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Abstract: The development and increased popularity of interactive computer games, metaverses, and
virtual worlds in general, has over the years attracted the attention of various researchers. Therefore, it
is not surprising that the educational potential of these virtual environments (e.g., virtual laboratories)
is of particular interest to a wider scientific community, with numerous successful examples coming
from different fields, starting from social sciences, to STEM disciplines. However, when it comes
to agent theory, which is a highly important part of the general AI (Artificial Intelligence) research
focus, there is a noticeable absence of such educational tools. To be more precise, there is a certain
lack of virtual educational systems dedicated primarily to agents. That was the motivation for the
development of the AViLab (Agents Virtual Laboratory) gamified system, as a demonstration tool
for educational purposes in the related subject of agent theory. The developed system is thoroughly
described in this paper. The current version of the AViLab consists of several agents (developed
according to the agenda elaborated in the manuscript), aiming to demonstrate certain insights into
fundamental agent structures. Although the task imposed to our agents essentially represents a sort
of “picking” or “collecting” task, the scenario in the system is rather gamified, in order to be more
immersive for potential users, spectators, or possible test subjects. This kind of task was chosen
because of its wide applicability in both, gaming scenarios and real-world everyday scenarios. In
order to demonstrate how AViLab can be utilized, we conducted an exemplar experiment, described
in the paper. Alongside its educational purpose, the AViLab system also has the potential to be used
for research purposes in the related subjects of agent theory, AI, and game AI, especially regarding
future system extensions (including the introduction of new scenarios, more advanced agents, etc.).

Keywords: autonomous agents; virtual laboratories; Artificial Intelligence; game AI; Educational
Technology; serious gaming; Unity; virtual worlds; computer games

1. Introduction

Over the last few decades, we have witnessed extensive development and popularity
growth of interactive computer games, metaverses or MUVEs (Multi-User Virtual Environ-
ments), and similar virtual environments. Although there are distinctions between them,
in a more general sense, all these environments can be called “virtual worlds” [1–3]. These
virtual worlds have millions of users, interacting with them on a daily basis. Some studies
have shown that students (aside from social networks activities) spend up to 20 h a week
in these environments [4].

Therefore, it is rather expected that they are recognized as a fruitful ground for various
research directions [2]. What is of particular interest for this paper is the educational poten-
tial of these environments and related technologies. This potential is widely recognized in
the academic community, starting from social sciences, to STEM disciplines. It could be
noticed that virtual laboratories represent one of the most fruitful educational applications
of virtual worlds technologies. Laboratory exercises represent an extremely important part
(and in most cases inevitable part) of the education process in science, technology, and
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engineering disciplines, enabling students to conduct experiments, gain deeper knowledge,
and visualize theoretical foundations of their learning process.

Although there are many successful examples of virtual laboratories and demonstra-
tion tools in different scientific disciplines, it can be noticed that there is very little work on
the subject, when it comes to the theory of agents, which will be elaborated in the next sec-
tion of the paper. At this point, agents and agent theory should be briefly clarified as terms.
Namely, the term agent is used in many different research disciplines. However, in this
paper, we are oriented toward the field of AI, and the way agents, as well as their autonomy,
intelligence, and theoretical foundations, are defined from the AI perspective. Therefore, it
should be also underlined that autonomous agents and agent theory in general are long
ago proclaimed as one of the central topics in the field of AI [5]. At the same time, agents
represent an extremely important part of the virtual worlds and their development process,
and consequently game AI. Since the early beginnings of the field, some authors even
observed game agents (NPCs) as an essential part of the interactive gaming worlds [6,7].
The illustrative examples of the intersection between academic research and virtual worlds
can be found in seminal research presented in [8,9], where computer games and agents
inhabit them are even promoted as a platform for human-level AI research. The autonomy
of agents, as well as implications of agent technology in virtual worlds in general, are
thoroughly researched in [3], where a broad source of valuable information can be found.
Bearing in mind all the previously said, it could be concluded that an agent’s importance
is twofold, regarding not just the academic community but commercial applications as
well. Considering this, one could also notice that there is thorough and fruitful academic
research on agent theory, which over the years resulted in the development of various agent
and multi-agent simulations related to numerous applications. At the same time, there is
extensive research on the development of agents for commercial-based games (with many
examples well described in [10]). However, as was mentioned earlier, it could be noticed
that there is a certain deficiency when it comes to developing gamified systems specially
dedicated to educational purposes in the field of agents.

Therefore, this paper will present the AViLab (Agent Virtual Laboratory) virtual
gamified system, the development of which is inspired by the previously elaborated
standpoints. It aims to contribute to filling the observed deficiency related to agent-oriented
educational systems. AViLab in a certain sense follows the “serious gaming” manner
and primarily aims to serve as an illustrative tool for the demonstration of agent theory
fundamentals, experimentation, and visualization of theoretical concepts. Furthermore,
this system also has the potential to be used for research purposes. Due to the manner in
which it was designed, the system could also be easily extended in the future, enabling a
different kind of agent research.

The rest of the paper is organized as follows. In the second section, related work
will be described, providing important reference points to the potential reader. The third
section will present the working principles of the AViLab, including the system details,
current agent structures, task description, and other important system details that will be
systematically explained. The fourth section presents an example of laboratory exercise
conducted in the AViLab, presenting one of the ways in which AViLab can be utilized. The
fifth section gives concluding remarks and a brief discussion.

2. Background Research

Over the years, virtual laboratories have placed themselves as an important addition
to the learning processes, or even a full substitution for the real laboratories. An extensive
study, presented in [11], compared students accessing real, remote, and virtual laboratories
in the field of robotics and concluded that students entering a virtual laboratory showed
comparable results to the ones entering the real laboratory, with no significant difference
in their results. A very visually appealing virtual laboratory in the field of chemistry was
presented in [12], describing several practical implementations of the developed system,
such as the Boyle Law demonstration. Virtual laboratory for metrology learning is presented
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in [13], underlining one of the obvious advantages of virtual solutions considering many
fields—real laboratory equipment is often very expensive, while virtual laboratory presents
a more affordable option. Virtual laboratory in the field of biotechnology is presented
in [14] while pointing out another advantage of such solutions, which is a high level of
availability and location independence. Availability feature is shown to be particularly
important during complex circumstances, such as the recent world COVID-19 pandemic,
enabling users to conduct experiments in a safe manner [15].

Many illustrative examples are coming from engineering disciplines. Research pre-
sented in [16] analyzed virtual laboratories as a successful low-cost replacement for ex-
periments in control engineering. An interesting example is coming from the field of
mechanical engineering [17], where a game-based virtual learning environment was pre-
sented, enabling students to perform different experiments related to the fundamentals of
gearing. Virtual laboratory for mechatronic systems, dealing with robotics and hydraulics,
was elaborated in [18], pointing out the need for broader implementation of such systems
in engineering fields. One of the early examples in the robotics field can be found in [19],
where the developed ROBOMOSP system was aimed to be used in a multipurpose manner
(as a research tool, for the training of operators, for learning the mathematical and physical
principles of industrial manipulators). A thorough review and a valuable source of infor-
mation, related to the subject of virtual laboratories, can be found in one of the seminal
papers [20] in the field.

However, although there is a number of illustrative examples regarding developed
virtual laboratories in science, technology, and engineering disciplines, it could be noticed
that there is a rather limited amount of work on the subject in the field of agent theory. To
be more precise, while there is a number of examples of incorporated agent technology, it
could be noticed that there are very few cases of developed virtual laboratories and similar
education and research environments, dedicated exclusively and primarily to agents. One
of the rare examples of virtual laboratories dedicated especially to agents is presented
in [21,22]. The environment called INSIGHT aimed to explore the behavior of autonomous
agents in an immersive environment, such as a golf court. Another illustrative example
comes from [23], where an environment with different kinds of agents (anthropomorphic,
robotic, etc.) was proposed, aiming to cover the educational aspect, among other things.
Namely, it is reported that the developed environment was used as a part of the University
Course, enabling students to have a practical demonstration and insight into certain aspects
of agents theory, AI, artificial life, etc. However, as we already pointed out, the number of
this kind of educational environments, dedicated to agents, is very limited.

All the previously analyzed can serve as a clear indicator of the necessity of developing
systems such as our AViLab, bearing in mind the importance of virtual laboratories and
similar environments across the many scientific fields and at the same time an obvious
deficiency of such systems dedicated to agents.

3. The AViLab System

In this section, we will present a concise description of our AViLab system. The main
focus will be on, what we consider to be, essential details important for the potential reader.
We will start by introducing an audience with software tools used in our development
process and then continue with the detailed description of the defined task, algorithms,
and control logic.

3.1. Software System Introduction

The AViLab gamified educational tool has its development roots in the initial work
on a single agent presented in [24]. Development is performed by using a Unity’s game
engine, Microsoft Visual Studio IDE, and a C#. These software platforms offer a plethora of
features and possibilities, in that way enabling us to develop efficient, as well as illustrative
simulations.
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During the development, we insisted on a few basic principles of the system that
needed to be fulfilled:

- Computational efficiency: This means that the system (including the agents) must be
optimally developed, and therefore omit any unnecessary computational expense, in
order to rationally use available computer resources.

- Generalization: Chosen tasks must have reasonably wide applicability.
- Immersiveness and Visualization: A “serious gaming” approach, meaning that the

developed system must be visually appealing to human users, while at the same time
embodying theoretical concepts.

- Flexibility: Applied software tools should enable us to relatively easily modify our
system (scenery, agents, task, etc.), if necessary. In that sense, an object-oriented
approach is an essential requirement for system development.

- Extensibility: Different agents and different task scenarios could be added to the
AViLab system in the future.

One should notice that at the moment, the AViLab software system is not publicly
available or open-source, as authors do not want to jeopardize their current and future
related research and publications, as well as educational applications. However, further in
the text, authors will try to thoroughly describe details of the system, in order to provide
all the essentials for the potential reader.

At this point, we briefly comment that our system’s GUI (part of it can be seen in
Figure 1) is designed in a very user-friendly manner, giving basic information to a potential
operator, such as system description, details about specific agent design, task description,
operating instructions, etc. In addition, a potential user has the option to return to the main
menu at any moment with the back button, or by simply pressing the ESC button on the
device keyboard if the simulation is in progress.
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Figure 1. The operation modes page of the AViLab system’s GUI offers to start one of the developed
agents or enter a manual mode.

3.2. The Imposed Task

The basic task used in our system essentially represents a sort of “picking” or “col-
lecting” task. This kind of task is chosen because apart from its numerous applications
in gaming scenarios, it has wide applicability in real-world scenarios as well. Illustrative
examples come from the field of robotics: household mobile robots that perform some
sort of garbage collection, service robots designed for cleaning up some hazardous area,
or service robots picking the balls from the golf court (e.g., [25]), etc. Furthermore, with a
change of scenery, this task could be easily modified to a “Search-and-Rescue” scenario.
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In simulated scenarios offered by our AViLab, agents or human users are faced with
the task in which they have to eliminate alien enemy satellites (increasing their score by one,
each time they eliminate an alien satellite) in a game-like space world. These alien satellites
are randomly placed across the simulation world. We have developed two different main
modes of spawning of satellites, aiming to cover two different scenarios—the so-called
“static” and “dynamic” mode. Regarding the static mode, upon each new simulation cycle,
a predefined number (which can be altered according to our needs) of alien satellites is
spawned simultaneously at random positions across space. Therefore, the environment is
set at the beginning of the simulation, and only changes in the environment are caused by
the agent (or human) actions during the simulation. On the other hand, in a dynamic mode,
a certain number of satellites is spawned simultaneously at the start of the simulation,
while others are spawned “one by one” in equal time intervals during the simulation. In
that way, a more dynamic environment is provided. Both modes use variations of an
algorithm, specially designed for our AViLab system, which searches across the game space
for collision-free positions and then spawns enemy satellites at those positions.

The developed algorithm behaves in a very intuitive manner (Figure 2): it starts with
generating a random position in the virtual gaming world, then checks its availability
through calculation, and spawns satellites if available, or returns to the first step if not. It
should be kept in mind that upon the start of each new simulation cycle, a set of new random
locations is generated and selected. The introduction of randomness into the process of
locations selection is providing us with a more realistic emulation of real-world scenarios.
Furthermore, as a consequence of the previously elaborated, we can avoid scenarios in
which an agent or human can deliberately or accidentally exploit the predictability and
immutability of the enemy locations in order to increase its performance score. Some of
the previously elaborated are already emphasized in [24] and are out of great significance
in experiments where we want to track the performance of the agents or humans, or even
compare them between themselves.
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Besides the described main spawn modes, there is an option to entirely customize
alien satellites spawning (before the start of simulation), as this can be useful for certain
demonstration purposes and scenarios.
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3.3. Modes of Operation

The current version of the AViLab system offers five modes of operation. As was
mentioned earlier in the text, during the R&D process, we insisted on some development
principles (defined in Section 3.1). One of our starting points was also to put the main
accent on relatively basic structures of agents because we wanted to demonstrate some
of the fundamentals related to agent theory. Namely, due to various fruitful research
directions related to both academic and gaming industry agent applications, as well as
the fact that competitiveness of the field itself cause advanced AI and machine learning
to often take the central research focus, the authors of this paper have an impression
that more simple solutions based on the relatively fundamental principles and features of
agents are sometimes superficially processed or not investigated thoroughly enough. This
is a particularly important issue bearing in mind that educational tools should serve to
gradually build knowledge on a matter of interest, starting from the basics. Furthermore,
one should also notice the long-ago elaborated principle, that depending on a situation,
the main goal is not to always build the “smartest” possible agent, but the most optimal
one [26].

Upon entering the “operation modes” page of the AViLab system’s GUI, one can
choose to activate one of the four agents or enter the manual mode (Figure 1). Four
different types of agents are developed partially inspired by theoretical concepts of agent
theory elaborated in one of the seminal works in the field [27]. Therefore, we insisted on
some of the defined properties such as reactive behavior, and pro-activeness. The idea was
to enable users to explore and visualize how different, mostly basic types of agents, cope
with the imposed tasks, to compare their performance, or to compare them with human
users as well. Therefore, a manual mode is also introduced, which offers a human user to
enter the simulation.

In our previously mentioned simulated game-like environment (Figure 3), an agent
or a human controls a spaceship, which it uses to eliminate satellites by simply touching
them. For proper tracking of their performance, a display at the top of the screen (Figure 3)
shows the number of eliminated enemy satellites (scored points), elapsed time, and energy
level (health) of the agents/human users.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 15 
 

 

them. For proper tracking of their performance, a display at the top of the screen (Figure 
3) shows the number of eliminated enemy satellites (scored points), elapsed time, and 
energy level (health) of the agents/human users. 

 
Figure 3. Simulated game-like scenario, where we have time and energy constraints. Agents (or 
human) must return to its power base, at the lower-left corner of the screen, in order to restore its 
health (level of energy). 

Agent Type 1 has a rather basic reactive design. It wanders around the simulated 
game world (randomly changing direction in a pre-defined time period), with no senso-
rial information about the positions of the alien satellites. The agent just knows that it 
must eliminate the enemy if it runs into it. In other words, it must react. Regarding this, it 
is designed on a sort of “touch sensor” principle, which allows him to make appropriate 
decisions (to recognize and destroy the enemy). 

Agent Type 2 has no sensorial information about the positions of enemy satellites, as 
well. Similar to Agent Type 1, it is also based on a sort of emulated “touch sensor”, which 
allows him to recognize and destroy enemy satellites when it runs into them. However, it 
also uses sensorial information about nature and the boundaries of the space in which it 
acts, to systematically search the space. When we say systematically, this means that its 
primary goal is to cover the entire area and search every part of the space. Therefore, it 
“patrols” horizontally (across Y-axis), from one side of the space to another, and upon 
reaching the side boundary it shifts up (shift-up value is equal to its own height) and 
continues its movement to the side boundary again. 

Agent Type 3 is a variation of the previous agent. It has the same features. However, 
it uses a different movement pattern and searches the space in a vertical manner, across 
the X-axis. Therefore, upon reaching the side boundary, it moves aside for the value that 
is equal to its own width and then continues its movement to the side boundary again. 

All the previously described agent types are designed in a sort of minimalistic 
manner (e.g., they do not have the ability to learn), according to our aim to put an accent 
on the behavior of rather basic structures, at the same time avoiding any unnecessary 
computational and design expense. 

Agent Type 4 is a sort of omniscient agent. Like the previous three agents, it also 
does not have the ability to learn, but it has perfect information about the location of 
enemy satellites and the surrounding world (it detects all the enemies in the space, 
memorizes their locations, and then apply actions according to its agenda). The strategy 
that this kind of agent is applying basically represents a practical visualization of the 

Figure 3. Simulated game-like scenario, where we have time and energy constraints. Agents (or
human) must return to its power base, at the lower-left corner of the screen, in order to restore its
health (level of energy).

Agent Type 1 has a rather basic reactive design. It wanders around the simulated
game world (randomly changing direction in a pre-defined time period), with no sensorial
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information about the positions of the alien satellites. The agent just knows that it must
eliminate the enemy if it runs into it. In other words, it must react. Regarding this, it is
designed on a sort of “touch sensor” principle, which allows him to make appropriate
decisions (to recognize and destroy the enemy).

Agent Type 2 has no sensorial information about the positions of enemy satellites, as
well. Similar to Agent Type 1, it is also based on a sort of emulated “touch sensor”, which
allows him to recognize and destroy enemy satellites when it runs into them. However,
it also uses sensorial information about nature and the boundaries of the space in which
it acts, to systematically search the space. When we say systematically, this means that
its primary goal is to cover the entire area and search every part of the space. Therefore,
it “patrols” horizontally (across Y-axis), from one side of the space to another, and upon
reaching the side boundary it shifts up (shift-up value is equal to its own height) and
continues its movement to the side boundary again.

Agent Type 3 is a variation of the previous agent. It has the same features. However,
it uses a different movement pattern and searches the space in a vertical manner, across
the X-axis. Therefore, upon reaching the side boundary, it moves aside for the value that is
equal to its own width and then continues its movement to the side boundary again.

All the previously described agent types are designed in a sort of minimalistic manner
(e.g., they do not have the ability to learn), according to our aim to put an accent on the be-
havior of rather basic structures, at the same time avoiding any unnecessary computational
and design expense.

Agent Type 4 is a sort of omniscient agent. Like the previous three agents, it also does
not have the ability to learn, but it has perfect information about the location of enemy
satellites and the surrounding world (it detects all the enemies in the space, memorizes
their locations, and then apply actions according to its agenda). The strategy that this kind
of agent is applying basically represents a practical visualization of the nearest neighbor
search. Namely, the agent finds the position of the nearest enemy and changes its direction
accordingly. Upon reaching this position and eliminating the enemy, it changes its direction
toward the next nearest satellite. It repeats this pattern until there are no more enemy
satellites. This strategy is not always the most optimal solution, especially in time-limited
tasks, which can be efficiently demonstrated in our AViLab system. However, we will not
analyze this in our paper.

As we mentioned earlier in the paper, besides agents, our system also offers a manual
mode. This mode enables a human user to enter a simulations scenario and try to fulfill
the imposed task. A human user controls the spaceship by using the arrows on the device
keyboard. This movement (as well as the movement of the agents) is designed carefully, so
the speed is always the same, even in diagonal directions (at this point, one should notice
that diagonal movement was a well-known “bug” in some early versions of popular com-
puter games). It is important to emphasize that all the significant predefined parameters of
the simulation scenarios are completely the same within all modes of operation (regardless
of whether the agents or human users are performing the imposed task). This is very
important if we want to ensure an unbiased comparison between them, when necessary.

3.4. Simulation Details and Main Control Arhitecture of Agents

In this sub-section, we will describe some general simulation details, which are already
partially elaborated in [24] but could be applied to the AViLab system in general. At the
beginning of each new simulation cycle, the previously selected agent or a human user
starts to move across the surrounding space, in the form of a spaceship, and according to its
own agenda. There is also a simulation time limit. At this point, it should be emphasized
that depending on our needs, we could adjust the duration (time limit) of each simulation
cycle. Consequently, upon reaching the defined time limit, the mission (imposed task)
is aborted.

Our task also has some additional requirements which must be taken care of—such
as the energy level of the spaceship. We introduced such a requirement in order to have a
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more applicable, and realistic task scenario (examples from everyday life include driving
an automobile, or piloting a plane, where you have to take care of the fuel level and adapt
your actions according to this). Accordingly, if the spaceship (which is under the control
of agents or humans) runs out of energy during the simulation, it will stop performing its
task. Therefore, as a consequence, it will fail to successfully achieve its task. As a penalty,
its score automatically drops down to zero. To prevent this sort of scenario, during the
simulation, the spaceship has to return (one or more times) to the power base, so it could
restore its energy. The initial value of the energy level is defined at 100 units. For every
second which spaceship spends outside the power base, the energy level decreases by four
units. Similarly, upon its return to the power base, the energy level of the spaceship starts
restoring every second while it is in there, on increasing by four units.

Considering our current agents, the “red flag” for returning to the power base is
triggered when the energy level reaches 35 units. This particular value is chosen because it
enables our agents to safely return to their power bases, even when they are located at the
farthest part of the simulation space. On the other hand, the “green flag” for reactivating the
agent and consequently leaving the power base is triggered upon a full recharge (reaching
100 units). Of course, it should be emphasized that this kind of agent strategy, depending
on the particular situation, does not always represent the most optimal solution.

All the previously mentioned simulation details and values of parameters are chosen
in order to provide efficient and illustrative simulations, and at the same time enable us
to have an illustrative insight into the agent’s capabilities. As some of the previously
mentioned parameters, they can also be altered and adjusted to different values if needed.

The general behavior cycle, applied to all four agents, can be depicted in the following
manner:

- Agent starts the defined task, by going out from its power base.
- Agent moves across the simulation world (according to the designed agenda), and

eliminates enemy satellites upon detection.
- Agent returns to the power base when its energy level reaches the defined critical

value.
- Agent restores its energy level in the power base.
- Agent starts a new behavior cycle by going out from the power base and continuing

its mission when the energy level reaches its defined value.

A simplified graphical representation of the general behavior cycle is shown in Figure 4.
The kind of agent behavior cycle which we want to provide can be accomplished with
different sorts of methods. Important theoretical foundations and insights related to the
very principles of the shaping of agent’s behavior are well described in [28,29], covering a
thorough analysis of different methods and algorithms. Bearing in mind the motivation
and specific details related to the development of our AViLab system, we have chosen
to construct an agent’s control structure based on decision threes and FSMs (Finite State
Machines), as the most suitable technique. FSMs are over the years widely accepted as a
dominant technique for the shaping of agent behavior in computer games [28] and are well
described in the available literature.

A UML-like graphical representation of the general control structure that we applied
to the agents in our game-like educational system can be seen in Figure 5. We used a sort
of hierarchical FSM as the main control framework. To be more precise, the energy levels
of our agents are out of the highest priority. Therefore, when the energy level reaches a
critical value, it activates a transition from the current state to the state that is higher in
the hierarchy. As a consequence, the agent instantly stops its current actions, end enters
a higher state. Therefore, the agent heads toward its power base in order to restore its
energy. Upon reaching the defined energy level (in our case—fully recharging), another
transition is activated, causing the agent to go back to the lower states and continue to
perform its regular task. At this point, one should notice that upon restoring their energy
levels, agents Type 2 and Type 3 return to the place they were at before their energy reached
the critical value (they previously memorize the location), and from that point continue
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their behavior/movement pattern. In other words, they continue their mission, right where
they were stooped. In that way, we are disabling the redundant behavior—in which the
agent would every time search the same part of simulation space. With agent Type 1, this
“return condition” is not necessary, since it is moving in random directions. For Agent Type
4, we found that the “return condition” is also rather irrelevant.
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4. Example of the Experimental Setup

In this section, we will describe an example of an experimental setup conducted in the
AViLab system. This kind of setup aims to show several possibilities of AViLab utilization
at the same time. The goal of this experimental setup is to examine and demonstrate how
successfully can relatively simple agent architectures (with limited knowledge about the
surrounding world, sensorily inferior to humans, and without the ability to learn) cope
with the imposed task, under specific time-limited conditions, and whether they can be
compared in the terms of efficiency with the test groups of human users. In other words,
we want to demonstrate and visualize the already mentioned premise, that depending on a
situation the main goal does not always have to be developing of the “smartest” possible
agent, but more simple solutions can also be optimal (with an often significant advantage,
reflected in the fact that they are computationally and algorithmically less demanding).

Therefore, we will use agents 1 to 3. In order to have a clearer insight into the
performance of agents, we will compare them to the two test groups of untrained human
users. In addition, we will use two different environments (static and dynamic spawning
mode). In this experimental setup, we limited the simulation cycle time to 60 s. The time
limit does not allow for an agent/user to explore every single part of the space—in the case
of Agent Type 2 and Agent Type 3, they cannot patrol the entire space world for the given
time. We deliberately designed the experiment in such a way, because we wanted to see
how agents and human users will handle the task under “tight“ time conditions.

As is mentioned, we examined developed agents and test groups of human users
in both, static and dynamic mode spawning scenarios. In both cases, the total number
of enemy aliens was the same (set to 30), but they are spawned in a different manner
as was explained earlier in the text. In order to provide a thorough insight into the
performance of the developed agents and human test subjects, 50 simulation cycles are
performed. The number of simulation cycles was chosen carefully, based on the work
presented in [24]. Namely, a too-small number of simulations would probably lead to
unreliable and possibly false results (e.g., agent would be falsely superior compared to
the previously untrained human user). At the same time, we must take care not to have
excessive repetition of the task. As was recorded in the literature, humans tend to explore
possible permutations through repetition [30], and this repetition leads to learning from
experience [31]. Consequently, with too many repetitions of the task, the influence of what
we call “a purely untrained phase” on the overall data results would be diminished.

Simulation results for all three agents in “static mode”, including a basic statistical
analysis, are given in Table 1. With the observation of the obtained data, it can be seen
that the performance of Agent Type 1 was rather constant, bearing in mind its built-in
constraints. Therefore, it can be concluded that its overall design ensured a solid behavior.
Agent Type 1, like the other two agents as well, never failed during the imposed task
(which is according to the way they are designed). While its performance results during
each simulation cycle vary—which is rather expected, bearing in mind the agent’s limited
knowledge about the outer world and its lack of sensorial information. Agent Type 2 had a
smaller standard deviation, comparing to Type 1. However, it scored significantly fewer
average points, max score, and achieved a lower median value. Performance of the Agent
Type 3 can be observed as the best out of these three. Although it did not achieve the max
score of Type 1 in any of the 50 simulation cycles, it had a better average score and median
value, followed by a significantly smaller standard deviation. Although agents Type 2 and
Type 3 had similar strategies, due to the shape of the spaceship, which affected the shifting
value, Agent Type 2 managed to cover more space during its “patrolling”. Therefore, it
managed to achieve better scores.
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Table 1. Performance data for three agents in a static mode environment, based on the 50 simulation
cycles.

Parameter\User Agent Type 1 Agent Type 2 Agent Type 3
Number of failed missions 0 0 0

Min score 9 6 14
Max score 21 12 20

Arithmetical mean value 15.62 9.2 16.92
Median value 16.00 9 17

Standard deviation 3.19 1.49 1.3

In order to have a better insight into the performance quality of the agents, we com-
pared them with two test groups of human users (with each group counting 10 individuals).
Namely, previously untrained human users entered the manual mode of our simulation
system, where they had the same task as the agents (one group of humans entered the static
spawning mode, while the other one entered the dynamic spawning mode). At this point,
the term “untrained” should be clarified more precisely. Namely, this means that selected
groups of human users had no prior experience in this particular game-like simulation, and
at the same time, they also had a negligible amount or no experience at all, in similar types
of simulations and computer games. One should also notice that both groups of human
users are chosen, while taking care of gender and age diversity, as much as it was possible.

At this point, the audience should be reminded once again that simulation conditions
are exactly the same, whether the agents or the human users enter the simulation scenario
(e.g., human users and agents move across the space with the same speed, etc.). In that
way, a fair and objective comparison is provided. There are, of course, two obvious main
differences between them. The first one is reflected in the fact that all agents are sensorily
inferior compared to humans, and do not have learning capabilities. The second one is
reflected in the fact that, unlike the agents, human users do not have a predefined trigger
for their return to the power base and restoration of the energy level (in other words—they
are not safe from failing). Consequently, human users must behave in an intuitive manner,
and therefore choose which recharging strategy will apply, and adapt the strategy if needed.
Table 2 shows the obtained simulation results, regarding the test group of untrained human
users in a static environment.

Table 2. Performance data of untrained human users in a static mode environment, based on the
50 simulation cycles.

Parameter\User HU1 HU2 HU3 HU4 HU5 HU6 HU7 HU8 HU9 HU10
Number of

failed missions 14 4 9 4 2 7 2 0 10 1

Min score 0 0 0 0 0 0 0 6 0 0
Max score 27 26 27 25 24 27 23 22 27 22

Arithmetical
mean value 13.86 15.08 15.58 14.24 15.26 15.6 15.2 14.4 15.48 13.80

Median value 15.00 15.00 17.00 14.00 15.00 17.00 15.00 14 17 14.00
Standard
deviation 9.67 6.70 8.52 6.19 4.77 7.40 4.16 4.26 8.85 4.56

While observing the experimentation process, it was noticed that human users differ-
ently coped with the imposed task, which was rather expected. This mainly resulted in their
selection of different tactical approaches—some of them had more aggressive strategies
resulting in a larger number of failures, while some had a more careful approach to the
problem, aiming to reduce failures, even at the cost of lower scores. However, they all
learned from experience to a certain degree and enhanced their strategies and overall
performance during the time. With a closer look at the statistical parameters shown in
Tables 1 and 2, we can conclude that all human users scored higher max scores than any
of the three agents. They were also superior to Agent Type 2, regarding the mean and
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median value. On the other hand, agents Type 1 and Type 3 were, generally speaking, more
successful than any of the human users in a static environment. These agents achieved
higher mean values than any of the human test users. Furthermore, as can be seen from
the statistical parameters, these agents had a more constant performance, which can be an
extremely significant advantage for certain types of tasks.

We also tested agents and humans in a dynamic spawning mode. Table 3 shows the
performance of another test group of humans, while Table 4 shows the performance of the
agents. The second test group of human users generally achieved lower scores compared to
the first one. One could also notice that agents decreased in their performance. The change
of environment particularly affected the performance of Agent Type 1. However, Agent
Type 3 remained overall better compared to the humans.

Table 3. Performance data of untrained human users in a dynamic mode environment, based on the
50 simulation cycles.

Parameter\User HU1 HU2 HU3 HU4 HU5 HU6 HU7 HU8 HU9 HU10
Number of

failed missions 10 4 13 4 2 5 0 1 12 1

Min score 0 0 0 0 0 0 7 0 0 0
Max score 20 24 24 25 20 23 19 21 27 18

Arithmetical
mean value 10.46 13.32 13.44 13.44 12.9 13.22 12.92 13.28 13.32 12.2

Median value 11 13 16 14 13 13 13 13 16 13
Standard
deviation 6.30 6.41 8.67 5.97 4.39 6.22 3.52 4.81 8.48 3.93

Table 4. Performance data for three agents in a dynamic mode environment, based on the 50
simulation cycles.

Parameter\User Agent Type 1 Agent Type 2 Agent Type 3
Number of failed missions 0 0 0

Min score 4 4 11
Max score 16 10 16

Arithmetical mean value 9.82 6.6 13.48
Median value 10.00 6.5 14

Standard deviation 2.86 1.23 1.28

By further increase of the number of tested human users, it could be expected that
there will be those who would in certain measure outperform Agent 3 in both environments.
Nevertheless, results of this experiment can be observed as a decently strong indicator
regarding the appropriate level of capabilities and performance of agent structures designed
according to our agenda.

Summing up the obtained experimental data can lead us to a conclusion that in certain
scenarios, a carefully designed and tuned control algorithm implemented in an agent’s
behavior, can to a certain degree rather successfully compensate for a lack of sensorial
information and complex AI. This represents a very important exercise demonstration,
keeping in mind that we often meet constraints regarding the available computational
resources in present highly complex virtual environments [29]. One should also notice,
once again, that the ultimate goal does not always represent the development of the
“smartest” possible agent, but rather the most adequate for the given situation, especially
when it comes to computer games applications [26,32]. Therefore, in some scenarios, an
inexpensive design can represent a better choice over a complex AI, regarding all the
parameters. All of the previously demonstrated in this exercise is not only significant from
the aspect of already mentioned gaming worlds, but also from the aspect of real-world
applications, where inexpensive (yet reasonably efficient) design can be a crucial segment
of the development process. In the end, it should be also underlined that both groups of
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human participants unanimously evaluated their experience with the AViLab system as
highly positive.

5. Concluding Remarks and Future Work

This paper presented the realization of the AViLab software system aiming to serve as
the educational tool dedicated to experimentation and demonstration, regarding an agent’s
features and basic principles. Our main objective was to build a game-like system specially
dedicated to agents while focusing on some of the fundamentals of agent theory. Bearing
in mind that the concept of agents and related theory can often seem rather abstract to
those that are getting introduced to the field (students, pupils, etc.), we strongly believe
that systems such as our AViLab can help in visualization, practical demonstration, and a
therefore better understanding of theoretical fundamentals.

As was discussed in the paper, virtual laboratories in their essence offer many useful
features. They are more affordable than real laboratory equipment. They enable the
repeatability of experiments. In addition, they offer a high level of availability and location
independence, as they can be installed on almost any personal computer. Furthermore,
virtual laboratories can sometimes offer experimentation possibilities unfeasible or unviable
in the real world.

Our AViLab system can be utilized in several ways. Users can experiment with
changing the parameters while tracking down the performance of a single agent. They
can compare agents between themselves, or include test subjects and compare them with
agents, under a certain experimental setup (as was demonstrated in our exemplary ex-
periment). You can also customize spawning, in order to demonstrate certain scenarios
of interest. Therefore, different scenarios can be designed, depending on desired learn-
ing/experimentation/demonstration agenda. In other words, our system is suitable to be
used as a demonstration tool during course lectures, as well as for laboratory exercises
(designed according to the aim of the lab supervisor), aiming to provide efficient demon-
stration of the important insights of the agent’s technology fundamentals in illustrative,
as well as an immersive manner (e.g., exploiting agent’s predictability, autonomy, control
architectures, etc.).

Considering future work, besides the standard parameters that we can change, such
as the number of satellites, time-limit of the simulation, etc., we also plan to work on
a few different variations of our simulation scenario features, as well. Consequently,
this could enable us with a wider framework for demonstration. Furthermore, since our
system is developed in such a way (due to an object-oriented programming approach),
that in future work it can be rather easily expanded with additional modes, upgrades, and
scenarios; we consider the development of a “Battle Arena” mode, where human users
can compete directly against a chosen agent. A deeper pedagogical analysis of the system,
oriented toward the user experience, is yet to be thoroughly researched, with careful and
broader elaboration of different experimental and demonstrations scenarios. Of course,
development directions oriented toward pedagogical agents are something to be thought
about in future work. However, modifications in this direction will be thoroughly analyzed,
while taking care not to violate the basic principles of system development elaborated in
the paper.

In the end, one should notice once again that the developed AViLab system aims not
only to serve as an educational tool but at the same time has the potential for various
research applications.
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