of the F1 score value, the BLDA and GNB methods obtained
values close to 86%. KNN and SVM also provided lower performance compared with the
proposed method.
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Table 2. Values of balanced accuracy, recall, precision, and F1 score of the machine learning models
and the proposed method implemented.

Method Balanced Accuracy (%) Recall (%) Precision (%) F1 Score (%)

BLDA 86.93 87.03 86.31 86.67
DT 87.42 87.52 86.80 87.16

GNB 86.30 86.40 85.69 86.04
SVM 88.17 88.28 87.54 87.91
KNN 89.63 89.74 88.99 89.36
RBF 96.78 96.89 96.09 96.49

Other parameters used in performance studies, such as the AUC, MCC, DYI, and
Kappa index, were also analysed to check the operation of the proposed system. These
parameters helped us to check the correct implementation of the methods when classifying
the classes investigated in the study, i.e., bipolar patients and controls. The Matthews
correlation coefficient is a more reliable statistical rate which produces a high score only if
the prediction gives good results in all the confusion matrix categories (true positives, false
negatives, true negatives, and false positives). As it can be seen in Table 3, the NN-based
method achieved the highest MCC value. KNN and SVM were the systems that presented
a MCC value close to the proposed method. The rest of the methods obtained a smaller
value. Another parameter used was the Kappa index; in this case, the NN-based system
again obtained the highest value. The other systems used in the comparison reached lower
parameter values.

Table 3. Values of AUC, MCC, DYI, and Kappa of all the tested machine learning models and the
proposed method implemented.

Method AUC (%) MCC (%) DYI (%) Kappa (%)

BLDA 86 80.73 86.93 77.39
DT 87 81.18 87.42 77.83

GNB 86 80.14 86.30 76.83
SVM 88 81.28 88.17 78.50
KNN 89 81.71 89.63 79.80
RBF 96 92.45 96.78 92.76

Table 4 displays the result of the classification for the different types of patients and
healthy people. As can be observed, the results of the different methods were not modified
by these variables. The values of balanced accuracy were very similar between females,
males, adults, and children. It should be noted that the proposed method maintained the
highest precision in the classification.

Table 4. Values of balanced accuracy of the machine learning models and the proposed method
implemented for different types of patients and healthy controls.

Balanced Accuracy (%)

Method Male Female Adult Children

BLDA 86.95 86.93 86.96 86.91
DT 87.44 87.42 87.45 87.40

GNB 86.32 86.30 86.33 86.28
SVM 88.19 88.17 88.20 88.15
KNN 89.65 89.62 89.63 89.61
RBF 96.80 96.78 96.81 96.75

In order to evaluate the classification capacity of the systems presented, the receiver
operating characteristic (ROC) were also considered. The curve is the result of representing,
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for each threshold value, the sensitivity and specificity measurements [51]. Figure 4 shows
the results obtained for the different classification algorithms. According to Table 3, the
RBF-based system had the best AUC (0.96), and the KNN method possessed the second
highest value (0.89). Specifically, the NN-based system achieved an improvement of 7%, 9%,
and 10% with respect to KNN, SVM, and BLDA methods, respectively. As it can be seen, the
proposed system can achieve high classification of bipolar disorder disease automatically,
resulting in a tool that could help the healthcare personnel for clinical diagnosis.

Electronics 2022, 11, 343 9 of 14 
 

 

 
Figure 4. ROC curves for the 9 classification systems compared. 

For clarity, all metrics are presented as radar charts, grouped by each training and 
test dataset. The shape of the plots may be indicative of the quality of the models, where 
a perfect score would be represented by a circle. The NN-based system (Figure 5) has the 
best-balanced model. The training and test sets are both virtually represented by similar 
circular plots. As it can be observed, BLDA and GNB methods have the worst perfor-
mance in different metrics. 

 
Figure 5. Radar plot of the training phase (above) and test (below) for the classification of bipolar 
disorder patients. 

Additionally, Big-O notation (used in computer science to describe the complexity of 
an algorithm) was applied to the proposed and the classic machine learning methods 
studied in this paper. Big-O representation specifically defines the worst case and can be 
used to describe the execution time required or the space used (e.g., in memory or on disk) 
[52,53]. Table 5 shows the complexity in seconds for the proposed systems, where N is the 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1-Specificity

Se
ns

iti
vi

ty

ROC

SVM

DT
GNB

BLDA

NN
KNN

7

0.8

BLDA
DT
GNB
SVM
KNN
NN

0.

1.

0.

0

9

F score1

Balance
Auccuracy

MCC

KappaPrecison

Recall

AUC

0.8

0.7

90.

1.0

F score1

Balance
Auccuracy

MCC

KappaPrecison

Recall

AUC

BLDA
DT
GNB
SVM
KNN
NN

Figure 4. ROC curves for the 9 classification systems compared.

For clarity, all metrics are presented as radar charts, grouped by each training and
test dataset. The shape of the plots may be indicative of the quality of the models, where a
perfect score would be represented by a circle. The NN-based system (Figure 5) has the
best-balanced model. The training and test sets are both virtually represented by similar
circular plots. As it can be observed, BLDA and GNB methods have the worst performance
in different metrics.

Additionally, Big-O notation (used in computer science to describe the complexity
of an algorithm) was applied to the proposed and the classic machine learning methods
studied in this paper. Big-O representation specifically defines the worst case and can
be used to describe the execution time required or the space used (e.g., in memory or on
disk) [52,53]. Table 5 shows the complexity in seconds for the proposed systems, where
N is the number of samples used in the input vector. As can be seen, the proposed RBF
method presents the lowest complexity as it is a very simple neuronal network with just one
hidden layer. It shows a logarithmic growth O(log(N)) (as in the case of the DT algorithm).
Conversely, the SVM system takes the longest processing time, of the order of O(N2), for a
high number of samples. The rest of the classifiers have a linear processing time O(N).

Table 5. Complexity of the classification algorithms obtained for the Big-O notation.

Method Number of Samples N Big-O

104 2 × 105 5 × 106 107

BLDA 3145 6158 12,325 24,235 O(N)
DT 3426 6325 8325 10,325 O(log(N))

GNB 2789 5698 11,256 23,246 O(N)
SVM 2324 4896 18,324 310,261 O(N2)
KNN 2035 4256 9245 21,125 O(N)
RBF 1235 2648 3845 3893 O(log(N))
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Figure 5. Radar plot of the training phase (above) and test (below) for the classification of bipolar
disorder patients.

5. Discussion

The discrimination of bipolar disorders is a hard classification problem which requires
the use of a strong optimizing algorithm and an effective feature set selection procedure.
Automated detection can guide treatment decisions, help prognostication, and study the
pathophysiology of bipolar disorders [47]. In this study, a radial basis function neural
network was successfully used for this pattern recognition task. The results show that
discriminating between BD patients and healthy controls with high accuracy can be possible
by using our proposed NN classification framework. A maximum classification accuracy
of 96.7% was obtained, demonstrating the potential clinical use to classify BD patients by
means of EEG datasets.

The proposed algorithm was analysed with different classification methods described
in the literature. In the comparison of the systems, it was possible to appreciate the
considerable improvement achieved by the proposed NN. This resulted in a tool that
facilitates the automatic analysis of EEG signals to aid in the diagnosis of bipolar disorder.
One of the limitations of the NN systems is the initialization of the centres and the choice
of the base function [43,44]. In our study, the fuzzy initialization of the RBF neural network
was used to improve performance. Different techniques have been developed that allow an
optimal combination of the results of simple classifiers through alpha integration to exploit
the complementarities of simple classifiers under an optimization criterion [54]. The use
of NN method brings many advantages. For example, they simplify the configuration of
the network, the training method is faster, and the approach capabilities are improved.
In addition, the NN proposed introduces an innovative contribution, such as the fuzzy
initialization of the network.

Finally, Table 6 provides a comparison of the performance for the proposed method
and different relevant related research works presented in the literature. The references
were selected because they report novel algorithms classifying BD. Each column in the table
specifies the reference and year of publication, acquisition data employed, classification
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system, and accuracy obtained. In this regard, it is important to remark that different
data or training processes may lead to distinct performance results. Hence, the methods
compared can present unlike accuracy depending on the input information/training em-
ployed. However, this sort of comparison analysis helps to understand the advantages of
the proposed classification method.

Table 6. Performance comparison of different classification methods presented in similar research.

Reference/Year Acquisition Data Classification Method Accuracy (%)

[55]/2010 Electroencephalogram Mixture Factor Analysis 92.7

[56]/2013 Neurophysiological
Endophenotypes Multivariate Logistic Regressions 72.0

[57]/2015 Electroencephalogram Support Vector Machine 80.2
[58]/2015 Electroencephalogram Multilayer Perceptron Neural Network 91.8
[59]/2016 Electroencephalogram Artificial Neural Network 83.9
[60]/2017 Electroencephalogram Support Vector Machine 81.2
[61]/2019 Electroencephalogram Convolutional Neural Network 85.6
Our work Electroencephalogram RBF Network Fuzzy Means 96.8

The proposed RBF system has advantages in comparison with the other classification
algorithms. Those advantages include: (i) high accuracy close to 97%; (ii) simple network
configuration; (iii) fast training procedures; and (iv) potential to be integrated into real-time
commercial tools due to its low computational complexity.

6. Conclusions

In this paper, a novel neuronal network model based on radial basis functions employ-
ing a fuzzy means algorithm for the classification of bipolar disorder patients is presented.
The method proposed in this work achieved the highest values of balanced accuracy, recall,
precision, and F1 score—higher than those achieved with other classical methods, i.e.,
Bayesian linear discriminant analysis, support vector machines, Gaussian naive Bayes,
K-nearest neighbours, or decision trees. This guarantees its reliability for the automatic
classification of the pathology treated in this study. Experimental results obtained from
real EEG records illustrate the high accuracy of the proposed approach. Therefore, the
proposed radial basis function-based neural network can be a complementary tool to help
healthcare personnel diagnose brain impairments such as bipolar disorder.
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