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Abstract: In the modern semiconductor industry, defective products occur with unexpected small
variables due to process miniaturization. Managing the condition of each part is an effective way of
preventing unexpected errors. The industrial internet of things (IIoT) environment, which can monitor
and analyze the performance degradation of parts that affect process results, enables advanced process
yield management. This paper introduces the IIoT concept-based data monitoring and diagnostic
system construction results. The process of pump vibration data acquisition is explained to evaluate
the effectiveness of this system. The target process is deposition. The purpose of the system is to
detect degradation of pumps due to by-products of the atomic layer deposition (ALD) process. The
system consists of three areas: a data acquisition unit using six vibration sensors, a Web access-based
monitoring unit that can monitor vibration data, and an Azure platform that searches for outliers in
vibration data.

Keywords: industrial internet of things; web-access; azure; accelerometer; preprocessing

1. Introduction

Internet of things (IoT) is a technological innovation that creates an environment
of convergence around nature. Objects and conditions are digitally represented and re-
motely monitored over the networks. They are maintained and controlled in intelligent
ways and conventional hard limits. Five layers of IoT technology were suggested to de-
fine its key technology components: (1) perception layer (data gathering) by a physical
object, sensor, and actuator; (2) network layer (data transmission) via network technolo-
gies; (3) middleware layer (process information) for data analysis and decision making;
(4) application layer (smart application) with graphic data representation; and (5) business
layer (system management) for the benefits of business [1]. When IoT was conceptually
developed, the network and middleware layers were more focused on building an IoT
framework to utilize various IoT data from numerous perception layers. However, the
utilization of the developed IoT has been applied within the limited scope of the domain.
A great potential of the IoT convergence lies in industrial domains, where the entities for
the IoT needs are many and a huge business innovation opportunity, and the evolution of
IoT continued with industrial IoT (IIoT) [2].

With the advent of industry 4.0 strategy, factory automation with industry internet
can be represented by a programmable logic controller based supervisory control and
data acquisition, manufacturing excursion system, and converging information technology
(IT) and operational technology of enterprise resource planning to achieve the goal of
manufacturing technology to increase the productivity and flexibility to reduce production
cost. To achieve one step closer to the success of IIoT, Chen et al. suggested a framework
for collaborative sensing intelligence with a research challenge [3]; however, the actual data
acquisition considering data quality remains a practical challenge in a perception layer. The
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differences between the machine-oriented IIoT and human-centered consumer IoT include
existing devices and standards for data acquisition, fixed connectivity with centralized
network management, and high data volume [4]. One of the most promising applications
of IIoT is facility or equipment maintenance by automated condition monitoring data
acquisition and abnormal detection, which is called the predictive maintenance, or e-
maintenance, in the manufacturing domain [5–8]. Rather simplified practice on facility
management with temperature and humidity monitoring or standalone equipment with
vibration sensors has been demonstrated in a capacity of characteristic condition sensing
with existing sensors, wireless data transmission, and data visualization. However, a
more realistic facility-level IIoT requires a very complicated framework with subject matter
experts (SMEs). Recently, a comprehensive categorical framework for IIoT was proposed.
Additionally, it is essential to set a practical classification scheme for the detailed and
successful IIoT framework [9].

Semiconductor chip manufacturing facilities, called FAB, consists of multiple facility
layers/areas: a fan filter unit layer for cleaning air supply, cleanroom layer for operating
wafer production and inspection, service area for production equipment, and sub-fab
layer of clean and facility sub-fab [10]. A plenum layer can be included, as shown in
Figure 1. In current high-volume memory manufacturing, the facility expands four times
larger than the soccer field to increase chip production. The manufacturing accordance
of thousands of production tools in the cleanroom layer and several thousands of dry
pumps and gas scrubbers in the clean sub-fab layer are essential to increase the production
efficiency by extending the preventive maintenance (PM) schedule. The next-generation
semiconductor devices require new materials to enhance chip performance. However, the
formation of new materials with a gas-phase reaction leaves unexpected by-products to
call maintenance [11,12].
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Many processes in semiconductor fabrication require a vacuum environment to meet
the chemical and physical requirements, and the use of dry vacuum pumps prevails in
semiconductor manufacturing [13]. The dry vacuum pumps perhaps do keep the process
low in the process chamber. The pumping efficiency drifts along the time of use, which
can jeopardize the process quality; thus, several studies have been conducted on the
diagnostics on dry pumps [14–17]. Current semiconductor fabrication technology employs
diverse process gas to form or remove thin film materials in plasma. For instance, atomic
layer deposition (ALD) of TiN thin films with TiCl4 and NH3 process gases forms the
undesired TiO2 by-product and coagulation of the undesired TiO2 by-product under the
vapor pressure in the foreline of the chamber and inside the dry vacuum pump. The scale,
formed from TiO2 power, degrades the pumping efficiency of dry vacuum pumps. It also
shortens the remaining useful time for the pump. Indeed, semiconductor production is
inevitable to hold for maintenance until the replacement and qualification for production
are made. The role of a dry vacuum pump is to maintain a constant pressure level as
an auxiliary facility; however, when it goes wrong, one should pay for the expensive
production loss in semiconductor chip manufacturing. Therefore, the monitoring and
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diagnosis of dry vacuum pumps in semiconductor manufacturing with the scope of IIoT
give many benefits to avoid misprocessing from unexpected component drift or failure.

In the existing ALD environment, a pump is used as a method of conducting PM at
regular intervals rather than finding and solving problems at the time of faulty occurrence.
This is for the purpose of prevention, but it is because there is no means to feedback the
abnormal state that has occurred in the pump. Therefore, the change of the pump was
observed based on the amount of change in the vibration of the pump acquired in the
environment where the by-product was accumulated. Through this, an IIoT monitoring
system that can monitor changes in real time was created. By analyzing the vibration
data of the pump in Azure, a cloud-based analysis platform, we created an analysis
system that accurately classifies outliers. Finally, it was integrated to build an IIoT pump
monitoring and diagnostic system. This new system can monitor the pump status in the
ALD process environment and reflect the feedback of all major vibration points through
ML, a multivariate analysis technique.

A literature survey on the condition monitoring and diagnosis of dry vacuum pumps
shows a good technical improvement for characterizing the system using advanced signal
processing techniques. Jiang et al. proposed a wavelet cluster-based frequency response
analysis for bearing defects, employing a vibrational transducer. They suggested that
methods of filtering and modulation of the acquired frequency spectral data were effective
in fault diagnosis [18]. Similarly, fuzzy-model-based condition monitoring was suggested
by analyzing the exhaust pressure signal [19]. Additionally, a prediction of vacuum pump
degradation in semiconductor processing was proposed to estimate the remaining useful
time of the pump [20]. This research also employed foreline pressure measurement to
acquire pump status data in the perception layer of IIoT and data analysis for decision
making using an artificial neural network as a middleware layer. An interesting aspect of
this research includes gas data as chamber data, whether the pump is idling or processing
modes. This is one aspect of SME. Along with the technology development of IT and
computational intelligence technology, the development of the monitoring and diagnostic
method of dry vacuum pumps can be found [21–23].

In the industrial field, machine learning has been utilized in various aspects to increase
the efficiency of the manufacturing process. A machine learning concept was used to detect
anomalies based on data acquired by IoT in a Wi-Fi indoor localization environment [24].
In addition, there has been a study using a virtual metrology model based on a tree
ensemble method, such as a random forest to reduce the measurement time and cost [25].
In the semiconductor field, using plasma measurement sensors such as Optical Emission
Spectroscopy, machine learning analysis was performed as a means of linking the complex
relationship between sensor data and the process results [26].

In this study, we present a realistic practice of the in situ monitoring and diagnosis
of the dry vacuum pump installed at the semiconductor fabrication equipment within
the scope of the practical application of IIoT. The perception layer is established with six
vibrational transducers to collect in situ pump status data. The collected analog vibrational
datasets are then converted to digital signals using a data acquisition module. For this,
2.4 GHz Wi-Fi wireless data transmission is used. The data acquisition environment can
use wired instead of wireless to prevent data loss and enhance the security [27]. The data
visualization application layer is constructed with Wise-PaaS provided by Advantech Korea.
The average deployment cost for data acquisition and monitoring system configuration is
approximately 3354 USD (Including six accelerometers and cables, data acquisition card,
and Wise-PaaS). Finally, Microsoft Azure is employed as a middleware layer for data
analysis considering the university research environment. There exists a virtual machine
and storage usage fee for machine learning computation in the Azure environment. A
virtual machine with 4 vCPUs with 14 GB of RAM and 200 GB temporary storage costs
about 0.229 USD per hour. Figure 2 shows the cloud diagnostic system structure and
edge monitoring system. By demonstrating the four layers of IIoT with the application
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in a semiconductor manufacturing facility, the final business layer can easily be tried by
industry, confirming the potential of IIoT in the near future.
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2. Subject Matter
2.1. Equipment Degradation Mechanism

By-products generated during the semiconductor process may degrade the function-
ality of the dry vacuum pump and shorten the remaining useful time before breakdown
maintenance (BM). TiO2 powder combined in the exhaust process after ALD of TiN thin
film is essential to the performance and lifespan of the pump. The combination of TiO2
powder and NH4Cl particles can be hardened inside the exhaust line and dry pump. The
solidified gas-phase by-products lower the conduction performance, creating an alarm on
the pressure controller of the main process equipment. When it leaches to the equipment
operational limits, a warning alarm from the pressure gauge inside the dry pump shuts
down the pump operation via interlock functions of the high-end fabrication equipment.
The dry pumps in the semiconductor manufacturing facility operate 24 h a day. It is desired
that they can be operated for more than a year without maintenance. However, in reality,
the lifetime of the dry pumps is as short as a month due to the undesired particles in
some processes.

Failure to properly treat process by-products in the IC manufacturing process can lead
to clogging of the exhaust system, damage to vacuum pumps and valves, and unexpected
equipment failure. Foreline clogging decreases the flow conductance and increases particles
inside the chamber. It also causes a safety problem due to the accumulation of by-products.
For example, in the ZrO2 ALD process, by-products generated in the exhaust pipe have a
high risk of dust explosion [28].

Semiconductor by-products depend on the type of process gas and condition under
which the chemical reactions can occur. In the ALD process, the unreacted process gas
is deposited inside the vacuum pump and causes pump failure [29]. TiN thin film ALD
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process using NH3, N2, and TiCl4 gases generate TiO2 and NH4Cl by a chemical bond. The
chemical bonds of semiconductor by-products that occur in the ALD process are as follows:

TiCl4 + O2 → TiO2 + 2Cl2, (1)

NH3 → NH2
− + H+, (2)

NH3 + H+ → NH4
+, (3)

NH4
+ + Cl− → NH4Cl. (4)

According to Equation (1), the TiCl4 gas exiting through the exhaust stage after the
process meets O2 in the exhaust process and chemically bonds to TiO2, leaving 2Cl2. Then,
NH3 gas is dissociated into NH2

− and H+ during the ionization process. The separated H+

recombines with the existingNH3, forming NH4
+, as shown in Equation (3). Finally, NH4Cl

(Ahmonium Chloride; an organic compound similar to white crystalline salt) and TiO2 is
formed as chemical reaction by-products.

The TiCl4 gas reacts with O2 in the exhaust process to form TiO2 powder; NH3 and
TiCl4 combine to form NH4Cl. The basic nature of NH4Cl causes internal corrosion of the
pump. One may concern a disruption of the flow inside the pump and the occurrence of
pump down due to the combination with TiO2. In fact, a more significant concern is the
repeated metal surface corrosion of the dry pump rotor and shaft from NH4Cl and the
coagulation of TiO2 nanoparticles inside the dry pump parts, which affect the long-term
reliability of the equipment.

Therefore, to prevent an undesired generation of corrosion of metal parts and gen-
eration of by-product particles, the atmosphere of the pump is operated in a condition
comparable to the melting point of the gas-phase by-products. Then, a cold trap is installed
to convert gas-phase particles to powder to be captured in a filter. All these engineering
effects may provide an indirect treatment, but more informative data for the pump condi-
tion can be used for scheduling PM and preventing unnecessary BM. An in situ monitoring
system for determining the changes inside the pump and detecting abnormal conditions
before the pump goes down is essential in a manufacturing environment. Therefore, this
paper presents a realistic construction of an in situ pump status monitoring system capable
of a cloud computing-based IoT system. The suggested proactive aims are for data-driven
maintenance efficiency for the clustered dry pump diagnostic system in a high-volume
semiconductor manufacturing environment.

2.2. Mechanical Vibration Analysis

Vibration is a phenomenon in a physical quantity that fluctuates around the average
value. Automated machines consisting of various moving and rotating parts vibrate in
response to the force fluctuation during operation. Analyzing the change in vibration
characteristics due to a physical change can diagnose a defect of the specific part. The ISO
18436-2 standard presents the effectiveness and rationale of analyzing such component
defectives as a vibration mechanism [30]. By-product issues of the pump down occur
due to the pumping process load caused by the internal rotational limitation of the pump.
Accumulated by-product particles inside the vacuum pump during the process can decrease
the pumping speed [31]. Time-domain and frequency-domain analyses are the most well-
known methods used in vibration-based equipment diagnosis [32]. The time-domain
analysis is based on the amplitude or temporal fluctuation, impact, and symmetricity of the
waveform, using the probability density function of the amplitude and the peek-to-peek.
The frequency-domain analysis method decomposes time-domain sinusoidal waves into
frequency components using fast Fourier transform (FFT). The frequency included in the
sinusoidal wave and the amplitude of the frequency spectra can be analyzed. Figure 3
shows an example of the decomposed complex waveform to the frequency by applying
FFT in this experiment.
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3. In Situ Vibration Data Acquisition

Finding a health index of the dry pump can help the condition monitoring and
diagnosis to prevent undesired machine breakdowns. Feature extraction of the vibrational
data from the dry vacuum pump is the most well-known method. However, the structures
of the pumping mechanism and mechanical supports with the housing vary from the pump
manufacturer. Thus, the acquired data can vary from the different types of pumps and
pump manufacturers. A designated dry pump of AA220W manufactured by Ebara, located
at the semiconductor process diagnostic research center (SPDRC) at Myongji University
was employed to collect the vibrational data in the experimental stage for the easiness of
IIoT application development. The AA200W for the high-speed exhaust of large chambers
has two-stage pumps, consisting of a screw-type dry pump and a root-type blower pump.
The designated dry pump is connected with the ICP type 300 mm production etch chamber
for the IIoT system development. However, it still conceptually holds the purpose of the
suggested research. Once the suggested system is ready, the developed IIoT system is
attached to the dry pump connected to the TiN deposition chamber for the application test,
which will be described in the later section.

The vibration sensor converts the vibration detected from the machine into a digital
signal, and their types are typically a velocity sensor, proximity probe, and accelerometer.
The sensitivities in the frequency range are different; the type of sensor should be considered
with respect to the frequency response characteristics, signal-to-noise ratio, and sensitivity.
In this paper, we used a piezoelectric vibration acceleration sensor with a higher frequency
response and higher sensitivity than other vibration sensors to investigate two different
models of dry pumps. The employed vibration sensor has a frequency response of about
10 kHz and a sensitivity of 100 mV/g. The noise density over the 10, 100, and 1000 Hz
ranges are 14, 2.3, and 2 µg/

√
Hz, respectively. A suggested system sampling rate is

20.08 Hz (20.08 data per 1 s). It is also crucial for the data acquisition from the vibration
sensors to have concrete physical contact with the entity that affects the contact resonance.
The measurable frequency range reduces at low installation resonant frequencies. A
magnetic stud that can be fixed with screws is used to minimize external vibrations that
occur during data acquisition. The closer and more fixed to the pump surface, the more
advantageous it is to acquire high-frequency region data.

For accurate vibration measurement, it is necessary to select an installation location
that best reflects the vibration characteristics of the pump. When the pump performance
decreases due to by-products being adsorbed inside, the load on the internal bearing
increases. Based on the domain knowledge and experience, TiO2 tends to be adsorbed
near the dry pump inlet and internal screw. We assumed that the vibration analysis of
the relevant area would also change significantly (perhaps, this is not always true). The
vibration sensor measures only the vibration in one direction; therefore, a single sensor
cannot measure the lateral vibration caused by the rotational motion of the facility. The
lateral vibration data can be used together for a more versatile analysis. Four acceleration
sensors are attached to the bearings of dry and booster pumps in the horizontal and vertical
directions. The remaining two sensors are attached to the inlet part and screw end of the
dry pump. Figure 4 shows a photograph of the pump (taken by the authors) and the set-up
points of the accelerometers for the vibrational data acquisition in this exercise.
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Edge computing is a computing environment that can operate close to users or data
sources. When the instantaneous data management operation is possible, it can effectively
reduce the delay time in the conventional data transmission process and prevent the data
computation overload. The vibration data acquired from six vibration sensors in this
experiment is processed digitally using the data acquisition (DAQ) card installed in the
edge computer. The acquired vibration data are converted into digital signals through
Advantech’s machine condition monitor (MCM), a data analysis tool configured in edge
computing, and stored in sinusoidal raw data with root mean square (RMS) and peak-to-
peak (PTP) functions applied, and frequency data applied using FFT. The acquired data
can be transmitted wirelessly to the 2.4 GHz Wi-Fi wireless I/O module built into the DAQ
card. The wired environment used in this paper is limited to the data acquisition stage. The
monitoring system was built in the 2.4 GHz Wi-Fi environment, and the Diagnosis system
was built in the Azure cloud environment. Additionally, real-time data monitoring sends
data to an external computer instead of the measurement site using Wise-PaaS provided by
Adventech Korea.

To apply the acquired vibration data to anomaly analysis, it is necessary to perform
signal processing suitable for analysis. The signal processing discussed in this paper
includes sampling to frequency conversion, filtering, and windowing. Increasing the data
resolution in the data acquisition process can increase the accuracy of the data analysis.
Since the analyzable frequency changes depending on the measure location, it is possible to
set the ideal data resolution by minimizing the max frequency within the analyzable range
and maximizing the sampling rate according to the sensor performance. The frequency-
domain analysis uses an FIR filter to limit specific frequencies. Time windows, such as
Hanning and flat-top windows, can be applied to make it easier to distinguish the number
of changes in the spectral data. However, both methods are unsuitable for data-driven
analysis. The Time Window function changes the original data by dividing the spectral
energy. The time window function is not suitable for data-driven analysis because it affects
the characteristics of actual data. Therefore, the edge computing system constructed in this
paper acquires the frequency change within 8 kHz of the maximum frequency with 20 Hz
of sampling rate without applying filtering or time window.

To conduct time-domain analysis on such a complex waveform, it is estimated that
the amount of change in amplitude expressed using RMS and PTP functions can reflect
the change in the vibration of the pump generated as a semiconductor by-product. Twelve
major variables were selected, including RMS and PTP values obtained from six sensors.

When semiconductor by-products accumulate in the pump, it is assumed that the
amplitude change amount of the observed frequency in the steady-state can be expressed
as the amplitude change amount of the observed frequency. Therefore, 364 of the frequency
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data showing effective changes in each sensor were selected as the main variables of further
data processing.

For the classification algorithm to be applied to the experimental data, the top seven
algorithms with the highest performance for the data were selected based on the algo-
rithm database in Azure. Dry pump vibration data of 300 mm ICP etcher were clas-
sified using MinMaxScalerSVM [33], StackEnsemble [34], RobustScalerSVM, MaxAbsS-
calerLightGBM [35], StandardScalerWrapperLightGBM, and SparseNormalizerXGBoost-
Classifier [36].

As the main process of this paper, dry pump vibration data of the TiN deposition
process were classified using MinMaxScaler_RandomForest [37], StandardScalerWrapper-
RandomForest, SparseNormalizerXGBoostClassifier, MaxAbsScalerXGBoostClassifier, Min-
MaxScalerExtremeRandomTrees [38], MaxAbsScalerLightGBM, and StandardScalerWrap-
perExtremeRandomTrees. The pseudo-code of the algorithm used as the main structure of
each algorithm, such as (a) SVM, (b) StackEnsemble, (c) LightGBM, (d) XGBoostClassifier,
(e) RandomForest, and (f) ExtremeRandomTrees, are presented in Appendix A.

4. Monitoring and Diagnostic System

The data collected from the edge computer is stored in an external Web access PC as
a 2.4 GHz Wi-Fi wireless I/O module. Data are transmitted according to the predefined
Modbus communication value. The transmission period can be set-up to a 0.1 s period.
The calculations of functions for time-domain and frequency-domain values are performed
on the edge computer. Web access is designed to store the calculated function values in
a database. The data stored in the database are displayed in real-time on the dashboard
configured in Web access. As shown in Figure 5, the dashboard visualizes the maximum
value of RMS, PTP, and FFT of each sine wave sensor with a control chart and single
status warning alarm. The control chart was configured to check the occurrence of outliers
based on the upper and lower levels of 10%, and the single status warning alarm was
configured to display a warning when each sensor deviates from a certain level. Through
this, it is possible to review the entire data in addition to real-time monitoring. The IIoT
based in situ monitoring system can quickly provide equipment status information to users.
Users can operate the process stably and find abnormal conditions based on the status
information. In addition, the time-series database can be used as a variable when analyzing
process results.

The diagnostic system acts as a middle layer for machine learning analysis with
the data acquired from the pump. This system was built with Microsoft Azure, a cloud
platform with various advantages, such as algorithm optimization function, evaluation of
multi-faceted model performance, and model variable validation evaluation. Vibration data
preprocessed through a data acquisition system configured on the MCM PC are applied to a
machine learning algorithm configured on the cloud. A rather high initial installation cost is
required to configure the proposed system. The cost for storing and calculating data in the
cloud environment is added. Besides, proposed systems cannot give feedback to each other
because of differences in the Monitoring and Diagnosis systems operating environments.
However, machine learning analysis can use multivariate analysis to calculate relationships
between variables that are more complex than conventional statistical process control
methods. Machine learning learned from accumulated data can show very high analytical
results for multivariate data. In particular, higher diagnostic accuracy can be expected if an
algorithm optimized for the acquired data is found among various algorithms. The cloud
diagnosis system utilizes IIoT equipment data to optimize PM.

Vibration data obtained from the vacuum pump were used to test the diagnostic
system. In the AA200W connected to a 300 mm ICP type etching chamber, it is not easy to
acquire error data due to by-products. Therefore, the abnormal data extracted from normal
data were used for temporary classification accuracy evaluation. Anomalous labels were
selected using an isolated forest algorithm with a contamination value of 10%. Figure 6
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shows a t-Stochastic Neighbor Embedding (t-SNE) graph that visualizes multivariate data
in three-dimensional form to express the outlier distribution results.
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Various data processing algorithms can be selected from the established dashboard
based on high classification accuracy when using the acquired data. Due to the recently
increased study of machine learning, eight machine learning algorithms were tested. The
SVM model using MinMaxScaler achieved the highest classification accuracy. Classification
accuracy alone cannot be evaluated by modeling errors of the algorithms; multi-faceted
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model performance evaluation is essential. Therefore, we employ more categories of
performance evaluation, as shown in Table 1. We observed that the Balanced_Accurancy
of all models is quite low, whereas other criteria are moderately accepted. The result of
the confusion matrix in Figure 7 explains the low Balanced_Accurancy, and it falls into
the data imbalance problem in machinery malfunction diagnosis. Suppose the equipment
malfunction dataset can be compared to the number of nominal data available from the
manufacturing site. In that case, we believe that the suggested methodology will work
better for equipment diagnosis in real-time.

Table 1. Etching environment algorithm performance evaluation.

Experiment Condition Accuracy Balanced
Accuracy F1_Score

Recall
Score
Micro

Log_Loss

MinMaxScaler, SVM 0.918 0.672 0.918 0.918 0.217
StackEnsemble 0.916 0.661 0.916 0.916 0.222

RobustScaler, SVM 0.909 0.609 0.909 0.909 0.235
MaxAbsScaler, LightGBM 0.907 0.552 0.907 0.907 0.250
StandardScalerWrapper,

LightGBM 0.908 0.563 0.908 0.908 0.248

SparseNormalizer,
XGBoostClassifier 0.906 0.570 0.906 0.906 0.354
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Based on the above study, vibration analysis was conducted to evaluate whether
the TiN deposition affects the performance of the pump. Vibration data to be used for
analysis was acquired in an environment where TiN can be deposited inside a dry pump
connected by supplying NH3, N2, and TiCl4 gases to a temporary chamber manufactured
by simulating the ALD equipment. The location of the sensor for the acquisition was the
same. The acquired data were stored as a database through MCM. The data acquisition
period took two months, and the data acquired at the first and last moments were classified
as normal and abnormal, respectively. Figure 8 shows the distribution of pump vibration
data obtained from the deposition process as a t-SNE graph. It was confirmed that normal
and abnormal data were classified to some extent on the graph.
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The obtained vibration data were preprocessed for analysis, and a classification al-
gorithm was applied and evaluated through Azure. As a result of the evaluation, the
accuracy of all algorithms was calculated as 100%. Table 2 presents six algorithms selected
among the algorithms applied by Azure. All algorithms classified abnormal data with 100%
accuracy. Algorithm ranking is listed as a log loss parameter, but there is no significant
difference because all values converge to 0. To prevent class imbalance in the training
process, a dataset with a ratio of outliers to normal observations of 5:5 was used. Figure 9
shows that the MinMaxScalerRandomForest confusion matrix has no imbalance in the data
and no misclassification in the analysis process. Figure 10a shows that the local feature
importance graph can check the value at the time point with the greatest importance being
among one variable in the overall learning. Figure 10b shows the affected feature to model
prediction list, showing all variables in the order of the highest feature importance in the
algorithm learning process. The key features found by analyzing the two results indicate
which variables to focus on in the subsequent algorithm development process.

Table 2. ALD environment algorithm performance evaluation.

Experiment Condition Accuracy Balanced
Accuracy F1_Score

Recall
Score
Micro

Log_Loss

MinMaxScaler, RandomForest 1.000 1.000 1.000 1.000 0.0000005
StandardScalerWrapper,

RandomForest 1.000 1.000 1.000 1.000 0.00001

SparseNormalizer,
XGBoostClassifier 1.000 1.000 1.000 1.000 0.00004

MaxAbsScaler,
XGBoostClassifier 1.000 1.000 1.000 1.000 0.00005

MaxAbsScaler, LightGBM 1.000 1.000 1.000 1.000 0.0003
StandardScalerWrapper,
ExtremeRandomTrees 1.000 1.000 1.000 1.000 0.001
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5. Conclusions

This paper introduced a system to monitor and analyze pump failure as a by-product
of semiconductors generated in CVD in the ALD process. The monitoring system acquires
and accumulates vibration data generated by the vibration pump when semiconductor
by-products accumulate. In addition, the process operator can intuitively evaluate the
internal state of the pump in real time. The system of this paper, which adds the ML
analysis environment, performs multivariate analysis using all significant frequency bands
as variables. Multivariate analysis algorithm has higher classification accuracy and result
recall than single-variable analysis.

As a result of applying the vacuum pump vibration change amount to the data
diagnostic system in the ALD process environment, the top six algorithms showed high
classification accuracy. This paper introduced a system to monitor and analyze pump failure
as a by-product of semiconductors generated in CVD during ALD. Since the abnormal
state of the vibration data is accumulated and recorded, it is expected that it will be easy to
prepare an analysis report through this. Additionally, the Azure cloud platform, to which a
machine learning algorithm is applied, can detect data-based outliers using accumulated
vibration data. Since it is based on multivariate analysis, it is expected to detect more
various types of anomalies. If this is applied in an environment close to mass production
for a longer period, it is expected that an outlier detection system with higher reliability
can be constructed.
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Appendix A

Algorithm A1 SVM Pseudo-Code

1: Input: parameters:
2: out = array of SVM outputs
3: target = array of booleans: is ith example a positive example?
4: prior1 = number of positive examples
5: prior0 = number of negative examples
6: Output: Parameters of sigmoid
7: A = 0
8: B = log((prior0 + 1)/(prior1 + 1))
9: log((prior0 + 1)/(prior1 + 1))

10: hiTarget = (prior1 + 1)/(prior1 + 2)
11: loTarget = 1/(prior0 + 2)
12: lambda = 1e−3

13: olderr = 1e300

14: pp = temp array to store current estimate of probability of examples
15: set all pp array elements to (prior1 + 1)/(prior0 + prior1 + 2)
16: count = 0
17: for it = 1 to 100
18: a = 0, b = 0, c = 0, d = 0, e = 0
19: //First, compute Hessian & gradient of error function
20: //with respect ro A & B
21: for i = 1 to len {
22: if (target[i])
23: t = hiTarget
24: Else
25: t = loTarget
26: d1 = pp[i] − t
27: d2 = pp[i]∗(1 − pp[i])
28: a + = out[i]∗out[i]∗d2
29: b + = d2
30: c + = out[i]∗d2
31: d + = out[i]∗d1
32: e + = d1
33: //If gradient is really tiny, then stop
34: if (abs(d) < 1e−9 && abs(e) < 1e−9)
35: Break
36: oldA = A
37: oldB = B
38: err = 0
39: //Loop until goodness of fit increases
40: while (1) {
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41: det = (a + lambda)∗(b + lambda) − c∗c
42: if (det == 0) {//if determinant of Hessian is zero,
43: //increase stabilizer
44: lambda∗ = 10
45: Continue
46: }
47: A = oldA + ((b+lambda)∗d − c∗e)/det
48: B = oldB + ((a + lambda)∗e − c∗d)/det
49: //Now, compute the goodness of fit
51: for i = 1 to len {
52: p = 1/(1 + exp(out[i]∗A + B ))
53: pp[i] = p
54: //At this step, make sure log(0) returns -200
55: err − = t∗log(p) + (1 − t)∗log(1 − p)
56: }
57: if (err < olderr∗(1 + 1e − 7)) {
58: lambda∗ = 0.1
59: Break
60: }
61: //error did not decrease: increase stabilizer by factor of 10
62: //& try again
63: lambda∗ = 10
64: if (lambda ≥ 1e6)//something is broken, Give up
65: Break
66: }
67: diff = err-older
68: scale = 0.5∗(err + olderr + 1)
69: if (dif f > − 1e − 3∗ scale&&dif f < 1e − 7∗scale)
70: count ++
71: Else
72: count = 0
73: older = err
74: if (count == 3)
75: Break
76: }

Algorithm A2 Stacked Ensemble Classifier Pseudo-Code

1: Input: Dataset D = {(x1,y1),(x2,y2),· · · ,(xm,ym)};
2: Base-classifier f 1 = RF1, f 2 = RF2, f 3 = ET1, f 4 = ET2
3: For t = 1,· · · ,4;
4: Train the base-classifiers in the first stage
5: ht = f t(D);
6: End
7: For i = 1,2,· · · ,m:
8: for t = 1,· · · ,4:
9: Generate new feature vector for each sample

10: zit = ht(xi);
11: End
12: D′ = D′∪((zi1,· · · ,zi4),yi);
13: End
14: Train the meta-classifier in the second stage
15: h′ = f (D′);
16: Output: H(x) = h′(h1(x), . . . ,h4(x))
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Algorithm A3 LightGBM Pseudo-Code

1: Input: I: training data, d: max depth
2: Input: m: feature dimension
3: nodeSet←{0}.ree nodes in current level
4: rowSet← {{0, 1, 2, . . . }} . data indices in tree nodes
5: for i = 1 toddo
6: for node in nodeSet do
7: usedRows←rowSet[node]
8: fork = 1 tomdo
9: H← new Histogram()

10: . Build histogram
11: forjinusedRowsdo
12: bin← I.f[k][j].bin
13: H [bin].y H [bin].y + I.y[j]
14: H [bin].n H [bin].n + 1
15: Find the best split on histogram H.
16: . . .
17: Update rowSet and nodeSet according to the best split points.
18: . . .
19: Input: I: training data, d: iterations
20: Input: a: sampling ratio of large gradient data
21: Input: b: sampling ratio of small gradient data
22: Input: loss: loss function, L: weak learner
23: models← { }, fact← (1−a)/b
24: topN←a × len(I),randN← b ×len(I)
25: for i = 1 toddo
26: preds←models.predict(I)
27: g←loss(I, preds), w← {1,1, . . . }
28: sorted← GetSortedIndices(abs(g))
29: topSet← sorted [1:topN]
30: randSet← RandomPick(sorted[topN:len(I)], randN)
31: usedSet← topSet + randSet
32: w[randSet] × = fact . Assign weight f act to the small gradient data.
33: newModel← L(I [usedSet],− g[usedSet], w[usedSet])
34: models.append(newModel)

Algorithm A4 XGboost Pseudo-Code

1: Input: I, instance set of current node
2: Input: d, feature dimension
3: gain← 0
4: G ← ∑i∈I gi, H ← ∑i∈I hi
5: for q = 1 to Q do:
6: GL←0,HL←0
7: for jinsorted (I, byxjq) do
8: GL← GL + gj, HL← HL + hj
9: GR←G−GL, HR←H − HL

10: score ← max
(

score, G2
L

HL+λ +
G2

R
HR+λ −

G2

H+λ )

11: End for
12: End for
13: Output: Split with max score
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Algorithm A5 Random Forest Pseudo-Code

1: Require: IDT(a decision tree inducer),
2: T(the number of iterations), S (the training set),
3: µ (the subsample size), N (number of attributes used in each node)
4: Ensure: Mt;t = 1, . . . ,T
5: t← 2
6: Repeat
7: St← Sample µ instances from S with replacement
8: Build classifier Mt using IDT(N) on St
9: t ++

10: until t > T

Algorithm A6 Extra-Trees Splitting Algorithm Pseudo-Code

1: Split_a_node(S)
2: Input: the local learning subset S corresponding to the node we want to split
3: Output a split [a < ac] or nothing
4: If Stop_split(S) is TRUE then return nothing
5: Otherwise select Kattributes {a1, . . . aK}
6: among all non constant (in S) candidate attributes;
7: Draw Ksplits {s1, . . . sK}, where si = Pick_a_random_split(S, ai), ∀i = 1, . . . K;
8: Return a split s∗ such that Score(s∗, S) = maxi=1, . . . ,K Score(si, S).
9:

10: Pick_a_random_split(S,a)
11: Inputs: a subset S and an attribute a
12: Output: a split
13: Let aS

min and aS
max denote the maximal and minimal value of a in S;

13: Let aS
min and aS

max denote the maximal and minimal value of a in S;
14: Draw a random cut-point acuniformly in

[
aS

min, aS
max ];

15: Return the split [a < ac].
16:
17: Stop_split(S)
18: Input: a subset S
19: Output: a Boolean
20: If |S | < nmin, then return TRUE;
21: If all attributes are constant in S, then return TRUE;
22: If the output is constant in S, then return TRUE;
23: Otherwise, return FALSE.
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