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Abstract: Cluster-based hot spot detection is applied in many disciplines to analyze the locations,
concentrations, and evolution over time for a phenomenon occurring in an area of study. The hot
spots consist of areas within which the phenomenon is most present; by detecting and monitoring
the presence of hot spots in different time steps, it is possible to study their evolution over time.
One of the most prominent problems in hot spot analysis occurs when measuring the intensity of a
phenomenon in terms of the presence and impact on an area of study and evaluating its evolution
over time. In this research, we propose a hot spot analysis method based on a fuzzy cluster hot spot
detection algorithm, which allows us to measure the incidence of hot spots in the area of study. We
analyze its variation over time, and in order to evaluate its reliability we use a well-known fuzzy
entropy measure that was recently applied to measure the reliability of hot spots by executing fuzzy
clustering algorithms. We apply this method in crime analysis of the urban area of the City of London,
using a dataset of criminal events that have occurred since 2011, published by the City of London
Police. The obtained results show a decrease in the frequency of all types of criminal events over the
entire area of study in recent years.

Keywords: hot spot; spatiotemporal hot spot detection; fuzzy cluster; EFCM; reliability; fuzzy
entropy; HR-EFCM

1. Introduction

Hot spot detection is a spatial analysis method aimed to detect regions on a map, called
hot spots, within which a high concentration of events characterizing a specific phenomenon
is localized. Each event is spatially referred and geometrically represented as a point on
the map; cluster techniques are often applied on the dataset of events to detect cluster
prototypes representing hot spots on the map.

Clustering methods are generally used to detect hot spots. The data points are made
up of events assigned as elements with point geometry on the map. Clustering algorithms
are used to locate and construct hot spots as elements with polygonal geometry on a
map, corresponding to regions of the study area where the phenomenon is most insistent.
Moreover, by analyzing the location and extension of hot spots detected in successive time
frames, it is possible to study their evolution over time.

Many cluster-based hot spot detection methods are proposed in the literature. K-
means [1] is applied to detect hot spots in crime analysis [2–5] and in fire analysis [6,7].
K-medoids [8] is used to detect hot spots in disease analysis [9] and crime analysis [10].
Fuzzy C-means (for short FCM) [11–13] is used by various authors to detect hot spots in
crime analysis [14–17], road traffic crashes [18], and disease analysis [19].

Some researchers apply density-based clustering to detect also irregular shapes of hot
spots on the map. Kernel density-based algorithms [20] are applied in crime analysis [21],
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soil pollution [22], and traffic accident analysis [23]. The fast DBSCAN algorithm [24] is
applied in [25] to detect hot spots with a high density of taxi passengers.

As a trade-off between the speed of execution of K-means and FCM and the accuracy
in detecting the outline of hot spots obtained using density-based algorithms, in [26] a
cluster-based hot spot detection method based on the extended FCM algorithm [27] (for
short EFCM) is proposed; EFCM is an extension of the FCM algorithm in which cluster
prototypes are hyperspheres in the feature space, rather than points, as in K-means and
FCM. In [26], the hot spots are given by circles on the map; the authors show that these
circles approximate the shape of the clusters detected by using density-based clustering.
The EFCM hot spot detection algorithm is applied in [28] for disease analysis and in [29]
for earthquake disaster analysis.

In particular, in [28] a method based on EFCM is proposed for spatiotemporal hot
spot analysis. The dataset of events is partitioned in subsets, where each subset contains
events occurred in a time frame. By analyzing the location and extent of the hot spots
detected at each time step on the map, their displacement over time is traced; in addition,
computing the spatial intersections between hot spots detected at consecutive time frames,
it is possible to analyze in which geographical areas the phenomenon is persistent and in
which geographical areas it has moved.

One of the major critical points in hot spot analysis is to define a measure of the
intensity of the phenomenon on a specific area and to make an assessment of the reliability
of this measure. The hot spot analysis algorithms proposed in the recent literature do not
make use of a measure to evaluate the intensity of the phenomenon over an area and do
not evaluate how reliable this measure is. In [30], an index evaluating the reliability of
hot spots detected via EFCM clustering is proposed. This index measures the reliability
of the hot spots measuring the fuzziness of clustering evaluated considering the De Luca
and Termini fuzzy entropy of a fuzzy set [31,32]. In [33,34], the De Luca and Termini fuzzy
entropy is used to measure the fuzziness of clustering detected by executing FCM; each
fuzzy cluster constitutes a fuzzy set and its fuzzy entropy is measured by considering the
membership degrees to it of the data points, so that the closer the cluster is to a crisp set,
the less the measure of its fuzziness will be.

In this paper, we propose a new method to analyze the intensity and spatiotemporal
evolution of hot spots detected using the EFCM spatiotemporal hot spot detection proposed
in [28]. We assess the incidence over time of the phenomenon analyzed in a specific area
by calculating an index called hot spot strength, which measures the percentage over time
that the selected area is affected by hot spots. In addition, we measure the reliability of
this evaluation, calculating a reliability index of the hot spot strength based on the hot spot
reliability measure proposed in [30].

The main contributions of our research are summarized below:

- In addition to analyzing the evolution of the phenomenon in a selected area for each
time frame, our method evaluates with what intensity this area has been affected by
the phenomenon in a given period of time; we measure this intensity by calculating
the hot spot strength index. This measure is essential in an application context to
understand with what intensity a certain phenomenon is spreading over an area
of investigation;

- A measure of the reliability of the hot spot strength is proposed, using the reliability
index of the hot spot [30] to assess the reliability of the hot spot strength measured in
a time frame; it is given by the weighted average of the reliability of the hot spots that
insist on the selected area in this time frame, where the weight assigned to a hot spot
is given by the extension of its spatial intersection with the selected area.

The EFCM hot spot detection algorithm and the fuzzy entropy hot spot reliability
measure are summarized in Section 2. In Section 3, we present our method. Section 4
shows the results of its application in crime analysis on an area of study given by the City
of London. Final considerations and future perspectives are included in Section 5.
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2. Preliminaries
2.1. EFCM Hot Spot Detection

Let X = {x1, . . . , xN} ⊂ R2 a set of bi-dimensional data points extracted from a spatial
event dataset. Each data point is a spatially referenced event given by its latitude and
longitude coordinates.

EFCM returns cluster prototypes made of hyperspheres in the feature space. The
C(0) clusters are assigned initially in EFCM; the optimal number of clusters C is found
by dissolving, during each iteration, the two clusters most similar to each other if their
similarity is greater than a prefixed threshold η.

Let V = {v1, . . . ,vC} ⊂ Rn be the set of centers of the C clusters. Let U be the C × N
partition matrix, where uij is the membership degree of the jth data point xj to the ith cluster
vi. Let r = {r1, . . . ,rC} be the set of radii of the C clusters.

EFCM minimizes the following objective function:

J(U, V, r) =
C

∑
i=1

N

∑
j=1

um
ij δ

2
ij (1)

where m is the fuzzifier parameter and δij, interpreted as the distance between the ith cluster
and the jth data point, is given by:

δij = max
(
0, dij − ri

)
(2)

In (2), dij is the Euclidean distance between the center of the ith cluster and the jth data
point and ri is the radius of the ith cluster.

EFCM stops after t iterations if the difference
∣∣∣U(t) −U(t−1)

∣∣∣ = max
i = 1, . . . , C

j = 1, . . . , N

∣∣∣u(t)
ij − u(t−1)

ij

∣∣∣ is

less than a prefixed stop iteration threshold ε.
The parameters to set before executing EFCM are:

- The fuzzifier parameter m;
- The stop iteration threshold ε;
- The threshold assigned to dissolve the most similar clusters η;
- The initial number of clusters C(0).

EFCM returns the centers of the final clusters, their radii, and the C × N partition matrix.
EFCM is applied in [26] to detect hot spots, given by spatial regions where such events

are localized with higher density. In hot spot detection, the features consist of the two
geographical coordinates locating the events, and a hot spot is approximated by a circular
area on the map. The prototype of the ith cluster detected by EFCM is given by a circle with
center coordinates vi = (xi, yi) and a radius ri. EFCM returns the centers of the C clusters V ,
their radii r, and the partition matrix U. The couple (vi, ri) identifies a circle on the map.

In [26], the authors show that EFCM can approximate the shapes of hot spots on the
map and is robust with respect to the presence of noise and outliers.

2.2. Fuzzy-Entropy-Based Hot Spots Reliability Evaluation

In [33,34], a measure of the reliability of hot spots detected via EFCM based on the De
Luca and Termini fuzzy entropy [31,32] is proposed.

The De Luca and Termini fuzzy entropy measures the fuzziness of a fuzzy set.
Let F(X) = {A: X→[0, 1]} be the family of fuzzy sets defined on a universe of discourse X.
Let h: [0,1]→[0,1] be a continuous function called the fuzzy entropy function, where:

1. h(1) = 0;
2. h(u) = h(1 − u);
3. h is monotonically increasing in in [0, 1/2);
4. h is monotonically decreasing in in [1/2, 1].
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The fuzzy entropy function h has a minimum (0) when u is 0 or 1 and a maximum
when u = 1/2.

De Luca and Termini in [26,27] propose the following fuzzy entropy function:

h(u) =


0 i f u = 0
−u·log2(u)− (1− u)·log2(1− u) i f 0 < u < 1
0 i f u = 1

(3)

which has the maximum value 1 when u = 1
2 ; this is called Shannon’s function.

If X = {xi, x2, . . . , xN} is a discrete set, the entropy measure of fuzziness of the fuzzy set
A is given by:

H(A) = K
N

∑
j=1

h
(

A
(
xj
))

(4)

where K is a multiplicative constant. If H(A) = 0, then for each element xj, j = 1, . . . ,N A(xj) = 0 or
A(xj) = 1 and A coincides with a subset of the set X; if for each element xj A(xj) = 1/2, then
the fuzziness of A is maximal.

If A is a crisp set, its fuzziness is null and H(A) = 0. The higher the fuzziness of a fuzzy
set, the closer the mean membership degree to the fuzzy set of X’s elements approaches 1/2.

In [33,34], the fuzziness measure (4) is used to construct a new validity index applied
to evaluate the optimal number of clusters in FCM. If Ai is the ith fuzzy cluster where i = 1,
. . . ,C is considered as a fuzzy set and uij is the membership degree of the jth data point to
the ith cluster, the authors use the following fuzzy entropy measure of Ai:

H(Ai) =
1
N ∑N

j=1 h
(
uij
)

i = 1, . . . , C (5)

where N is the number of data points and the De Luca and Termini fuzzy entropy function
(4) is used.

In [30], the reliability of the ith detected hot spot is measured by calculating the
fuzziness of the detected clusters. The reliability index of a detected hot spot is given by
the formula:

R(Ai) = 1− H(Ai) i = 1, . . . , C (6)

The reliability of each hot spot is evaluated by calculating its reliability index by (6);
this is a value in the range [0,1]. Finally, the reliability thematic map is produced.

In [30], the authors propose an EFCM-based hot spot detection algorithm in which the
reliability of each hot spot is calculated by (6).

Below we show this algorithm, abbreviated as the HR-EFCM (Algorithm 1).

Algorithm 1 HR-EFCM

1. Extract the event dataset X = {x1, . . . , xN} ⊂ R2

2. Execute EFCM (X, m, ε, η, C(0)) obtaining the partition matrix U with components uij, the
cluster centers vi, their radius ri where i = 1, . . . ,C and j = 1, . . . ,N
3. For I = 1 to C //for all the clusters detected by EFCM
4. H← 0
5. For j = 1 to N
6. H← H + h(uij) // where the Equation (5) is applied for the function h(u)
7. H← H/N
8. Ri ← 1 − H
9. Next i
10. Return the partition matrix U, the cluster centers vi, their radius ri, and their reliability
Ri i = 1, . . . ,C

In [30], the HR-EFCM algorithm is applied to detect hot spots in disease analysis; the
results show that the reliability of a hot spot is linearly dependent on the standard deviation
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of the values of the membership degrees of the data points to the corresponding fuzzy
cluster. Furthermore, comparative tests show that the reliability values calculated using the
hot spot reliability evaluation algorithm are correlated to the reliability values assigned by
the pool of experts.

3. The Proposed Framework

We propose a novel method based on the HR-EFCM algorithm that evaluates the
reliability of the results of the spatiotemporal evolution of hot spots.

Let X be a dataset of georeferenced events partitioned in T subsets X1, X2, . . . , XT,
where Xt t = 1, 2, . . . , T is a subset containing all events that occurred in a given time frame t.

For each subset, HR-EFCM is executed to detect the hot spots as circles on the map.
For each hot spot, the reliability is calculated as in (6).

In order to analyze the localization and evolution of hot spots in a selected area on
the map, the zones are defined in this area covered by hot spots and detected in each time
frame; each of these zones consists of the extent of the spatial intersection between a hot
spot and the selected area.

In Figure 1, an example is shown of this process, in which the dataset X is partitioned
into three subsets, corresponding to three consecutive time frames.

Figure 1. Example of hot spots detected and plotted in an area.

Figure 1 shows the hot spots detected in each of the time frames T1, T2, and T3. The
original hot spots A1 and B3 in the figure are cut on the boundary of the selected area on
the map. Therefore, an evaluation of the intensity of the phenomenon can be made by
measuring the extension of the hot spots included in the selected area in relation to the
extent of the entire selected area.

For each time frame an index is calculated, called the hot spot strength, which measures
the percentage of the extent of the selected area covered by hot spots; moreover, an assess-
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ment of the reliability of this measure is calculated, given by the weighted average of the
reliability of each hot spot covering the selected area, in which the weight is constituted by
the extent of the spatial intersection between the hot spot and the selected area.

The hot spot strength measured in the tth time frame is given by:

St =
1
D ∑Ct

i=1 Di,t t = 1, . . . , T (7)

where Ct is the number of hot spots detected in the tth time frame, Di,t is the extent of the
spatial intersection between the ith hot spot detected in the tth time frame and the selected
area, and D is the extent of the selected area.

If the ith hot spot does not intersect with the selected area, Di,t is null and this hot spot
does not contribute to the calculation of the hot spot strength index St.

St takes on a value between 0 and 1; it is equal to 0 if no hot spot detected at the tth
time frame covers the selected area; conversely, it is equal to 1 if the extent of the selected
area is covered by hot spots detected at the tth time frame.

The reliability of the hot spot strength St is evaluated by the formula:

RSt =
∑Ct

i=1 Di,t·Ri,t

∑C
i=1 Di,t

t = 1, . . . , T (8)

where Ri,t is the reliability of the ith hot spot detected in the tth time frame, varying in the
range of [0,1].

RSt varies between 0 and 1; it is equal to 0 if the reliability of all hot spots covering
the selected area detected in the tth time frame is zero; conversely, it is equal to 1 if the
reliability of all these hot spots is equal to 1.

In synthesis, the hot spot strength of the phenomenon in the selected area at the tth
time frame is measured as the ratio between the sum of the extents of the spatial intersection
between the hot spots detected in this time frame and the selected area and the extent of
the selected area; its reliability is given by the weighted average of the reliability of each
hot spot measured by (6), where the weight is the extent of the spatial intersection between
this hot spot and the selected area.

In the preprocessing phase, HR-EFCM is executed for each subset in order to detect
the Ct hot spots, t = 1, . . . , T, and calculate their reliability (Algorithm 2).

Algorithm 2 Spatiotemporal hot spots detection

1. Extract the event dataset X
2. Partition the dataset into T subsets X1, X2, . . . ,XT
3. For t = 1 to T //for each subset of events occurred in tth the time frame
4. Execute HR-EFCM (Xt, m, ε, η, C(0))
5. Next t
6. Return the Ct hot spots detected and their reliability t = 1, . . . , T

After selecting an area on the map, for each time frame the hot spot strength and its
reliability are calculated, respectively, via Equations (7) and (8) (Algorithm 3).
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Algorithm 3 Spatiotemporal hot spots Strength Evaluation

1. Select a zone on the map
2. For t = 1 to T //for each subset of events occurred in tth the time frame
3. For I = 1 to Ct //for all the hot spots detected executing HR-EFCM on the tth subset
4. St ← 0
5. RSN← 0
6. RSD← 0
7. Di,t ← area of the part of the ith hot spot intersecting the selected region
8. St ← St + Di,t
9. RSN← RSN + Di,t ∗ Si,t
10. RSD← RSD + Di,t
11. Next i
12. RSt ← RSN/RSD
13. Next t
14. Return the hot spot strength St and its reliability t = 1, . . . , T

By analyzing the trend of the hot spot strengths calculated in each time frame, it is
possible to evaluate how the diffusion of the phenomenon analyzed in the selected area
has varied over time. Furthermore, the assessment of the reliability of the hot spot strength
values allows the overall reliability of the results of the analysis to be evaluated.

To test the proposed method in an application context, we took into consideration
various types of criminal events (robberies, shoplifting, car thefts, acts of sexual violence,
etc.) in urban agglomerations in the City of London. The tests were carried out considering
the Lower Super Output Areas (for short LSOAs) in the City of London as the study area
and analyzing the spread of different types of criminal events that occurred from September
2011 to July 2021. In Section 4, the results of all experiments are shown and discussed.

4. Experimental Results

The LSOA in the City of London is shown in the map in Figure 2. We applied our
method using a dataset of crime events that occurred in the LSOAs in the City of London
from September 2011.

Figure 2. LSOAs of the City of London, shown within Greater London.

Following the neighborhood policing model known as sector policing (https://www.
cityoflondon.police.uk), examined on 1 July 2021, the city of London is split into two
sectors, east and west, with a senior leader responsible for each sector. Each sector is broken
down further into three regions called clusters, including adjoint wards. Every cluster is
guarded by a group of police officers, the Dedicated Ward Officers (DWO), responsible for
maintaining order in that region.

https://www.cityoflondon.police.uk
https://www.cityoflondon.police.uk
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The west sector includes the Fleet Street, Bank, and Barbican clusters, while the east
sector includes the Monument, Liverpool Street, and Fenchurch Street clusters. A map of
the six clusters is shown in Figure 3.

Figure 3. Map of the clusters in the City of London.

In these experimental tests, we applied the proposed method for analysis by type of
criminal event, the incidence of the phenomenon on each of the six clusters in which the
City of London is partitioned, and its evolution over time. This analysis will allow us to
assess how effective the DWO’s cluster surveillance may have been, monitoring how this
effectiveness changes over time.

The database used in these experiments is composed of 22,310 georeferenced crime
events that occurred in the City of London from September 2011 to July 2021. It is par-
titioned into 14 datasets corresponding to the 14 crime types recorded by the police in
England and extracted from the website https://data.police.uk/ (accessed on 1 July 2021).

We implemented our method using GIS ArcGIS Desktop 10.8. The geographical
coordinate system used in our experiments was the projected Universal Transverse Mercator
British National Grid coordinate system.

In the preprocessing phase, all the recorded events without geolocation information
were discarded, while the other events were georeferenced and divided by type of crime
and year of occurrence.

For each dataset, we executed our method by partitioning it in eleven subsets, corre-
sponding to the crime events occurred in each time frame, where a time frame is given by
a year.

Table 1 shows the number of recorded and georeferenced crime events belonging to
each crime type that occurred in this period in the City of London.

Criminal events belonging to the typology “theft from the person” were recorded
only starting from 2019; the “bicycle theft” and “possession of weapons” events started
from 2013.

For each subset corresponding to a crime type, the spatiotemporal hot spot detection
algorithm is executed and results are obtained for each year the hot spots are detected, as
given by circular areas on the map.

Then, the spatiotemporal hot spot strength evaluation algorithm is executed for each
crime type on the six clusters, measuring for each year the hot spot strength of the crime
type on the cluster and its reliability.

For each cluster in the City of London, it is possible to analyze the locations and
variation over time of the areas covered by hot spots detected by events belonging to a
specific crime type.

https://data.police.uk/
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Table 1. Number of crime events that occurred in the City of London from September 2011 to July 2021.

Crime Type
Number of Crime Events

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Anti-social behaviour 670 1710 1007 1056 786 1066 1064 1443 1328 751 336

Bicycle theft 260 392 259 359 290 460 453 455 63

Burglary 77 347 262 230 220 241 174 328 365 201 37

Criminal damage and arson 77 240 250 220 214 243 181 238 306 218 52

Drugs 183 536 415 429 348 340 242 410 791 636 255

Other crime 98 5987 6887 9459 5995 181 119 126 244 229 63

Other theft 859 2653 2397 2128 1567 1507 1119 1740 2953 935 106

Possession of weapons 17 25 15 43 37 71 85 53 17

Public order 82 204 172 201 164 250 175 430 515 297 115

Robbery 11 52 49 44 38 29 33 105 183 91 25

Shoplifting 205 636 590 566 628 656 572 915 1011 690 177

Theft from the person 944 494 131

Vehicle crime 49 172 214 218 91 175 121 252 219 165 37

Violence and sexual offences 203 624 660 745 833 931 693 1307 1514 710 224

Tot 2514 13,161 13,180 15,713 11,168 6021 4820 7825 10,911 5925 1638

For the sake of brevity, the results obtained for two types of crimes are detailed below
for “drugs” and “shoplifting” in the Bank and Liverpool Street clusters.

The map in Figure 4 respectively shows the areas covered by hot spots detected for
drugs crime events that occurred in the years 2017 (marked in blue) and 2018 (marked in
red) in the Bank cluster.

Figure 4. Drug crime hot spots in the Bank cluster for the years 2017 (marked in blue) and 2018
(marked in red).

Figures 5–7 respectively show the areas covered by hot spots detected for drug crime
events in the years 2018–2019, 2019–2020, and 2020–2021.

One can observe that a large zone covered by a drug crime hot spot is present in the
eastern area of the Bank cluster in 2017, which is no longer present in subsequent years. On
the other hand, an area covered by hot spots persists in the northwest of the cluster.
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Figure 5. Drug crime hot spots in the Bank cluster for the years 2018 (marked in blue) and 2019
(marked in red).

Figure 6. Drug crime hot spots in the Bank cluster for the years 2019 (marked in blue) and 2020
(marked in red).

Figure 7. Drug crime hot spots in the Bank cluster for the years 2020 (marked in blue) and 2021
(marked in red).

Figure 8 plots a trend for the hot spot strength detected in the Bank cluster for drug
crimes from 2011 to 2021.
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Figure 8. Trend of the hot spot strength for drug crimes in the Bank cluster.

The hot spot strength reaches a maximum in 2016 of 35%, then decreases to a minimum
of less than 10% in 2018 and stabilizes at a value of around 15% from 2019.

Figure 9 shows the trend of the reliability of the hot spot strength calculated by (8). The
reliability fluctuates between a minimum value of 0.75, reached in 2016, and a maximum
value of 0.9. Since 2019, its trend has been constant, being approximately almost equal
to 0.9.

Figure 9. Trend of the reliability of the hot spot strength for drug crimes in the Bank cluster.

Figure 10 plots the trends of the hot spot strengths obtained for all the six clusters for
drug crimes.

Figure 10. Trends of the hot spot strengths for drug crimes in all six clusters of the City of London.
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Of particular importance in Figure 10 are the decrease over time of the hot spot strength
in Bank (which halves from 80% in 2011 to 40% in 2021) and the increase in Fenchurch
Street (which is zero in 2017 and reaches 50% in 2020).

The map in Figure 11 shows the areas covered by hot spots detected for drug crime
events in the years 2017 (marked in blue) and 2018 (marked in red) in the Bank cluster.

Figure 11. Shoplifting hot spots in the Liverpool Street cluster for the years 2017 (marked in blue)
and 2018 (marked in red).

Figures 12–14 respectively show the areas covered by hot spots detected for drug
crime events in the years 2018–2019, 2019–2020, and 2020–2021.

Figure 12. Shoplifting hot spots in the Liverpool Street cluster for the years 2018 (marked in blue)
and 2019 (marked in red).

In the cluster there are two hot spots, one central and the other in the border area with
the Monument cluster; the latter appears starting from 2018. Of particular significance is a
reduction in the central hot spot from 2017 to 2021.

Figure 15 plots the trend of the hot spot strengths detected in the London Street cluster
for shoplifting from 2011 to 2021.
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Figure 13. Shoplifting hot spots in the Liverpool Street cluster for the years 2019 (marked in blue)
and 2020 (marked in red).

Figure 14. Shoplifting hot spots in the Liverpool Street cluster for the years 2020 (marked in blue)
and 2021 (marked in red).

Figure 15. Trend of the hot spot strength for shoplifting in the Liverpool Street cluster.

This trend is similar to the one shown in Figure 8 for drug crimes in the Bank cluster.
The hot spot strength reaches a maximum in 2013 of 70% and then decreases to reach a
minimum of 10% in 2021.

Figure 16 shows the trend of the reliability of the hot spot strength calculated by (8).
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Figure 16. Trend of the reliability of the hot spot strength for shoplifting in the Liverpool Street cluster.

The reliability fluctuates between a minimum value of 81%, reached in 2013, and a
maximum value of 88%. Since 2016, it has remained approximately equal to this value.

To analyze the presence of correlations between the hot spot strength and the extension
of areas with high data point density, the ratio between the extension of areas with annual
data point density per square kilometer greater than the threshold and the extension of
the Liverpool Street DWO cluster is calculated in each year. Here, we use three threshold
values, 200, 300, and 400 data points per square kilometer. Table 2 shows for each year both
the hot spot strength and the values of these ratios obtained, with the thresholds set at 200
(D200), 300 (D300) and 400 (D400) data points per square kilometer.

Table 2. Annual values for the percentages of areas with numbers of data points greater than 200,
300, and 400 data points per square kilometer.

Year Hot Spot Strength D200 D300 D400

2011 0.18 0.18 0.07 0.07

2012 0.47 0.15 0.10 0.20

2013 0.68 0.04 0.04 0.16

2014 0.35 0.22 0.13 0.00

2015 0.22 0.24 0.10 0.04

2016 0.16 0.19 0.05 0.02

2017 0.17 0.08 0.02 0.01

2018 0.15 0.07 0.01 0.04

2019 0.14 0.06 0.02 0.05

2020 0.15 0.03 0.02 0.08

2021 0.07 0.06 0.01 0.05

Figures 17–19 show the trends for the D200, D300, and D400 indices.

Figure 17. Trend of the percent of areas with density points greater than 200 pts/km2 for shoplifting
in the Liverpool Street cluster.
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Figure 18. Trend of the percent of areas with density points greater than 300 pts/km2 for shoplifting
in the Liverpool Street cluster.

Figure 19. Trend of the percent of areas with density points greater than 400 pts/km2 for shoplifting
in the Liverpool Street cluster.

The three trends are similar to the hot spot strength trend. In particular, the trend
for the D300 index is most similar to the trend for the hot spot strength, with a mean
absolute difference of 5% (12% for D200 and 7% for D400) and a Pearson’s linear correlation
coefficient value of 0.935 (0.922 for D200 and 0.923 for D400). Similar trends are obtained
for other crime types and in all DWO clusters.

Although the use of a simple density-based statistical analysis provides results ap-
proximately similar to those obtained by measuring the hot spot strength, this analysis,
in addition to the disadvantage of depending on the choice of spatial density threshold,
can only provide approximate results. In order to obtain more precise and reliable results,
it is necessary to use density-based cluster algorithms; however, such algorithms have
high computational complexity. The use of the hot spot strength method, on the one hand,
involves linear computational complexity, as it executes an FCM-based cluster algorithm to
detect the hot spots. Furthermore, it is able to provide reliable results and to evaluate this
reliability by measuring the reliability of the hot spot strength.

Figure 20 plots the trends for the hot spot strengths obtained for all the six clusters for
shoplifting in the City of London.

The trends in Figure 20 show a strong decrease in hot spot strength in Liverpool Street
from 2013, which reaches a maximum value of 70%; in all other clusters, the strength never
reaches a maximum value greater than 30%. For all clusters, the hot spot strengths for
shoplifting are below 20% in 2021.

Trends for the hot spot strengths of other types of crimes also show decreases in recent
years in all clusters of the City of London. These results show that in recent years, the
control of the entire City of London by the police has been further intensified and improved.
Furthermore, since the reliability of hot spot strength measures is always greater than
70%, and starting from 2016 is always greater than 80%, all of the results obtained can be
considered reliable.
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Figure 20. Trends of the hot spot strengths for shoplifting in all the six clusters of the City of London.

5. Conclusions

This paper presents a novel method aimed to analyze the spatiotemporal evolution of
hot spots. The incidence of hot spots in a selected area is measured by calculating an index
called the hot spot strength, and by evaluating its reliability using a method based on the De
Luca and Termini fuzzy entropy measure.

This method is applied in crime analysis of the study area of the City of London, by
acquiring the datasets published by the UK police relating to the various types of criminal
events that occurred every year in the City of London from 2011 to 2021. The hot spot strength
values measured on each cluster into which the city is partitioned and their reliability are
calculated for each year and for each type of crime. The results show a general decrease in
hot spot strength starting from 2016 in all clusters, which suggests an improvement in the
control of the City of London by the wards in recent years. The hot spot strength measures
can be considered reliable, as their reliability values are always greater than 0.7.

In the future, we intend to apply our method in different contexts and for the different
problems, and to test it in GIS-based platforms to monitor the location, intensity, and
temporal evolution of natural, anthropogenic, or climatic events in areas affected by a
certain phenomenon.
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